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ABSTRACT OF THE DISSERTATION

Machine learning for localizing and characterizing underwater passive acoustics

by

Emma Ozanich

Doctor of Philosophy in Oceanography

University of California San Diego, 2020

Peter Gerstoft, Chair

Passive acoustics, or the recording of pressure signals from uncontrolled sound sources,

is a powerful tool for monitoring man-made and natural sounds in the ocean. Passive acoustics

can be used to detect changes in physical processes within the environment, study behavior and

movement of marine animals, or observe presence and motion of ocean vessels and vehicles.

Advances in ocean instrumentation and data storage have improved the availability and quality of

ambient noise recordings, but there is an ongoing effort to improve signal processing algorithms

for extracting useful information from the ambient noise. This dissertation uses machine learning

as a framework to address problems in underwater passive acoustic signal processing. The

chapters within this dissertation cover two types of problems: characterization and classification

xvii



of ambient noise, and localization of passive acoustic sources.

First, ambient noise and passive acoustic signals were characterized in two locations. In

the eastern Arctic, ambient noise was studied from April to September 2013 using a vertical

hydrophone array as it drifted from near the North Pole to north of Fram Strait. Median power

spectral estimates and empirical probability density functions (PDFs) along the array transit show

a change in the ambient noise levels corresponding to seismic survey airgun occurrence and

received level at low frequencies and transient ice noises at high frequencies. Noise contributors

were manually identified and included broadband and tonal ice noises, bowhead whale calling,

seismic airgun surveys, and earthquake T phases. The bowhead whale or whales detected were

believed to belong to the endangered Spitsbergen population and were recorded when the array

was as far north as 86◦24’N. Then, ambient noise recorded in a Hawaiian coral reef was analyzed

for classification of whale song and fish calls. Using automatically detected acoustic events, two

clustering processes were proposed: clustering handpicked acoustic metrics using unsupervised

machine learning, and deep embedded clustering (DEC) to learn latent features and clusters

from fixed-length power spectrograms. When compared on simulated signals of fish calls and

whale song, the unsupervised clustering methods were confounded by overlap in the handpicked

features while DEC identified clusters with fish calls, whale song, and events with simultaneous

fish calls and whale song. Both clustering approaches were applied to recordings from directional

autonomous seafloor acoustic recorder (DASAR) sensors on a Hawaiian coral reef in February

2020.

Next, source localization in ocean acoustics was posed as a machine learning problem in

which data-driven methods learned source ranges or direction-of-arrival directly from observed

acoustic data. The pressure received by a vertical linear array was preprocessed by constructing a

normalized sample covariance matrix (SCM) and used as the input for three machine learning

methods: feed-forward neural networks (FNN), support vector machines (SVM) and random

forests (RF). The effect of data preprocessing, including frequency bandwidth and snapshot

xviii



averaging, were examined. Machine learning was implemented as a classification and regression

problem. The FNN, SVM, RF and conventional matched-field processing were applied to

recordings from ships in the Noise09 experiment to demonstrate the potential of machine learning

for underwater source localization. The source localization problem was extended by examining

the relationship between conventional beamforming and linear supervised learning. Then, a

nonlinear deep feedforward neural network (FNN) was developed for direction-of-arrival (DOA)

estimation for two-source DOA and for K-source DOA, where K is unknown. K-source FNN

achieved resolution and accuracy similar to Sparse Bayesian Learning (SBL) for single-snapshot

and multiple Signal Classification (MUSIC) for multi-snapshot data with an unknown number of

sources. The practicality of the deep FNN model was demonstrated on ships in the Swellex96

experimental data.
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Chapter 1

Introduction

Ambient noise measurements have been relied on for decades to study under-ice con-

ditions in the Arctic [11, 16, 20, 24, 32] and the behavior and movements of sound-producing

animals. [34, 36, 42, 60] To better make sense of these passive acoustic data, automated signal

processing methods have been developed for detecting and classifying sounds. [21, 31, 33, 38, 59]

The problem of localizing and tracking passive acoustic sources has been addressed through

advancements in array processing methods that better characterize the ocean environment [14] or

utilize persistent waveguide physics. [17, 56]

This goal of this dissertation is to develop and apply machine learning methods to better

analyze and localize passive underwater acoustic sources, particularly focusing on recent advances

in machine learning methods and softwares. [1, 26, 52] The purpose is twofold: first, to examine

machine learning performance in modeled and real-world scenarios, and second, to address

considerations for posing an underwater acoustics problem using machine learning frameworks.

Two underwater acoustic problems are considered:

1. Characterizing and classifying unlabeled passive acoustic data in the Eastern Arctic [48]

and Hawaiian coral reef, [49] two regions that merit increased experimental observation due

to their relevance to climate change. [4, 62] Machine learning has become a valuable tool
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for classification of passively recorded bioacoustic signals (for a summary, see Sec. VIII

in [5]). However, challenges remain in data processing and classification in acoustically

noisy environments. We first demonstrate methods of spectral analysis for ambient noise in

the Eastern Arctic and present a data-driven approach for removing unwanted non-acoustic

noise. Then, we consider unsupervised machine learning clustering approaches for Hawai-

ian coral reef ambient noise that utilize both handpicked spectral and temporal features as

well as deep feature learning, building from existing studies of fish call classification using

supervised learning. [21, 31, 33]

2. Localizing seagoing vessels in passive acoustic recordings. [44–47] The chapters of this

dissertation focus on source ranging [46] and direction-of-arrival (DOA). [47] Motivated

by success in other domains, [10, 25, 53, 55] this dissertation leverages recent machine

learning software and algorithms. In addition to utilizing current computational capability,

our approach differs from existing studies on neural networks for underwater acoustics by

using experimental observations for training as well as model-generated fields [57], [50],

[8]− [3] and considering both classification and regression. [9] We use normalized sample

covariance matrix inputs that include phase and amplitude information across an array,

instead of complex pressure, phase-only, amplitude-only, transmission loss, eigenvalues, or

backscatter. [3, 8, 9, 29, 40, 57, 58] For DOA, we propose using feedforward neural network

to handle nonlinearities previously addressed using nonlinear kernels in SVM, [30, 35, 54]

similar to the spectral estimation problem recently studied. [22]

1.1 Statistical analysis of ambient noise spectra

Statistical spectral methods are common used for analyzing longterm ambient noise with

unknown signal content. A sliding window of length N may be applied to the pressure timeseries
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x at T time steps ti, i = 1, . . . ,T to compute a set of frequency spectra, [51]

p( f , ti) =
C ·B
FsN2

∣∣∣∣∣N−1

∑
n=0

w[n]x[ti +n]e−i·2π
f ·n
Fs

∣∣∣∣∣
2

(1.1)

for frequencies f ∈ [0, Fs
N , . . . ,(N−1)Fs

N ]. w[n] is the Hamming window, B the window normal-

ization factor, and C is the sensor calibration coefficient for a sensor with sampling rate Fs. The

p( f , ti) have units of power density (µPa2 per Hz) and are computed using the Fast Fourier

transform algorithm.

The matrix p( f , ti), f = 0, . . . ,(N−1)Fs
N , ti = 1, . . . ,T is often expressed in the decibel

scale, S( f , ti) = 10log10 p( f , ti), where S( f , ti) is called the spectrogram. In Chapter 3, the

spectrograms were computed for events lasting less than 2 s and used for extracting spectral

features or for deep learning inputs.

Another approach is to estimate the empirical cumulative distribution function (ECDF) at

each frequency across all T windows. [51] The 50th percentile of the ECDF, or median, improves

ambient noise characterization compared to the mean spectra. [39] In Chapter 2, spectral estimates

across 3 and 4 day periods were used to compute the 10th, 50th, and 90th percentiles of the

ECDF. The Pth percentile is the spectral level that exceeds P percent of all time windows. For

example, the 90th percentile is exceeded in only 10% of time windows and corresponded to loud

and short-lasting ice creaks in [48]. In Chapter 3, the ECDF was computed for individual acoustic

features of detected events instead of spectra [49]. For that Hawaiian coral reef soundscape, the

90th percentile of the feature measuring number of impulses corresponded to fish calling during

the dusk spawning chorus.
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1.2 Localization in underwater acoustic waveguides

In shallow water ocean acoustics, localization of a source can be explicitly or implicitly

linked to the measured pressure field through the channel propagation characteristics. The pressure

field generated by a point source can be well-estimated by solving the separable Helmholtz

equation. [23] In theory, the ocean can be expressed as a flat-bottomed waveguide of depth D,

with no sound speed variation (Pekeris waveguide, see Ch. 2.4.5 [23]). The solution for this

environment is well studied and reasonably accurate in many scenarios. It can be expressed as a

set of propagating modes measured at depth z generated by a source at range r and depth zs.

The exact relation between the source location parameters and the received field are

specific to each ocean environment. In the simplified case of Pekeris waveguide, the pressure field

depends on ocean sound speed (SSP) and sediment properties. In practice, the ocean environment

is more complex: SSP is influenced by ocean processes, the ocean bottom is sloping and contains

local bathymetric features, sediment is layered and spatially variable, and surface and volume

scattering may have a non-negligle effect.

A number of existing studies on source localization rely on measured environmental

parameters to compare modeled to measured pressure fields. Matched-field processing seeks to

estimate the location parameters by finding a maximum likelihood solution between a propagation

model and the measured ocean. [2, 41, 61] Other methods have considered signal processing

improvements for matching the replicas and measurements. [12, 17] Statistical methods, including

genetic algorithms, [19] Bayesian [13, 37] and trans-dimensional Bayesian inversion [15] seek to

jointly estimate the ocean environment and the source location parameters.

In this dissertation, the problem of source localization was treated as a pattern matching

problem between similar environments. Consistent measured patterns in the received field may

be used to infer source location parameters without requiring explicit knowledge of the ocean

environment. The research in Chapters 4 and 5 introduces recent developments in machine
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learning algorithms and implementation to existing research on neural networks and regression

for underwater acoustic localization [29, 50, 57] and geoacoustic inversion. [3, 8, 9, 40, 58] In our

work, machine learning was used to implicitly determine the relationship between the measured

pressure fields and the source location parameters, including range [45, 46] and angle [47].

Related research has also considered source depth . [44]

1.3 Supervised machine learning

In supervised machine learning, the objective is to learn a mapping from an input, x, to an

output target y, given a set of N labeled pairs D = {(xi,yi}N
i=1. [43] The labeled set D used to

infer the mapping is called the training set. Supervised learning performance is measured on the

capability of the trained model to perform on a labeled test set, D ′ = {(x j,y j)}M
j=1, that is similar

to but does not overlap with the training set.

In the following, xi ∈ RD is a D–dimensional vector representing D input features. The

features may have physical meaning, as in [45–47] where the features were derived from the

sample covariance matrix, or they may be statistically informative features derived from a feature

learning process as in [47]. The target output is either discrete (classification) with yi ∈ {1, . . . ,C}

or continuous (regression) with yi ∈ R. The three supervised machine learning methods applied

within this dissertation are briefly described.

1.3.1 Neural networks

The feed-forward neural network (FNN), also known as multi-layer perceptron, is con-

structed using a feed-forward directed acyclic architecture. The outputs are formed through a

series of functional transformations of the weighted inputs, [6] where for an input layer comprised
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of D input variables xt = [x1, · · · ,xD]T , the output is

ŷm
t = f

(
D

∑
i=1

wi,mxi
t

)
= f (wmT xt), m=1, ...,M (1.2)

where f (·) is an arbitrary function and wm a weight vector. The locally optimal set of weights

wm, m = 1, ...,M, is estimated through inversion using gradient backpropagation. [28]

In convolutional neural networks (CNN), the input xt becomes a 2D or 3D image Xt ∈R3

and the weight vector wm is replaced by a 2D filter, with Wm ∈ R2. The primary difference

between FNN and CNN is that CNN uses weight sharing and downsampling by convolving a

single filter across the entire input image whereas FNN typically weights each input feature

separately. [6] This property leads to translational invariance in CNNs making them particularly

useful for image feature extraction. [27]

Both FNN and CNN can be posed as classification or regression models. For classification,

the training labels are expressed as M-dimensional binary vector yt ∈ {0,1}M representing M

classes, with ym
t = δ(m,mtrue), for δ() the Kronecker delta. The likelihood over the M classes is

estimated using the softmax function at the output, [6]

ŷm
t (x,w) =

exp(am(x,w))

∑
M
j=1 exp(am(x,w))

, m = 1, · · · ,M (1.3)

where w is the set of all weight and bias parameters, am is an activation at an intermediate

network layer, and ym
t satisfies 0 ≤ ym

t ≤ 1 and ∑m ym
t = 1. For regression, there is only one

continuous-valued neuron in the output layer with ŷm
t ∈ R. Details of the neural network models

used in this dissertation are given in Chapters 3, 4, and 5.
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1.3.2 Support vector machine

Support vector machines (SVM) use a linear hyperplane to separate the inputs xi into two

classes given the true class labels ti [46, 47]

argmin
w,b

1
2
‖w‖2, (1.4)

subject to si(wT xi +b)≥ 1, i = 1, . . . ,N (1.5)

where w and b are the weights and bias, and wT x+b = 0 defines the hyperplane that separates the

classes. Minimizing 1
2‖w‖

2 is equivalent to maximizing the margin between the nearest point and

the separating hyperplane. To extend the SVM to nonlinear problems, xi is replaced by φ(xi), [6]

where φ is a nonlinear function. Slack variables are incorporated in (1.4) to penalize misclassified

points. [6] Last, the SVM can be used to classify K classes by learning K(K−1)/2 hyperplanes,

one for each pair of classes, in a method known as “one-versus-one.” [6] Additional details of the

SVM are discussed in Chapters 4 and 5.

1.3.3 Random forest

The random forest (RF) uses statistical bagging on a set of B randomly initialized decision

trees to develop a robust classification model, [7]

f̂ bag(xi) = argmax
ti

B

∑
b=1

I( f̂ tree,b(xi), ti) (1.6)

where f̂ tree,b(xi) predicts the class of xi for the bth tree. Each tree is constructed by iteratively

partitioning the data. For example, if xi is partitioned along the mth dimension at cutoff level c,
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then

xi ∈ xleft if xim > c, xi ∈ xright if xim ≤ c (1.7)

c∗ = argmin
c

G(c), G(c) =
nleft

N
H(xleft)+

nright

N
H(xright), (1.8)

where c∗ is the optimal cutoff level for each partition, nleft and nright are the number of points in

the left and right regions, and H() is the error, also called impurity function. The partitioning

process is repeated until a stop criterion is met, often when the number of points in a region falls

below a threshold. Additional details of random forest are discussed in Chapter 4.

1.4 Dissertation Overview

This dissertation applies data-driven approaches and machine learning to a diverse set of

problems in passive acoustics. Our results demonstrate that while environmental considerations

are necessary for passive acoustics, machine learning can be used to enhance feature learning in

soundscapes and as a potentially model-free localization method for passive acoustic sources of

opportunity.

Chapters 2 and 3 address source characterization and classification in passive acoustics.

In Chapter 2, the Arctic soundscape was analyzed using spectral analyses and manual signal

analysis and compared to previous Arctic ambient noise studies. An automated method based

on the background pressure identified non-acoustic noise for removal. In Chapter 3, sound

sources from a Hawaiian coral reef were recorded on vector sensors and automatically detected.

Handpicked spectral and temporal features were automatically extracted and clustered using

K-means and hierarchical agglomerative unsupervised clustering methods. Then, normalized

spectrograms were used in deep embedded clustering, a variant of the convolutional autoencoder

neural network modified to clusters its learned features. Simulated signals based on observed
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signal characteristics were used to examine the performance of both clustering algorithms before

implementing on a set of experimental detections.

The localization of passive acoustic sources is addressed in Chapters 4 and 5. Source

and ship ranging was studied in Chapter 4 using FNN, SVM, and RF, with the normalized

sample covariance matrix inputs. Simulations were used to examine the model performance

under varying environmental and preprocessing conditions. Then, machine learning source

ranging was conducted on acoustic data from a shallow-water ocean channel. Chapter 5 compares

conventional beamforming (CBF) to linear machine learning methods for single-source DOA on

a perturbed array. A deep FNN was developed for two or K sources, where K ≤ 10 here. DOA

using FNN, sparse Bayesian learning (SBL) [18], and MUSIC (adaptive CBF) were demonstrated

on simulated multi-source data and on experimental data.
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tomatic classification of grouper species by their sounds using deep neural networks. J.
Acoust. Soc. Am., 144(3):EL196–EL202, September 2018.

[22] G. Izacard, B. Bernstein, and C. Fernandez-Granda. A learning-based framework for
line-spectra super-resolution. CoRR, abs/1811.05844, 2018.

[23] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt. Computational Ocean
Acoustics. Springer Science & Business Media, NewYork, 2nd edition, 2011.

[24] G. B. Kinda, Y. Simard, C. Gervaise, J. I. Mars, and L. Fortier. Arctic underwater noise
transients from sea ice deformation: Characteristics, annual time series, and forcing in
beaufort sea. J. Acoust. Soc. Am, 138:2034–2045, 2015.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. Adv. Neural Inf. Process. Syst, pages 1097–1105, 2012.

[26] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.
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Chapter 2

Eastern arctic ambient noise on a drifting

vertical array

Ambient noise in the eastern Arctic was studied from April to September 2013 using a 22

element vertical hydrophone array as it drifted from near the North Pole (89◦23’N, 62◦35’W)

to north of Fram Strait (83◦45’N 4◦28’ W). The hydrophones recorded for 108 min/day on

six days per week with a sampling rate of 1953.125 Hz. After removal of data corrupted by

non–acoustic transients, 19 days throughout the transit period were analyzed. Noise contributors

identified include broadband and tonal ice noises, bowhead whale calling, seismic airgun surveys,

and earthquake T phases. The bowhead whale or whales detected are believed to belong to the

endangered Spitsbergen population and were recorded when the array was as far north as 86◦24’N.

Median power spectral estimates and empirical probability density functions (PDFs) along the

array transit show a change in the ambient noise levels corresponding to seismic survey airgun

occurrence and received level at low frequencies and transient ice noises at high frequencies.

Median power for the same periods across the array show that this change is consistent in depth.

The median ambient noise for May 2013 was among the lowest of the sparse reported observations

in the eastern Arctic but comparable to the more numerous observations of western Arctic noise.
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2.1 Introduction

Ambient noise in the Arctic Ocean is strongly influenced by its sea ice cover and upward

refracting sound speed profile. Internal frictional shearing, thermal stress fracturing, and inter-

action within leads in the ice generate distinct sounds that are received acoustically at levels

exceeding 100 dB re 1µ Pa2 Hz−1. The widespread ice cover deters many animal species from

venturing far north, but attracts species capable of seeking ice leads or generating their own

breathing holes, such as bowhead whales. [1] At the same time, the upward–refracting sound

speed profile and nearly year–round ice cover allow low frequency signals to propagate long

distances while attenuating higher frequency components. This unique environment depends

strongly on the properties of the Arctic sea ice, including percentage of areal cover, thickness

(age), under–ice roughness, and lateral extent. Over the past decade, the Arctic sea ice has

dramatically reduced in thickness as well as annual extent, [2] resulting in unknown changes to

the ambient noise environment that this study investigates through use of recent data and analysis.

Sea ice noise and the Arctic ambient noise properties have historically been an area

of interest in underwater acoustics. [3], [4] Measurements of transient ice noises have shown

that they are highly non–Gaussian, [5] varying in frequency, bandwidth, length, and received

sound level according to the sea ice properties and environmental conditions, [6] but are often

more prevalent near ice ridges. [7], [8] The cumulative ambient noise levels generated by ice

noise have been shown to correlate with environmental variables like wind, air pressure, and

temperature. [9], [10], [11], [12] Near the Marginal Ice Zone (MIZ), where the ice is subject to

increased wave forcing, noise levels have been shown to be as much as 10 dB higher than those

further away from the MIZ. [13], [14] Sea ice is a strong scatterer that attenuates high frequencies

at a much higher rate than the open ocean, [15] although the exact attenuation coefficients depend

on the local sea ice structure in ways that have yet to be determined. [16] Due in large part to

biological activity and experimental accessibility, the Western Arctic ambient noise near the
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Beaufort Sea [12], [17], [18], [19] has been studied more extensively than the eastern Arctic

ambient noise (defined here as areas east of 60◦W). Studies north of 85◦N are extremely rare. [1]

In April 2013, a bottom–moored vertical hydrophone array was deployed at Ice Camp

Barneo near 89◦N, 62◦W. The experiment was designed to study acoustic propagation and

ambient noise under the sea ice. Around April 15 the mooring cable failed. The subsurface

float rose to the surface and remained there, with the array hanging unweighted below. It drifted

southward with the Transpolar Current toward the Fram Strait, recording ambient noise as

scheduled. MicroCAT pressure measurements (see Sec. 2.2.2) showed that the array was vertical

under its own weight during much of the transit. The resulting data record the spatiotemporal

variation of the far northern Arctic ambient noise (> 85 ◦N). In this study, the dataset is analyzed

and the observations are interpreted in terms of previous studies of this ambient noise.

This paper is organized as follows. In Sec. 2.2, the acoustic experiment is described, data

processing methods are explained, and the collection of supplementary environmental data is

discussed. Sec. 2.3 discusses select noise events. Sec. 2.4 presents the results of statistical ambient

noise analyses in both time and depth, and Arctic ambient noise power estimates from previous

studies are compared with the results. The goal of this paper is to establish an understanding of

ambient noise contributors and sound levels in the northeastern Arctic during summer 2013.

2.2 Methods

2.2.1 Acoustic measurements

A 600 m long bottom-moored acoustic receiving array was deployed at Ice Camp Barneo,

89◦23’N, 62◦35’W, on April 14. Twenty-two omnidirectional hydrophone modules (H.M.)

were spaced along the array, with H.M. 1–10 separated by 14.5 m and H.M. 11–22 separated

by logarithmically increasing spacing starting at 16.5 m (Table 2.1, Fig. 2.1). The topmost

hydrophone was 11.6 m below the subsurface float. The hydrophones recorded underwater sound
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for 108 min/day six days per week, starting at 1200 UTC each day, with a sampling frequency of

1,953.125 Hz. The hydrophone recording schedule was constrained by the amount of data storage

available in the hydrophone modules. Acoustic recordings are available for 119 days between

April 29 and September 20.

Table 2.1: Instrument spacing, numbering, and MicroCAT sampling periods for the instruments
on the VLA during its drifting period. The depth estimates assume that the subsurface buoy was
floating at 0 m, an assumption confirmed by the MicroCAT measured depths.

H.M. # H.M.
Depth
(m)

MicroCAT
Depth
(m)

MicroCAT
#

MicroCAT
Sampling
Period (s)

1 11.6 4.6 1 480
2 26.1 24.6 2 480
3 40.6
4 55.1 49.6 3 480
5 69.6
6 84.1
7 98.6 99.6 4 480
8 113.1
9 127.6

10 142.1
11 158.7 149.6 5 380
12 177.7
13 199.5 200.6 6 380
14 224.4
15 253 249.6 7 380
16 285.7
17 323.2
18 366.1 349.6 8 380
19 415.2
20 471.4 449.6 9 380
21 535.8
22 609.6 599.6 10 300

The raw acoustic recordings were scaled to be in units of instantaneous sound pressure

using the analog-to-digital conversion parameters, the gain, and the hydrophone receiving sen-

sitivity given by the manufacturer. The hydrophone receiving sensitivity was nearly constant
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above 50 Hz but highly frequency dependent below 50 Hz. The system noise floor was computed

using a model that combines the known self–noise of its individual components. The system

was experimentally tested in a Faraday cage and by calculating the coherence between multiple

sensors recording noise in a quiet room. Both tests fit the modeled system noise floor well.

Median (50%) spectral estimates were created by segmenting three or four day periods

of data (see Sec. 2.4.1) into 4096-point windows (∼ 2 s), taking a 16,384-point Fast Fourier

Transform to interpolate to high resolution frequency bins of 0.12 Hz, and sorting the individual

spectral estimates by power level at each frequency bin. The probability density (PDF) was

estimated from these spectral estimates using 100 power bins of equal width at each frequency.

The PDF for a target frequency was obtained by averaging three PDFs closest to the target

frequency. Spectrograms were estimated using shorter, 512-point windowed segments (∼ 0.25

s) zero-padded to 2048 points (df ≈ 1 Hz) in order to capture transients of length < 1 s. Unless

otherwise noted, the data were recorded at 84.1 m depth (hydrophone # 6) for comparability to

other ambient noise studies in the eastern Arctic. [10]

2.2.2 MicroCATs

Ten Sea-Bird SBE 37–SM/SMP MicroCAT instruments, measuring temperature, conduc-

tivity, and pressure (dBars) were co-located with the hydrophones, spaced 25, 50, 50, 50, 50,

100, 100, and 150 m apart. The topmost MicroCAT was located 4.6 m below the subsurface float

(Table 2.1, Fig. 2.1). The MicroCATs began recording on April 28 and sampled continuously

until September 19. The sampling period for each MicroCAT is shown in Table 2.1.
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2.2.3 GPS coordinates
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Figure 2.1: A bathymetric relief map displaying the location of the receiving array divided
according to hydrophone processing period (see Sec. 2.4) along with the location of two
concurrently deployed ice–moored buoys with daily GPS and the April 1982 FRAM IV ice
camp (8). A map inset shows the location of the array path relative to the Arctic and a line
indicating the 60◦W longitude. The moored array design is shown to the right of the map.

A Xeos Technologies Kilo Iridium-GPS mooring location beacon located on top of the

subsurface float began transmitting ALARM messages on May 3, indicating that the mooring

had prematurely surfaced. The reported position at the time of surfacing was 88◦50’N, 51◦17’W,

63 km from the deployment location. Analysis of an acoustic survey on April 14, following

deployment of the mooring, revealed that the acoustic release was significantly shallower than

expected. The implication is that the mooring failed shortly after deployment, but the subsurface

float was trapped beneath sea ice, preventing the location beacon from obtaining GPS positions

or transmitting ALARM messages until it was exposed on May 3. The float drifted southward in

the Transpolar Drift. There were frequent gaps in transmissions from the location beacon which

are presumed to coincide with periods when the subsurface float was covered by sea ice. The
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buoy was recovered on September 21, at 84◦03’N, 03◦05’W. The mooring line was found to have

parted immediately above the anchor (Fig. 2.1).

2.2.4 Bathymetry

The International Bathymetric Chart of the Arctic Ocean from the National Centers for

Environmental Information was used to construct a map of the ocean depth relative to the array

location (Fig. 2.1).

The measured depths varied between 2.5 km and 4.7 km during the drift period. The

Gakkel Ridge was the shallowest area crossed by the array, and it is possible that the array

interacted with the bottom there or in other shallow regions. Without instrumentation on the lower

array, the presence of array–bottom interaction cannot be determined.

2.2.5 Sea Ice Concentration

Daily sea ice concentration, defined as the areal percentage of satellite imagery above a

certain brightness level, was obtained from the Advanced Microwave Scanning Radiometer-2

(AMSR-2) 89-GHz channel satellite dataset, [20] provided in a 4 km X 4 km gridded format

from the Institute of Environmental Physics, University of Bremen, Germany. The sea ice

concentration ranges from 0 (no ice) to 100 (solid ice). The georeferenced latitude and longitude

grids were transformed into regular latitude and longitude grids with 0.1◦ resolution with the ice

concentration interpolated to the array location.

In addition, the AMSR-2 satellite data were used to determine the daily distance from

the array to the ice edge. This distance was about 1000 km in April and 200 km in September,

decreasing steadily as the array drifted closer to the MIZ.
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Figure 2.2: (a) Spectrograms generated from hydrophone recordings at 609.6 m depth during
periods containing typical ambient noise (A) and strong spectral bands considered non–acoustic
artifacts (B). (b) MicroCAT pressure measurements at ten depths exhibit periods of shallowing
(rectangles) that correspond to artifacts in (a).

2.2.6 Filtering/Noise Removal

The drifting array was heavily contaminated by self–noise at certain times. Low frequency

( f < 5 Hz) cable strum was observed. Strong spectral bands were also observed, exceeding 100

dB re 1 µPa2 Hz−1 and extending to the Nyquist frequency (976.56 Hz). These elevated spectral

levels, predominant in the frequency bands 0–50 Hz, 250–325 Hz, and 600–900 Hz (Fig. 2.2(a)),

were found to correspond with periods of unexpectedly low pressures (depths) on the MicroCATs

(Fig. 2.2(b)), making them unlikely to be caused by propagating acoustic noise and more likely

to be noise artifacts. With the buoyant subsurface float constrained to the surface, flow past the

mooring lifts and thus tilts the array and reduces the MicroCAT pressures (depths). Potential

non-acoustic noise sources on the mooring, which lacked fairing, include strumming–induced

vibration, flow noise, and/or bottom interaction. The noise artifacts could not be removed by a

ω–k beamforming filter indicating that the instruments were directly affected.

Environmental variables including wind, temperature, or ocean waves may be related to

the acoustic artifacts, but the lack of meteorological stations or oceanographic buoys near the

drifting array makes drawing conclusions about these relationships difficult. For example, daily
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estimates of wind speed from a reanalysis model are correlated with the daily median acoustic

power at 400 Hz, after filtering, with 95% confidence. However, measurements of temperature

and pressure at the northerly

To remove affected data, the median MicroCAT pressure for each day was computed. The

pressure on MicroCAT #10 (599.6 m) had the largest variation between days and was used as an

indicator of flow-related noise. By comparing the good and bad spectrograms with the median

pressures on MicroCAT #10 (Fig. 2.2) , it was found that most corrupted data had a median

MicroCAT pressure of less than 604.9 dBars. Therefore days with pMicroCAT,10 < 604.9 dBars

were not used. This method selected 19 days for further analysis: April 30, May 1, 2, 7, 8, 9, 12,

14, June 16, 18, July 3, 14, 19, 24, August 2, and September 10, 18, 19, 20. There is evidence

that the noise artifacts were not completely removed for one or two periods (see Sec. 2.4).

2.3 Arctic ambient noise source effects

2.3.1 Underwater Sound Propagation

Eastern Arctic ambient noise is influenced by the characteristics of sound propagation

which are affected by the oceanographic water masses and sea ice cover in the region. [21] Much

of this propagation is over long distances due to the intermittent nature of nearby ice noise events

(see Sec. 2.3.2), the infrequency of biological activity (see Sec. 2.3.3), and the locations of regular

anthropogenic activity (see Sec. 2.3.4).

The sound speed profile in the eastern Arctic is strongly upward refracting with a minimum

at the ocean–ice interface (Fig. 2.3(a)). The relevant water masses include Polar Water (0–200m),

Arctic Intermediate Water (AIW, 200–1000m), and Deep Polar Water (>1000m). [21] Profiles in

the eastern Arctic differ from western Arctic in that the depth of the AIW temperature maximum

is considerably shallower in the eastern Arctic.

In completely ice–covered environments, the sea ice acts as a low–pass filter. [21] Higher
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Figure 2.3: (a) Bellhop ray propagation model [22] for a near–surface source using the sound
speed profile measured at Ice Camp Barneo demonstrates the strongly upward refracting profile.
Rays were launched between ±30◦from horizontal. (b) Bartlett beamformer at received airgun
pulse frequencies, averaged across 1201–1204 GMT on June 16. The arrivals at −7◦ and 5◦

indicate the preservation of intermediate ray angles over long range propagation (θ < 0◦ is
upward–looking).

frequency sound ( f > 30 Hz and λ < 50 m) is strongly scattered at the water–ice interface. In

addition, the number of reflections from the sea ice per kilometer increases as a propagating ray’s

angle decreases (<5◦, Fig. 2.3(b)).

On the other hand, steeper rays (> about 13–15◦) experience fewer reflections per kilome-

ter but will interact with bathymetric features, especially at the Gakkel Ridge where the ocean

depth shallows to nearly 2 km (Fig. 2.1(a)). At low frequencies (Fig. 2.4 at 5 Hz), even the lowest

modes interact with and scatter from bathymetric features, leading to lower ambient noise levels

below 10 Hz.

2.3.2 Ice–generated noise

Ice noises were observed to be either broadband or tonal in nature. Broadband noise

generated by sea ice [6] appears as periods of elevated sound level, here ranging from 5–20

dB above the median level at 500 Hz (Fig. 2.5(a)) and lasting from 10–500 s. Broadband ice

noise extended across the frequency band (Fig. 2.5(a)). Tonal ice noises are single–frequency or
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Figure 2.4: Modal structure of the eastern Arctic environment at three frequencies. Each panel
has a depth scale appropriate for the vertical scale of the modes at that frequency.

harmonic signatures modulated in time (Figs. 2.5(b)-2.5(d)).

Xie and Farmer [23] demonstrated that constant–frequency ice tonals could be modeled as

resonances in an infinitely long sea ice block of uniform height, density, and velocity generated by

frictional shear stress on its edge. The non–constant tonals observed here may indicate anomalies

in the local height or composition of the sea ice or a frictional stress that is velocity–dependent

(Fig. 2.5(b)). The slope and curvature of the tonals varies between hydrophone recordings (Fig.

2.5(c)), indicating that significant changes in ice properties and dynamics may occur within the

spatiotemporal span of 2–3 array drift days.

Another interesting case are sets of modulated harmonics, ranging from 200–900 Hz, that

are 8–10 dB louder than the background spectrum and last about 4 s, recurring with a period of

about 9 s (Fig. 2.5(d)). These tonals may be due to ocean waves impinging on the sea ice edge,

generating seismic or flexural waves that propagate within the sea ice if the product of the noise

frequency and the sea ice thickness is less than about 300 Hz–m [24] and couple into the water

column as periodically modulated harmonics. The observation of these tonals on the receiving

array suggest that these effects can be seen at least as far as 230 km from the ice edge.
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Figure 2.5: Spectrograms of ice noises including (a) a broadband event or events lasting up
to 10 min, recorded on May 8, (b) non–constant tonals without harmonics lasting up to 1 min,
recorded on May 2, (c) near-constant harmonic tonals lasting 2 min, recorded on April 30, and
(d) non–constant, modulated harmonic tonals lasting for 5 s with a recurrent period on the order
of ocean swell (9 s), recorded 230 km from the sea ice edge on September 18. The recording
system noise is shown by the dashed black line.

2.3.3 Biological Sources

Bowhead whale calls were observed during the summer 2013 array transit (Fig. 2.6). The

length of the call series lasted between 30 s and 7 min. The identification of the sound as a

bowhead whale call was conducted by a manual analyst who led the team that identified thousands

of bowhead whale calls in passive acoustic datasets recorded by instruments deployed during

bowhead whale migrations along the North Slope of Alaska between 2008–2014. [25], [26] Calls

were observed on June 18, July 3, 19, and 24. These calls were recorded when the array was
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Figure 2.6: A series of calls from what is believed to be a Spitsbergen bowhead whale. The
calling periodicity is about 10 s. These three calls were taken from a series lasting 55 s. The
rectangle corresponds to the inset figure and shows a single call with harmonics from 150–976
Hz. The time axis in both figures is relative to 7 min in the recording on July 3.

northward of 85◦N, at least 290 km north of other recordings in the region. [27] Sea ice cover

from AMSR2 satellite data [20] was estimated to be higher than 90% locally at the array for these

days (Fig. 2.7).

Previous observations of bowhead whales have occurred southward of 82◦30’N. Before

the year 1818, the prolific species was fished in the region about 200 km west of Spitsbergen,

between 76◦N and 80◦N. By 1818, this group had been depleted nearly to extinction. [27] More

recently, individuals or small groups have been acoustically detected as far north as 82◦30’N. [1]

Satellite–tagged whales in western Greenland spent most of their time in 90% to 100% ice cover

far (>100km) inside the ice edge. [28] A recent study of Spitsbergen bowhead whale calling near

78◦50’N, 0◦W recorded no calls between April 30 and September 1 in 2009.

Measurements of the relative timing of the whale call across the array aperture reveal that

the animal was at least 50 km distant. However, placing an upper bound on the range is difficult.

Using received levels to estimate source range is imprecise for two reasons: the bowhead whales

are capable of calling across a broad spread of source levels [26], and uncertainties arise rise when

modeling transmission loss due to scattering of signals from ice. Using timing measurements of
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Figure 2.7: AMSR2 satellite ice coverage averaged over the days when bowhead whale calls
were recorded along with the location of the array on those days. Ice cover was close to 100% at
the array on these days.

signal arrivals across the array for localization is feasible, but requires that the vertical array tilt

and sound speed profile be modeled or inverted correctly, a topic beyond the scope of the present

paper.

2.3.4 Seismic Survey Signals

Broadband pressure pulses generated by airguns are used to image the geological structure

beneath the seafloor during seismic surveys. At long distances, frequencies higher than about

100 Hz are attenuated. The resulting pulses are observed on hydrophone receivers at frequencies

below 50 Hz. Distant noise from seismic surveys can be observed almost daily in the Fram

Strait during summer months. E.g. in a previous dataset in the Fram Strait, airgun surveys were

observed on 90–95% of days between July and September 2009. [29]

In this dataset, airgun pulses were observed between May 7 and Sep. 19 and were present

on 11 of the 19 recording days (Fig. 2.8(a)), with nearly continuous pulses detected during the

108 min recording period whenever observed. Location, type and date of surveys in Norwegian

territory were obtained from the Norwegian Petroleum Directorate. According to these data, the

array was 1800–3500 km distant from seismic surveys at the start in April and 1000–3000 km
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Figure 2.8: Spectrograms and time series of (a) low–frequency pulses generated by a distant
airgun survey recorded on June 16 and (b) an earthquake recorded on August 2, where the wave
arrival delays are used to estimate source range.

distant at the end in September. Seismic surveys conducted in the Canadian Arctic during summer

2013 may have been detected, but survey details were not publicly available.

Transmission loss estimates across the MIZ near the Fram Strait, extending as far as 150

km into the ice, have demonstrated that the under–ice transmission loss is smaller than previously

proposed at low frequencies. [16], [30] The observations here also suggest that the change in

transmission loss far into the compact ice is small, but uncertainties in source spectrum and

distance make quantitative transmission loss estimates unreliable.

2.3.5 Arctic Basin Earthquakes

Hydrophone arrays are valuable earthquake monitoring tools. The acoustic T –phase

pressure wave (see Fig. 2.8(b)) is coupled into the water column at a seamount or down–sloping

bathymetric feature near the earthquake. The versatility of hydrophone arrays enables them to

be deployed in difficult areas such as the active Gakkel Ridge in the ice–covered Arctic, where

ocean bottom seismometers are challenging to deploy. [31]

Time difference of arrival between the T , P, and S arrivals can be used on a hydrophone
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array to estimate the earthquake distance:

R =
∆τ(

1
vT
− 1

vP

) (2.1)

where R is the range to the earthquake, ∆τ is the arrival time difference, vT is the group

velocity of the T –phase, and vP is the group velocity of the P wave (or S wave).

Three T –phase arrivals were observed during the array transit along with occasional P

and S wave arrivals (Fig. 2.8(b)). Overall, three T –phase events were identified in the data,

each lasting 1 min. The arrivals in Fig. 2.8(b) are applied to the time difference method in

Eq. 2.1 with vT from the CTD measurement (1.44 km/s) at deployment and vP, vS (6.1 and 3.1

km/s) estimated from the IASPEI seismic catalogue and adjusted to achieve agreement between

estimates. Although the travel time of the T –phase may be biased depending on where it couples

into the water column, the estimated earthquake distances of 90 km for the P–T difference and

100 km for S–T difference agree well here.

The earthquake distance estimate indicates that the event originated at the Gakkel Ridge.

The earthquake was not registered in the Global Seismic Network catalogue which only records

events with mb > 4. The detection of T , P, and S arrivals on a single hydrophone for an

unregistered earthquake demonstrates the potential for underwater acoustic monitoring of low

magnitude seismic activity near the Gakkel Ridge.

2.4 Arctic ambient noise levels

2.4.1 Eastern Arctic Ambient Noise, Summer 2013

Statistical analyses were conducted for three and four day periods across the array drift

path: May 1, 2, 7; May 8, 9, 12, 14; June 16, 18, July 3, 14; July 19, 24, August 2; and September

10, 18, 19. Using three and four day averages reduces the inter–period variance observed among
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Figure 2.9: Median power spectral estimates for three and four day periods in summer 2013.
The recording system noise is shown by the dashed black line.

daily estimates while demonstrating the same frequency–dependent ambient noise trends. April

30 and September 20 contain anomalous ice and ship noise events and are excluded from the

statistical analyses.

The median power spectra show characteristics of Arctic ambient noise and its sources

(Fig. 2.9). The broad peak at 15–20 Hz is attributed to the ice–scattered propagation characteristics

of distant sources, [10] as higher frequencies are more attenuated and lower frequencies have

bottom interacting modes (see Sec. 2.3.1). Seismic airgun surveys increase the median power at

frequencies between about 10 Hz and 100 Hz (Fig. 2.9) due to the dispersive quality of the pulse

arrivals. Observations of the spectrogram estimates confirm that the increase in low frequency

power for September results from an increase in the received levels of airgun pulses. Likewise,

decreased low frequency power in the May 8, 9, 12, 14 period results from lulls in the presence

of airgun noise. Transient ice noises result in elevated power levels for frequencies above 100 Hz

(Fig. 2.9). Transient ice noises were observed in the spectrograms estimates most frequently and

at the highest received levels during May 1, 2, 7 and May 8, 9, 12, 14.

The empirical probability density functions (PDFs) were estimated at 20 Hz and 400 Hz

(Figs. 2.10(a) and Fig. 2.10(b), see Sec. 2.2.1 for details). At 20 Hz, the variation in the median
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Figure 2.10: Empirical probability density functions (PDFs) estimated for the three and four
day periods in summer 2013 at (a) 20 Hz and (b) 400 Hz. The 20 Hz estimate is predominantly
effected by presence and strength of airgun pulse noise while the 400 Hz estimate corresponds
to transient ice noises.

power level corresponds to changes in the received level of seismic airgun noise. May 8, 9, 12,

14 also exhibits a broader distribution as a result of the lull in airgun noise during this period

(Fig. 2.10(a)). At 400 Hz, the distributions for May 1, 2, 7 and May 8, 9, 12, 14 are highly

non–Gaussian as a result of numerous, loud transient ice noise events (Fig. 2.10(b)). During the

remaining periods, ice noises were received at lower and more consistent power levels, resulting

in more peaked distributions.

Median estimates for all hydrophones on the array show that the effect of noise sources

is consistent with depth. At 20 Hz (Fig. 2.11(a)) the median estimates in depth reflect the

shapes of the first and second mode (see Sec. 2.3.1, Fig. 2.4). The 400 Hz median estimates are

nearly constant in depth (Fig. 2.11(b)), with the May 1, 2, 7 and May 8, 9, 12, 14 estimates at

elevated power levels. Increased power levels below 300 m at both frequencies (Fig. 2.11) may

be evidence that the effort to eliminate flow–related noise artifacts was not completely successful

for all hydrophones and periods.
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Figure 2.11: Depth dependence of median spectral power for three and four day periods in
summer 2013 for (a) 20 Hz and (b) 400 Hz indicates that the effect of noise sources is consistent
with depth.

2.4.2 Comparison of Arctic Ambient Noise

The median spectral power across the period including April 30, May 1, 2, 7–9, 12, and

14 at 84.5 m depth are compared with historical estimates from both western and eastern Arctic

stations in Fig. 2.12. The estimated median spectral power for May 2013 was below, but similarly

structured to, a composite spectral estimate from April 1982 (Fig. 2.12). [10] The peak at 15

Hz appears less prominent at lower frequencies in 2013 than in 1982. In comparison, a spectral

estimate recorded in the Beaufort Sea in April 1975 shows comparable ambient noise levels and

structure to 2013 but does not extend to lower frequencies (Fig. 2.12). [8] The differences in these

spectra may be caused by environmental factors or by experimental factors, including recording

length and post–processing methods, which were not published alongside the 1982 results.

Fig. 2.13 demonstrates the wide variability in Arctic ambient noise estimates across

frequency, year, and study. This variability arises from a complex relationship between the Arctic

ambient noise and both environmental and anthropogenic factors, such as sea ice percent cover,

sea ice age/thickness, barometric conditions and wind patterns, local subsurface currents, seismic

survey activity, and marine biologic activity. The studies shown indicate that, without correction

for environmental factors, there is not a significant trend in the Arctic ambient noise power levels
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Figure 2.12: Median spectral estimate for April 1975 Polar Research Laboratory (Beaufort
Sea, depth not published), [8] April 1982 (FRAM IV, Beaufort Sea) [10] at 99 m depth, and
May 2013 at 84.5 m depth (see Table 2.2). The FRAM IV data were taken at various times
and averaged over different time periods and frequencies, to represent the primary generation
mechanisms: cable strum (line, <10 Hz), ongoing ice cracking events (striped boxes), and
transient ice cracking due to ice cooling (dotted and black boxes). [10] The 10% and 90%
spectral levels for May 2013 are shaded; 5% and 95% are given in a smaller shaded region for
April 1975.

between 1960 and 2013, but that frequency–dependent ambient noise levels are within a 30–40

dB range for both regions of the ice covered Arctic.

2.5 Conclusions

Between April and September 2013, a twenty–two element vertical hydrophone array

recorded the eastern Arctic ambient noise for 108 min/day while drifting between 89◦N, 62◦W

and Svalbard.

These data were processed into spectrograms and a number of noise sources were observed,

including ice noise, bowhead whale calling, airgun survey pulses, and earthquake T –phases. The

bowhead whale calls were received between 86 and 87◦ N in June and July.

The data were also processed into three and four day median spectral estimates. The

spectral estimates and corresponding PDFs demonstrate the variation in the occurrence and
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Figure 2.13: Scatter plot of median ambient noise level results for 15 Hz and 500 Hz from
various studies in both the eastern and western Arctic (see Table 2.2).

received level of seismic airgun survey pulses at low frequencies and ice transients at high

frequencies.

The median spectral estimate for May 2013 was compared to historical power spectral

estimates, one recorded in a nearby region in April 1982 [10] and another from an ice–covered

region in the Beaufort Sea in April 1975. [8] The May 2013 estimate is below the 1982 estimate but

close to the 1975 estimate, indicating that local ice source effects may be as significant as regional

effects in determining ambient noise levels in the Arctic. A multi–decadal summary of Arctic

ambient noise studies displays a lack of change in power levels with time and further demonstrates

the variability in Arctic ambient noise level estimates resulting from local experimental variations.
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Table 2.2: Ambient noise noise level estimates in the Arctic Ocean.

Location (lat, lon) Experiment Dates 15 Hz 50 Hz 100 Hz 500 Hz 1 kHz
86◦N 56.9◦W – May–June 2013 05/2013 – 76.5 66 60.2 43.7 -

89◦N 1◦E 06/2013
86◦N 1.3◦E – July–Sep. 2013 07/2013 – 78.7 64.9 55.6 37.6 -
83.8◦N 4.5◦E 09/2013
83◦N 20◦E [10] 04/1982 90 79.5 73 60 53
82◦N 168◦E (MM85) [32] 09–10/1961 72 70 61 51 40
75◦N 168◦W 05–09/1962 63 64 49 37 32

- 75 72 61 52
78.5◦N 105.25◦W (IP1) [33] 27/04/1961 50 42 38 37 20

28/04/1961 58 52 51 52 51
74.5◦N 115.1◦W (IP2) [33] 9/2–3/1961 - 57 56 52 43

Beaufort Sea PRL [34] April 1975 73 68 62 48 43
(10 Hz) (32 Hz)

∼72◦N 142◦W [19] 08/1975 65–85 65–75 - - 38–55
11/1975 70–90 65–88 - - 40–70
02/1976 65–90 60–90 - - 35–70
05/1976 65–88 60–90 - - 37–68

71◦N 126.07◦W (K13) [12] 11/2004 – 68 69 66 58 54
06/2005

72.46◦N 157.4◦W (R11) [17] 09/2008 84 80 74 60 56
03/2009 84 70 62 48 48
05/2009 76 61 56 44 44
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Chapter 3

Unsupervised clustering of coral reef

bioacoustics

An unsupervised process is described for clustering automatic detections in an acoustically

active coral reef soundscape. First, acoustic metrics were extracted from spectrograms and

timeseries of each detection based on observed properties of signal types and classified using

unsupservised clustering methods. Then, deep embedded clustering (DEC)was applied to fixed-

length power spectrograms of each detection to learn features and clusters. The clustering

methods were compared on simulated bioacoustic signals for fish calls and whale song units

with randomly varied signal parameters and additive white noise. Overlap and density of the

handpicked features led to reduced accuracy for unsupervised clustering methods. DEC clustering

identified clusters with fish calls, whale song, and events with simultaneous fish calls and whale

song, but accuracy was reduced when the class sizes were imbalanced. Both clustering approaches

were applied to acoustic events detected on directional autonomous seafloor acoustic recorder

(DASAR) sensors on a Hawaiian coral reef in February–March 2020. Unsupervised clustering

of handpicked features did not distinguish fish calls from whale song. DEC had high recall and

correctly classified a majority of whale song. Manual labels indicated a class imbalance between
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fish calls and whale song at a 3-to-1 ratio, likely leading to reduced DEC clustering accuracy.

Machine learning has become commonly used within the acoustics community and the

ocean bioacoustics community in particular (Sec VIII in Ref. [4]) where automatic detection

and classification methods have been under development for marine mammals calls for decades

and continue to expand. [3, 8, 15, 31, 32, 34–36, 38] Recently, a smaller set of studies have also

considered unsupervised machine learning techniques for analyzing large, unlabelled bioacoustic

soundscape data. [10, 11, 20, 39]

Acoustic classification of marine fishes, such as damselfish (family Pomacentridae), has

been improved through passive acoustic field experiments that have characterized the calls and

calling behavior [25, 29, 42] but lacks established terminology across studies and a universally

accepted correspondence between calls and behavior. [2] Recently, a few studies have considered

automatic classification of fish calls by utilizing machine learning tools. Malfante et al. 2018

extracted time, spectral, and ceptstral features for use in supervised classifiers of fish calls in a

seagrass meadow. Based on four call types defined by the authors, the machine learning classifiers

achieved up to 95% accuracy. [24] Lin et al. 2018 compared the detection performance of a rule-

based energy detector to the machine learning methods of periodicity-coded nonnegative matrix

factorization and Gaussian mixture models. The machine learning methods were applied to power

spectra of croaker calls recorded in shallow water (10–25 m) and then qualitatively compared to the

energy detector results. [22] Then, Ibrahim et al. 2018 compared long short-term neural networks

(LSTM) and convolutional neural networks (CNN) for supervised classification of grouper croaks

in the time-frequency domain. They found that machine learning outperformed weighted mel-

freqeuncy cepstral coefficients, with LSTM achieving over 90% correct classification accuracy

on all species tested. [17]

In this paper, the problem of identifying bioacoustic signals in an acoustically active

coral reef is addressed using unsupervised machine learning. We consider two approaches for

extracting features for clustering:
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1. Spectral and time domain features were manually chosen, or handpicked, based on their

observed relation to coral reef fish calling and on studies of fish calling spectral and

temporal properties. [25, 29, 42]

2. Fixed-length spectrograms were used in a deep embedded clustering (DEC) algorithm, [44]

a deep–learning image compression algorithm that ensures accurate image reconstruction

from the latent feature vector while encouraging cluster formation among the latent features.

[13, 37]

For handpicked features, the statistical properties of different features may vary, and the

features are not guaranteed to be separable by unsupervised algorithms. The DEC algorithm aims

to address feature separability by jointly learning the features and clusters from the spectrogram.

However, DEC on a single-channel spectrogram may have reduced performance when signals

overlap or if there are is consistently low signal-to-noise ratio (SNR) within the training data.

Simulated signals were used to compare the limitations of the handpicked feature cluster-

ing and DEC. The signals were designed to mimic whale song and fish call pulses recorded on a

Hawaiian coral reef, with the SNR and call parameters randomly varied to simulate experimental

variation. Accuracy, recall, and precision were used to measure the classification success of both

methods. Then, using transient events detected from an automatic directional detector, [40] both

methods were applied to acoustic data recorded in February–March 2020.

In Sec. 3.1, unsupervised clustering theory is overviewed for Gaussian-distributed features

with known mean and covariance. A method for visualizing high-dimensional data is also

discussed. The handpicked features and their extraction procedure are covered in Sec. 3.2A and

the DEC theory is reviewed in Sec. 3.2B. Section 3.3 details clustering results for simulated coral

reef bioacoustic signals: fish calls and whale song units, represented by Gaussian pulses and

frequency-modulated (FM) sweeps. Experimental data collection from a Hawaiian coral reef in

Februrary 2020 and the directional detection algorithm are outlined in Sec. 3.4. Last, Sec. 3.5

presents the experimental detection and clustering results. Section 3.6 summarizes the approach
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and discusses challenges associated with the methods and dataset.

3.1 Unsupervised clustering

Unsupervised clustering methods are frameworks for categorizing data according to their

similarities. [5] The performance of each algorithm depends on the validity of its underlying

assumptions for a given feature set. This section discusses the maximum likelihood class

boundaries for Gaussian clusters, then describes the K-means and hierarchical agglomerative

clustering algorithms.

3.1.1 Maximum likelihood of Gaussian clusters

When the generative distribution of the data are known, an exact solution for the optimal

clusters can be derived. Assume a P–dimensional vector, xn ∈ RP, is drawn from one of K

Gaussian distributions with mean µµµk ∈ RP and covariance ΣΣΣk ∈ RP×P. The analytic solution to

the cluster boundaries can be computed using the posterior given by Bayes’ theorem, [6]

p(Ck|x) =
p(x|Ck)p(Ck)

∑ j p(x|C j)p(C j)
(3.1)

p(x|Ck)=
1

(2π)
P
2 |ΣΣΣk|

1
2

e−
1
2 (x−µµµk)

TΣΣΣ
−1
k (x−µµµk), (3.2)

Where Ck and C j represent two class labels and each point xn belongs to only one class. The

optimal boundary between the two classes occurs when the probability of the classes are equal,

log p(Ck|x) = log p(C j|x) (3.3)

log p(x|Ck)+logCk= log p(x|C j)+logC j.
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Combining (3.2) and (3.3) and setting equal to zero:

0 =−1
2

xT (ΣΣΣ−1
k −ΣΣΣ

−1
j )x+wT x+

C
2

(3.4)

C =−µµµT
k ΣΣΣ
−1
k µµµk+µµµT

j ΣΣΣ
−1
j µµµ j−log

|ΣΣΣk|
|ΣΣΣ j|

+2log
Ck

C j
(3.5)

w = µµµkΣΣΣ
−1
k −µµµ jΣΣΣ

−1
j (3.6)

The general solution (5.14) is a P–dimensional parabola, which simplifies to a linear boundary if

the distributions have a shared covariance such that ΣΣΣk =ΣΣΣ j ∀ j,k. In a similar manner, (5.14) is

extensible to K > 2 classes. [6]

When ΣΣΣk and µµµk are unknown, the Expectation-Maximization (EM) algorithm can be used

to estimate them from a set of data x, n = 1, . . . ,N via the complete data log-likelihood. [33]

This can be solved using an alternating algorithm to update the weighted posterior

probability (responsibility) and the class prior, mean, and covariance [33]

E step: rnk =
πk p(xn|Ct−1

k )

∑k′ πk′ p(xn|Ct−1
k′ )

(3.7)

M step: πk =
1
N ∑

n
rnk (3.8)

µµµk =
∑n rnkxn

∑n rnk
, ΣΣΣk =

∑n rnkxnxT
n

∑n rnk
(3.9)

where Ct−1
k represents the kth cluster at step t−1.

EM is iterated until both steps converge for K classes. EM requires that the number of

clusters, K, be assumed a priori, and the estimated covariance matrix can become ill-conditioned

if there are fewer than K clusters.
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Figure 3.1: Clustering on two data distributions using (c,d) K-means and (e,f) agglomerative
clustering with Ward’s method, with maximum likelihood boundaries shown by black lines. In
the first dataset in (a) , the clusters have shared covariances of the form σ2I ( σ2

x = σ2
y = 3). The

clusters of the second dataset (b) each have different covariances resulting from cluster rotations
of θ = 120◦,25◦, and 0◦ counterclockwise (σ2

x = 6, σ2
y = 3.)

3.1.2 K-Means

K-means [16] is an approximation to the EM algorithm that partitions X = {x1, . . . ,xN}

into the K clusters. The K-means algorithm requires that K is set by the practitioner and assumes

that all clusters are Gaussians with covariance ΣΣΣ = σ2I and prior probability πk = 1/K, where I

is the identity matrix.

K-means is also called hard EM because it assigns each point to a cluster rather than

computing the cluster likelihood. The EM steps are simplified using the K-means assumptions to

solve for the optimal clusters,: [6]
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1. rnk =


1 if k = argmin j ‖xn−µµµ j‖2

0 otherwise,
,∀n (3.10)

2. µµµk =
1
|Ck| ∑

xn∈Ck

xn =
∑n rnkxn

∑n rnk
(3.11)

where Ck is the kth cluster and |Ck| denotes its cardinality or size.

K-means will result in the maximum likelihood solution in (5.14) when the classes are

Gaussian with shared covariance, ΣΣΣk = σ2I ∀k. [6] If the true number of classes differs from K,

the classes will be incorrectly estimated. In the following, an underlying knowledge of the signal

content is assumed for specifying K.

3.1.3 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering, [5, 33] also called bottom-up clustering, partitions

a set of N data points, X = {x1, . . . ,xN}, into K clusters by grouping the most similar data at

each step. Hierarchical clustering successively merges nearby clusters until the stop criterion is

achieved. In this case, the stop criterion is met when K or fewer classes remain, where K must be

set by the practitioner.

Agglomerative methods preferentially cluster dense points, improving robustness to

outliers. The tradeoff is decreased performance when clusters are dense and close. A related

bottom-up approach has been demonstrated to work well for clustering dolphin echolocation

clicks. [10, 11]

To initialize from bottom-up, each point begins as its own cluster, Ck0 = xn, k0 = 1, . . . ,N.
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Then, clusters that satisfy the minimum distance requirement are merged

j,k = argmin
i,i′

d(i, i′) (3.12)

Ck1 = {C j∪Ck}, (3.13)

where d(i, i′) is the distance between clusters i and i′. The agglomerative process is repeated M

times, until there are at most K clusters remaining with CkM , kM = 1, . . . ,K.

The distance metric chosen here is Ward’s method. [18] Ward’s method measures the

within-cluster variance of two merged clusters. The variance introduced by merging two sub-

clusters, C1 and C2 with means µµµ1 and µµµ2, is measured by the increase in the incremental

sum-of-squares, [30]

d(C1,C2) = ∑
i∈(C1∪C2)

(xi−(µµµ1+µµµ2))
2−∑

j∈C1

(x j−µµµ1)
2−∑

k∈C2

(xk−µµµ2)
2

= (|C1|+|C2|)(µµµ1+µµµ2)
2−|C1|µµµ2

1−|C2|µµµ2
2

=
2|C1||C2|
|C1|+ |C2|

‖µµµ1−µµµ2‖2
2. (3.14)

where µµµ1 =
1
|C1|∑ j∈C1 x j and µµµ2 =

1
|C2|∑k∈C2 xk. |C1| and |C2| are the cardinality of cluster C1 and

C2. In practice,
√

d from (3.14) was used.

If the number of true classes differs from K, the final output may be misinterpreted.

However, the hierarchical agglomerative clustering cost function is agnostic of K, and the history

of clusters can be retrieved to improve understanding of the feature similarities.

3.1.4 Clustering simulations

Three 2D Gaussian distributions, each with N = 6,666 points, were used to simulate

overlapping clusters (Fig. 3.1). The true cluster means were µµµ1 = (0,2), µµµ2 = (10,-8), and
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µµµ3 = (21,3). The covariance of the first dataset was

ΣC1 =

σ2
x 0

0 σ2
y

 (3.15)

with σ2
x = σ2

y = 3. For the first dataset (Fig. 3.1a), there were no off-diagonal covariance terms.

The second dataset (Fig. 3.1b) was generated by rotating the data counterclockwise at θ,

with

ΣC2 =

cos(θ) −sin(θ)

sin(θ) cos(θ)


σ2

x 0

0 σ2
y


cos(θ) −sin(θ)

sin(θ) cos(θ)


T

(3.16)

with σ2
x = 6, σ2

y = 3. The three clusters were rotated by θ = 120◦,25◦, and 0◦. Off-diagonal

covariance terms were introduced by the rotation. In realistic data, a strongly rotated cluster such

as Class 1 may represent two highly correlated features.

The K-means algorithm assumes that clusters are spatially distributed around a mean with

diagonal covariance. Thus, K-means performs best for the first dataset with identical, diagonal

covariance for all clusters. By incorporating intercluster distance, the Ward metric is also able to

identify 3 classes but is susceptible to misclassifying data where dense clusters overlap. When

the cluster covariances are not of the form σ2I, K-means is no longer a valid approximation to the

maximum likelihood solution.

3.1.5 Visualization of high-dimensional data

For data with more than two dimensions, xn ∈ RP for P>2, clusters may be visualized

by applying dimensionality reduction. In this study, 2D t-Stochastic Neighbor Embedding

(t-SNE) [14] was used to visualize P–dimensional features.

The similarity of one point, xi ∈RP, to another point, x j ∈RP, is found by computing the
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Figure 3.2: Varying values of perplexity for t-SNE on N=1000 randomly drawn points xn ∈R3,
n = 1, . . . ,N. The default perplexity value was 30.

conditional probability that the points will be neighbors within a Gaussian density centered at

xi, [14]

p j|i =
e
− 1

2σ2
i
‖xi−x j‖2

∑k 6=l e
− 1

2σ2
i
‖xk−xl‖2

, pi|i = 0 (3.17)

where i, j=1, . . . ,N. The neighborhood of xi, as determined by σi, i=1, . . . ,N is defined implicitly

in terms of the perplexity (Fig. 3.2), [14, 23]

perplexity(Pi) = 2H(Pi) (3.18)

H(Pi) =−
N

∑
j=1

p j|i log2 p j|i (3.19)

where Pi = ∑ j p j|i, and H is the Shannon entropy. The optimal value of σi in (3.17) for each point

is solved with a binary search for a given value of perplexity. [23]

Then, a set of two-dimensional point projections is randomly initialized with zero-mean

Gaussians of low variance, [14] yi ∈ N (0,10−4III). The optimal point projections are found

by minimizing the Kullback-Leibler (KL) divergence between the original distribution and the
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Student’s t-distribution of the proposed data,

q j|i=
(1+‖yi−y j‖2)−1

∑k 6=l(1+‖yk−yl‖2)−1 , qi|i = 0 (3.20)

KL(P‖Q)=−∑
i6= j

N

∑
j=1

p j|i log
p j|i
q j|i

. (3.21)

In contrast to classic SNE which uses only Gaussians, t-SNE’s use of the Student t-distribution

further penalizes outliers. [14]

As shown in Fig. 3.2, the value of perplexity should be varied according to user preference

to obtain the desired visualization. Although the default perplexity value in the MATLAB

implementation [23] is 30, larger datasets require higher perplexity.

3.2 Feature extraction

Feature extraction may be considered the most important step for unsupervised clustering,

as the feature properties determine cluster performance. Here, we examine two feature extractions

approaches: handpicked features and deep embedded clustering. The handpicked feature vectors

were stacked to form a feature matrix to be used with unsupervised clustering methods. Deep

embedded clustering jointly learns and clusters feature vectors using a convolutional autoencoder

neural network. [44]

3.2.1 Handpicked features

The handpicked features (Table 3.1, Fig. 3.3) are time-frequency properties known to

relate to fish call type including power, duration, and peak frequency [25, 29, 42] as well as

timeseries estimates of impulsive noise. [24, 28] The spectrogram parameters were 256–point

FFT with 90% overlap, dt=0.0256 s, and d f =3.9 Hz.

If t1 and t2 represent the absolute start and end times for a detected event, the event
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Figure 3.3: Handpicked features of a fish call event on February 25, 07:12 HST, measured on
directional autonomous seafloor acoustic recordings (DASARs) N, W, and S. A call duration
of 0.52 s was determined during the detection process. The spectrograms (a–c) were used to
extract peak frequencies (black star) from 219–332 Hz and median PSD from 72.8–76.3 dB.
The timeseries envelope (d–f) was used to extract the kurtosis values of 18–21, cross-sensor
coherences of 0.72–0.74, and 8 temporal peaks. DASAR S was the closest to the call.

duration is

Duration(s) = ∆t = t2− t1. (3.22)

Between t1 and t2, the event power spectrogram |S|2 ∈ RN f×Nt was computed. Across the power

spectrogram, the median power and peak frequency were extracted (Fig. 3.3a–c), with

Median PSD = median
i, j

S(i, j)

Peak freq.= argmax
i

(
max

j
S(i, j)

)
,

i=1, . . . ,N f , j=1, . . . ,Nt .

In simulation, the duration was fixed and the signal-to-noise ratio was randomized. Neither

feature was used for clustering.

The pressure timeseries y ∈ RN was extracted between t1 and t2 (Fig. 3.3). For the
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Table 3.1: Event features estimated for automatically detected pulse sounds.

Feature Name (units) Description
Kurtosis Fourth moment normal-

ized by the squared vari-
ance

Npeaks (count) Number of peaks with at
least 5 dB prominence
re the standard devia-
tion

Peak frequency (Hz) Frequency of the peak
power spectral density

Features for experimental data only

Duration (s) Length of detected
event

Coherence Normalized time coher-
ence between DASARs

Median PSD (dB) Median power spectral
density (PSD) across
event mask

experimental data, the vector sensor x– and y– velocity channels, vx and vy, were used to create a

beamformed pressure timeseries, yb ∈ RN , for improved detection SNR,

yb = y+Z0
[
vx sin(θ̂)+vy cos(θ̂)

]
, (3.23)

where Z0 = ρc is the impedance in water with density ρ (kg·m3) and sound speed c (m·s−1),

a scaling term to ensure all terms were in pressure units of kg ·m−1s−2 (N ·m−2). [41] θ̂ is the

estimated azimuth of the detected signal. For the simulated data, vx = vy = 0 and yb ≡ y.

Three metrics were chosen for timeseries extraction: kurtosis, number of peaks, and

cross-sensor coherence. The kurtosis is a ratio of moments and has recently been applied to the
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task of differentiating impulsive from non-impulsive sounds, [24, 28]

Kurtosis=
µ4

σ2 , µ4=
1
N

N

∑
i=1

[yb[i]−yb]
4 (3.24)

σ2 is the variance and is the arithmetic mean.

The number of peaks and cross-sensor coherence were extracted from the Hilbert trans-

form of the beamformed pressure timeseries (Fig. 3.3)

ỹb = H (yb)

where H () is the Hilbert transform. The number of peaks in the timeseries may be an indicator

of fish species and call context for Hawaiian reef fish. [29, 42] Here, the number of peaks was

defined as the number of local maxima with at least 5dB prominence relative to the standard

deviation,

Npeaks = ∑
j∈(a,b)

I(max
j

ỹb[ j]>C+maxmin
j

ỹb[ j]), (3.25)

C = σ ·101/2

where (a,b) is an interval in ỹb, σ is the standard deviation, and I(x) = 1 if x=True, 0 if x=False.

Last, for the experimental detections, the normalized correlation coefficient of the time-

series envelope across DASARs was computed to measure the spatial coherence of the signal

propagation,

Coherence = max
i

1
C

N−1

∑
m=i

ỹb,N [m]ỹb,S[m−i] (3.26)

C =
√
‖ỹb,N‖2

2+‖ỹb,S‖2
2,
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Figure 3.4: Architecture of the deep embedded encoding (DEC) convolutional model. Convolu-
tional filters were sized 3x3 and used the rectified linear unit (ReLU) activation function.

where N−1 is the number of samples per event, which varies for each detection. ỹb,N and ỹb,S

represent the timeseries extracted on the North and South DASARs.

3.2.2 Deep embedded clustering

Deep embedded clustering (DEC) is a modified convolutional autoencoder, a neural

network-based feature learning method, [12] that encourages separability of its learned feature

space (Fig. 3.4). The structure consists of two stacked networks: the encoder network, which maps

input data into a lower-dimensional or latent space, and the decoder network, which reconstructs

an approximation of the input from the latent space. Here, the architecture was compressive,

with the input image downsampled by the network with 2D convolutions of stride length 2. The

Rectified Linear Unit (ReLU) was used to transform the outputs at each layer,

f (x) =


1 x≥ 0

0 x < 0.
(3.27)
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Table 3.2: Network architecture used in deep embedded clustering. The input and output
shapes are given as [height, width, depth]. The kernel size is the shape of the two dimensional
convolutional filters in [height, width].

Layer
Name

Layer Type Input
shape

Filters Kernel
size

Stride Activation Output
shape

Parameters

Conv1 2D Convolution [90,20,1] 8 [3,3] [2,2] ReLU [45,10,8] 80
2D Conv. [45,10,8] 8 [2,1] [1,1] ReLU [44,10,8] 136

Conv2 2D Conv. [44,10,8] 16 [3,3] [2,2] ReLU [22,5,16] 1168
2D Conv. [22,5,16] 16 [1,2] [1,1] ReLU [22,4,16] 528

Conv3 2D Conv. [22,4,16] 32 [2,1] [2,1] ReLU [11,4,32] 1056
2D Conv. [11,4,32] 64 [2,1] [1,1] ReLU [10,4,64] 4160

Conv4 2D Conv. [10,4,64] 64 [2,1] [2,1] ReLU [5,4,64] 8256
Flatten Flatten [5,4,64] - - - - [1280] 0
Encoded Fully Connected [1280] - - - ReLU [10] 6405
Dense Fully Connected [15] - - - ReLU [1280] 7680
Reshape [1280] - - - - [5,4,64] 0
TConv4 Transposed

Convolution [5,4,64] 32 [2,1] [2,1] ReLu [10,4,32] 4128
T. Conv. [10,4,32] 32 [2,1] [1,1] ReLu [11,4,32] 2080

TConv3 T. Conv. [11,4,32] 16 [2,1] [2,1] ReLu [22,4,16] 1040
T. Conv. [22,4,16] 16 [1,2] [1,1] ReLu [22,5,16] 528

TConv2 T. Conv. [22,5,16] 8 [3,3] [2,2] ReLu [44,10,8] 1160
T. Conv. [44,10,8] 8 [2,1] [1,1] ReLu [45,10,8] 136

TConv1 T. Conv. [45,10,8] 1 [3,3] [2,2] Linear [90,20,1] 73

The use of this model for clustering of bioacoustic coral reef signals was inspired by its recent

application to unlabeled seismic events. [37] Additional details of the model are given in Fig. 3.4

and Table 3.2. In this study, the input images are the same as the output labels to encourage

accurate image reconstruction.

The latent feature separation is accomplished by incorporating two loss functions at

different stages of training: mean squared reconstruction error (MSE) between the input and
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output spectrogram, and Kullback-Leibler divergence, [13, 44]

KL(P‖Q) =
N

∑
n

K

∑
k

pnk log
(

pnk

qnk

)
(3.28)

qnk =
(1+‖zn−µµµk‖2)−1

∑ j(1+‖zn−µµµ2
j‖−1

(3.29)

pnk =
q2

nk/∑m qmk

∑ j(q2
n j/∑m qmk)

, (3.30)

where zn ∈ RP is the latent feature vector of the nth spectrogram input and µµµk is the kth cluster

mean. (3.29) is the empirically estimated Student’s t-distribution and (3.30) further penalizes

points that are distant from a cluster center. [13]

Unlike supervised machine learning, training labels are not available in unsupervised learn-

ing and DEC. Instead, the DEC was trained with fixed-length spectrogram images log10 |Sn|2 ∈

RN f×Nt of 0.5 s=Nt ·dT at its input and output, where events longer than 0.5 s were clipped to

length. This feature-learning approach is analogous to principal component analysis.

First, the DEC (Fig. 3.4) was pretrained to learn latent features using mean squared

reconstruction error loss for 1000 epochs with the Adam optimizer [19] and learning rate of

10−3. The pretrained latent features zn were then clustered with K-means to initialize the deep

clustering, with means µµµk, k=1, . . . ,K. The DEC was trained for an additional 20 epochs using

the joint clustering/reconstruction loss function,

L = 0.1 ·KL+0.9 ·MSE, (3.31)

with KL from (3.28).

The DEC was written in Keras [7] using Tensorflow [1].
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Table 3.3: Signal parameters were drawn from random distributions for each simulated event.

FM Sweep Pulse train
Duration/Width (s) T ∈U(0.2,0.4) τ = 0.005

Delay (s) t0 ∈U(−0.1,0.1) t0 ∈U(−0.1,0.1)
Frequency (Hz) f0 ∈U(100,400) fc = 200

∆ f ∈U(−150,150)
Peak spacing (s) ∆t ∈ 0.47∗beta(4,23)
Number of peaks N ∈ b13∗beta(3.5,8)c

SNR (dB) SNR ∈U(15,30) SNR ∈U(0,30)

3.2.3 Feature matrix

An N×P feature matrix was constructed by concatenating the feature vectors for each

event,

Z = [z1, . . . ,zN ]
T ∈ RN×P, (3.32)

with zn ∈ RP (N� P). The feature vectors zn were automatically extracted handpicked features,

with P = 6 (Sec. 3.2a). The clustering algorithms in Sec. 3.1 were used to find K P–dimensional

cluster means. All N points were assigned to a unique cluster.

3.3 Simulations

A set of coral reef bioacoustic events was simulated to compare handpicked features and

deep embedded clustering under varying conditions. A total of 10,000 events were simulated to

mimic recorded whale song and fish pulses or pulse trains (Fig. 3.5). The signals were simulated

as timeseries sampled at 1kHz, preprocessed as spectrogram images using a 256–pt FFT with

90% overlap, and then clipped to 0.5 s.

The DEC latent feature dimension was optimized over a range of values. The optimal DEC
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Figure 3.5: Simulated (a–b) and measured (c–d) coral reef bioacoustic signals before clipping.
Whale calls were simulated with an FM upsweep (a,c), and fish pulse trains were simulated
with superimposed Gaussian pulses (b,d). White noise was added to both signals at 25 dB SNR
relative to the mean signal power.

performance was compared to unsupervised clustering with automatically extracted handpicked

features. Then, a third class containing an overlapping fish call and whale song was included,

with 33% of the total samples belonging to each class.

Quadratic FM sweeps mimic parts of humpack whale song. The equation for the instanta-

neous frequency of a quadratic sweep is [26]

f (t) = βt2 +2π f0, β =
2π∆ f

T
(3.33)

where f0 is the initial frequency, ∆ f is the total bandwidth, and T is the duration of the signal.

The signal is an FM upsweep when β > 0, an FM downsweep when β < 0 and a tonal when β = 0.

The phase of the time domain signal can be found by integrating the instantaneous frequency [26]

Φ(t) =
∫ t−t0

0
(βt2 +2π f0)dt (3.34)

y(t) = sin(Φ(t)) = sin(
β

3
(t− t0)3 +2π f0(t− t0)), (3.35)

where t0 is the time delay of the signal start.
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Timeseries of impulses, or pulse trains, were used to simulate fish calls. The pulses were

a set of N superimposed Gaussian-modulated sinusoids [43] spaced ∆t apart

y(t) =
N−1

∑
i=0

e−a|t−i∆t−t0|2 sin(2π fc(t− i∆t− t0)) (3.36)

a=τ
−22log(2),

where τ is the half-power pulse width and fc is the center frequency.

The signal parameters were varied randomly for each sample (Table 3.3). Pulse width and

center frequency were fixed to achieve a representative pulse structure. The number of pulses and

spacing were drawn from experimentally estimated distributions. The duration, initial frequency,

and total bandwidth of the FM sweep were drawn at uniform random from a range of realistically

observed values. All signals were centered within the 0.5 s spectrogram and assigned a random

delay of within ±0.1 s.

White noise was added to the simulated signals using a fixed signal-to-noise ratio (SNR),

SNR = 10log10
σ2

s
σ2

n
, σ

2
n = σ

2
s 10−SNR/10, (3.37)

y(t) = y(t)+N (0,σ2
nI), (3.38)

where σ2
s is the signal power and σ2

n is the noise power. The SNR range of each signal was

determined from the experimental spectrograms during manual labeling. The SNR was estimated

as the difference of the peak signal power to the median power of the background.

The signal power was estimated as the bandwidth-normalized mean power over the signal
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Figure 3.6: Diagram of the DASAR array deployed adjacent to a coral reef on the island of
Hawaii. [9] The estimated detection locations are shown as gray dots. The majority of the reef
is located due east of the array. The sensor positions were measured on the seafloor relative to
DASAR W.

duration, [27]

σ
2
s,FM=

1
∆ f ·T

∫ t0+T

t0
|y(t)|2dt, (3.39)

σ
2
s,pulse=

1
∆ f ·4τ

∫ t0+2τ

t0−2τ

|y(t)|2dt. (3.40)

Following Sec. 3.2A, three handpicked features were extracted: peak frequency (3.23), kurtosis

(3.24), and number of timeseries peaks (3.25). Duration, median power, and cross-sensor coher-

ence were excluded due to limitations of the fixed simulation parameters. Then, K-means and

hierarchical clustering were applied to the feature matrix to discover K=2 classes (fish or whale)

or K=3 (fish, whale, or both).

Deep embedded clustering was applied directly to the spectrogram images according to

Sec. 3.2B.
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3.4 Data collection and Processing

Three directional autonomous seafloor acoustic recorders (DASARs) were deployed

adjacent to a coral reef westward of the island of Hawaii. The DASARs, labeled N, W, and S

from north to south, measured pressure and lateral particle velocity with x– and y– components

oriented at orthogonal compass directions. The array was roughly oriented N-S with inter-sensor

spacing about 15 m (Fig. 3.6).

The DASARs recorded continuously for 7 days with a sampling rate of 1 kHz. This study

considers a 24-hour period on February 25, 2020. During this period, the dominant soundscape

contributors below 500 Hz were reef fish, humpback whales, and motor noise from transiting

surface boats, with boat noise occurring predominantly during daylight hours and fish calling

most pronounced during the dusk hours.

The data were processed in 5 minute chunks to account for DASAR clock drift. First,

a 256–point FFT with 90% overlap and Hanning window was used to generate the complex

pressure spectrogram, matrix S ∈ CN f×Nt with units µPa·Hz−1, with dt = 0.026 s and d f = 3.91

Hz. The complex spectrograms of the x– and y– particle velocity, matrices Vx ∈ CN f×Nt and

Vy ∈CN f×Nt , were generated identically to S with units m · s−1. Then, the spectrograms from two

sensors were cross-correlated along time to find the relative clock delay, assumed constant across

5 minutes.

The active intensity, a measure of in-plane energy, was used to determine the noise

directionality:

A = atan2
(
ℜ{S�V∗y},ℜ{S�V∗x}

)
, (3.41)

∗ is the complex conjugate and ℜ the real component. Atan2 is an elementwise operation with
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Figure 3.7: Directional detector for a fish call event on February 25, 07:12 HST, with DASAR
N looking between 135◦–225◦ and DASAR S looking between 45◦–135◦ (clockwise from north).
The overlap of the binary masks, summed across frequency, defines the detection timeseries.

domain (0◦,359◦), defined counterclockwise from the y-axis (0◦ = North), where for each (x,y),

atan2(y,x) =


arctan

(
x
y

)
y > 0

180◦+ arctan
(

x
y

)
y < 0.

(3.42)

A is therefore the time-frequency representation of compass directionality. In the following,

matrix AN is called the azigram for DASAR N, likewise for AW and AS.

3.4.1 Event detection

A directional event detector, [40] was developed to utilize the DASARs’ directional

capability by combining two DASARs, based on the assumptions:

1. An event arrives from a constant azimuthal sector for each DASAR.

2. Target events are broadband below 500 Hz. The minimum required bandwidth was set with

an empirical threshold.

The detection algorithm is demonstrated in Fig. 3.7. First, the azigrams for the north- and

southmost DASARs, AN and AS, were used to create binary maps BN and BS of time-frequency
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points within a fixed azimuthal sector,

BN = I(θθθ(1)N < AN ≤ θθθ
(2)
N ), (3.43)

and likewise for BS (Fig. 3.7a,b). I is the elementwise identity function, with I(true) = 1. Binary

maps were generated for all combinations of azimuthal sectors θθθN,θθθS ∈ ([0◦,∆θ◦]T , [∆θ

2
◦
, 3∆θ

2
◦
]T , . . . , [(360−

∆θ)◦,360◦]).

Next, overlapping signals on both DASARs were discovered by creating a combined map

(Fig. 3.7c),

B = BN∩BS. (3.44)

The detection timeseries was generated by summing across frequency of events,

d = d f ∗∑
i

B(i, :) (3.45)

d measures the bandwidth of an event. Event start and end times were determined for d j > T ,

j = 1, . . . ,Nt for threshold T . Events separated by less than Msep · dt were merged and events

longer than Tmax were removed.

For this study, the detector parameters were ∆θ = 90◦, T = 120 Hz, Msep = 1 (Msep ·dt =

0.0256 s), and Tmax = 2 s. Detected events were localized [21] to ensure physicality and that their

signal had sufficient bandwidth for feature extraction.

Detections for which the localization algorithm failed to converge were discarded. The

remaining events were spatially filtered within a 100 m by 100 m box from DASAR S (Fig. 3.6).

92,736 localizable detections within 100 m were kept for further analysis, on average about 1

detection per second.
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Figure 3.8: (a) Number of detected events per 15 minutes on February 25 and (b–g) 10%, 50%,
and 90% levels per 15 minutes for each feature: (b) peak frequency, (c) median time-frequency
power, (d) event duration, (e) normalized time coherence between sensors, (f) kurtosis, and
(g) number of time peaks. All features were measured on the DASAR S. The coherence is the
normalized correlation lag coefficient between DASARs N and S.

Fig. 3.8 shows the number of events detected along with extracted feature median, 10%,

and 90% levels for every 15 minutes. Fish calls were most common during nighttime, with pulse

trains peaking during the evening chorus after nautical twilight (19:15 HST). The evening chorus

corresponded to a visible increase in median power, event duration, and number of time peaks

and a visible decrease in the 90th percentiles of peak frequency and kurtosis.
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3.5 Clustering Analysis

3.5.1 Metrics

The performance of the handpicked feature clustering and DEC was measured by their

accuracy, precision, and recall,

Accuracy =
1
N

N

∑
i=1

I(ti, t̂i), ti, t̂i ∈ {0,1,2} (3.46)

Precision=
∑

N
i=1 I(ti, t̂i)

∑
N
j=1 I(t̂ j,0)

, Recall=
∑

N
i=1 I(ti, t̂i)

∑
N
j=1 I(t j,0)

(3.47)

where ti is the true label and t̂i is the class prediction. Here, whale song (label 0) was the true

class. Precision (positive predictive value or PPV) measured the ratio of correctly predicted whale

song events to total predicted whale song. Recall (hit rate or true positive rate) measured the ratio

of correctly classified whale song events to the true total. Higher metrics correspond to improved

performance, with perfect performance given by accuracy, precision, and recall all equal to 1.

3.5.2 Simulations

First, the handpicked features were examined for separability for K=2 equal-sized classes

(fish, whale) and K=3 classes (fish, whale, both) (Fig. 3.9). Whale song and fish call overlapped

in peak frequency and in the number of automatically extracted temporal peaks. The signals

were most strongly separated by kurtosis, with whale song having very low kurtosis. The optimal

clustering was found when all features were included. The handpicked features were clustered

using the unsupervised clustering methods K-means and hierarchical agglomerative clustering

(Table 3.4), with K=2 and K=3 assumed for each case. The known simulation labels were used

for post-clustering comparison of the methods.

For 2 equal-sized classes, K-means had marginally higher accuracy and recall than
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Figure 3.9: Handpicked features demonstrate some separability by kurtosis, number of time-
series peaks, and peak frequency but with overlapping clusters for (a-c) two classes (whale, fish)
and (d-f) (bottom) three classes (whale, fish, both). The dots are scaled to indicate density of
feature pairs, with each dot increased by 1 pt for every 100 samples.

hierarchical clustering, but lower precision (Table 3.4), indicating that the signal clusters were

not equidistant in feature space. For K = 2 with imbalanced classes, only 25% of simulated

events were whale song, with the remaining 75% fish calls (2500/7500). In this case, hierarchical

agglomerative clustering had slightly higher accuracy and recall, but slightly lower precision

than K-means. The accuracy, recall, and precision were overall higher for the imbalanced classes

(Table 3.4), which is likely reflective of an imbalance in feature densities for the different classes.

The classification accuracy for 3 equal-sized classes was higher than for 2 equal-sized

classes due to the choice of simulation SNR, which was selected as the higher of the two signals

(15–30 dB) for the combined features. The handpicked feature values for the combined fish and

whale class were between those of whale song or fish call alone. Overall, low recall and accuracy

values for the handpicked feature clustering indicate that many of the whale song events were

misclassified, but high precision indicates that most events classified as whale song were correct.

Model parameters cannot be determined by cross-validation in unsupervised clustering

due to its inherently label-free nature. [44] To achieve reasonable classification accuracy, a

previously successful model architecture was employed, [37] and the simulation accuracy was
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Table 3.4: Classification accuracy, precision, and recall on simulations for unsupervised
clustering with hand-crafted features (K-means, hierarchical clustering) vs deep learning (DEC).
Whale song was defined as the positive class.

Method Accuracy Recall Precision
K=2

K-means 0.73 0.47 0.99
Hierarchical 0.66 0.32 1.0

DEC (P = 10) 0.99 0.99 0.99
K=2 (imbalanced)

K-means 0.86 0.46 0.98
Hierarchical 0.87 0.50 0.97

DEC (P = 10) 0.75 0.99 0.50
K=3

K-means 0.77 0.49 1.0
Hierarchical 0.71 0.45 1.0

DEC (P = 15) 0.86 0.99 0.96

examined for DEC with K = 2 and K = 3 equal-sized classes at varying latent feature vector

dimensionality (Fig. 3.10). When the latent dimension was low, eg P< 8, all features were

clustered in a single class. For 2 classes, accuracy was consistent when P>8. For 3 classes,

accuracy was unstable. The instability was likely caused by weak convergence and sensitivity to

the weight initialization, but the minimum latent dimension was consistent across random seeds.

In general, higher accuracy was achieved with higher latent dimension when K=3.

DEC clustering for 2 equal-sized classes is shown in Fig. 3.11(a,b) using a t-SNE repre-

Figure 3.10: Accuracy of DEC for 10000 simulated signals with varying latent dimension (P).
K=3 classes contained fish, whale, or fish and whale, and K=2 classes had fish or whale. In
both cases, the method fails at low P.
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Figure 3.11: t-SNE representation of the deep embedded feature vectors for 10000 simulated
examples with (a,b) fish call and whale song classes, and (c,d) fish call, whale song, and
fish/whale classes. The plots are colored by (a,c) ground truth labels and (b,d) DEC predicted
labels. The perplexity value was 200.

sentation of the P= 10–dimensional latent feature vector with perplexity 200. The high perplexity

improved visualization, likely due to the large number of samples relative to the feature dimen-

sion. The point colors represent the two class labels. Signals that were spectrally similar were

most likely to be misclassified, such as low-frequency FM sweeps and closely spaced fish pulse

sequences lasting from 0.2 s to 0.4 s. In most cases, DEC successfully separated fish calls and

whale song into separate classes, with high accuracy, precision, and recall (Table 3.4).

For 2 imbalanced classes (2500 whale/7500 fish calls), DEC had reduced accuracy likely

due to its convergence to equal-sized clusters as shown in Fig. 3.11(c,d). The reduction in

precision and accuracy was directly proportional to the reduction in the class sizes (Table 3.4),

while recall was unchanged because the whale song class was overestimated (Fig. 3.11(c,d)).

The addition of a combined signal class, using K=3 equal-sized classes, demonstrated

that overlapping signals were difficult to differentiate in the spectral domain (Fig. 3.11(e,f)).

Most whale song events were correctly classified, as indicated by a high recall value. The largest
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Figure 3.12: Simulated coral reef bioacoustic signals successfully classified using DEC. From
top to bottom rows: input spectrograms, simulated timeseries, initial DEC reconstruction, and
DEC reconstruction after adding clustering loss.

classification overlap was between fish calls and combined class. Figure 3.12 shows that fish

calls with large bandwidth and duration may dominate the spectral signature, which may lead to

increased misclassification.

3.5.3 Experiment

The clustering methods from Sec. 3.3 were applied to a subset of 10,000 unlabeled

detections randomly selected from the Hawaii 2020 experiment. Each detection contained one or

more directional signals with unknown SNR. Then, labels of whale song/no whale song (fish calls

only) were manually assigned for 4000 samples or 40%, based on the signal within the detection

window. About two-thirds were labeled as no whale song and contained only fish calls.

The results of clustering the P=6–dimensional handpicked feature vectors with K-means

and K = 2 are shown using t-SNE in Fig. 3.13b. The overall accuracy, precision, and recall

were low (Table 3.5), indicating that the clustering methods did not align with the manual

labels. Similar results were found for hierarchical clustering. These results were in line with the

simulation results but suggest that feature extraction was less reliable in the experimental data.

68



Figure 3.13: Experimental data from a Hawaiian coral reef shown as a t-SNE representation of
(a, b) P=6 handpicked features and (c,d) DEC learned features for 10,000 random detections,
colored by (a,c) hand-labeled classes and (b,d) K-means clustering with K=2. The perplexity
was 200 for DEC and 300 for the physical features.

Table 3.5: Classification accuracy determined from manually labeled experimental detections
for unsupervised clustering with handpicked features (K-means, hierarchical clustering) vs deep
learning (DEC).

Method Accuracy Recall Precision
K-means (K = 2) 0.65 0.41 0.44

Hierarchical (K = 2) 0.51 0.56 0.34
DEC (P = 10, K = 2) 0.68 0.83 0.60

Figure 3.13d shows the result of DEC with P=15 using the normalized input spectrogram

estimated from the detected signals. The DEC was pretrained for 5000 epochs in order to account

for increased variability in the experimental data before updating clusters for 20 epochs. DEC

accuracy was slightly higher than handpicked feature clustering, but the significantly higher

recall value demonstrates that DEC correctly classified many of the whale song events. The class

imbalance between whale song and fish calls, evident in Fig. 3.13c, was not well captured by the

DEC algorithm used in this study, which converged towards well-balanced classes. The reduced

accuracy and precision were a result of this imbalance.

Successfully classified spectrogram reconstructions and their corresponding timeseries
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Figure 3.14: Experimentally detected coral reef bioacoustic signals successfully classified
using DEC. From top to bottom rows: input spectrograms, simulated timeseries, initial DEC
reconstruction, and DEC reconstruction after adding clustering loss. The start time of each
detection on February 25, 2020 is formatted as HH:MM:SS relative to midnight.

are shown in Fig. 3.14. These demonstrate that whale song was primarily identified by its narrow

bandwidth and temporal extent, whereas fish call pulse sequences were identified as broadband.

The unscaled timeseries in Fig. 3.14 demonstrate the magnitude variation between events that

was not attributed to signal type, motivating the normalization of the spectrograms.

3.6 Discussion

An unsupervised machine learning approach was presented for interpreting unlabeled

coral reef bioacoustic detections. This approach considers and expands upon methods from

recently proposed automatic fish call classifiers. [17, 22, 24]

Given the complex nature of the coral reef soundscape, two approaches were proposed to

separate whale song from fish calls. First, handpicked features known to be correlated with coral

reef fish species [25, 29, 42] and other relevant acoustic metrics [24, 28] were extracted. These

features were clustered using hierarchical clustering and K-means. Then, the deep clustering
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approach DEC was used to jointly learn features and cluster labels directly from the spectrograms.

Clustering of simulated fish calls (Gaussian pulses) and whale song units (FM sweeps)

demonstrated that handpicked features overlapped enough to reduce unsupervised clustering

accuracy. By jointly learning features and clusters, DEC was successful in separating fish calls and

whale song directly from spectrograms. However, the DEC algorithm [13, 44] with parameters

implemented in this study was observed to converge to equal-sized classes, resulting in higher

misclassifications. A combined class with overlapping whale song and fish call also reduced

DEC performance due to its inability to distinguish separate signals within the spectrograms.

Handpicked feature clustering performed similarly with or without the inclusion of a combined

class and demonstrated improved accuracy on imbalanced classes, indicating that the handpicked

features were not evenly distributed in feature space. In all scenarios except the simulated

imbalanced case, DEC had higher accuracy and recall than the handpicked clustering and was

more likely to correctly classify existing whale song events.

A directional detector was used to identify potentially localizable broadband bioacoustic

events on a Hawaiian coral reef in February–March 2020. A labeled subset of these detections

with whale song/no whale song indicated that about two-thirds of the detections contained

primarily fish calls and one-third contained a whale song segment.

Unsupervised K-means clustering of handpicked features with K=2 on the experimental,

manually labeled data achieved low accuracy, precision, and recall. DEC with K=2 achieved

similar accuracy, but its higher recall demonstrated its ability to correctly classify many whale

song events. A class imbalance between whale song and fish calls likely led the DEC algorithm

to define incorrect class boundaries (Fig. 3.13c,d), as evidenced in its lower precision. DEC

reconstructions of the input spectrograms demonstrate that the learned features are representative

of spectral features identified by manual labelers.

These results demonstrate that DEC is a promising method for clustering unlabeled

bioacoustic signals with distinct spectral signatures. Our results indicate that the feature extraction
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process is key for unsupervised clustering of hand-picked features and that the feature distributions

may be as or more important than their physical relations to the signal. Finally, class imbalance is

an important consideration, particularly for unlabeled data where the class priors are unknown.

As class imbalance is a common occurrence in ambient noise acoustics and geophysics, DEC

clustering algorithms should be considered that jointly learn or regularize the weighted class

priors as well as the cluster distributions.
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Chapter 4

Source localization in an ocean waveguide

using supervised machine learning

Source localization in ocean acoustics is posed as a machine learning problem in which

data-driven methods learn source ranges directly from observed acoustic data. The pressure

received by a vertical linear array is preprocessed by constructing a normalized sample covariance

matrix (SCM) and used as the input for three machine learning methods: feed-forward neural

networks (FNN), support vector machines (SVM) and random forests (RF). The range estimation

problem is solved both as a classification problem and as a regression problem by these three

machine learning algorithms. The results of range estimation for the Noise09 experiment are

compared for FNN, SVM, RF and conventional matched-field processing and demonstrate the

potential of machine learning for underwater source localization.

4.1 Introduction

Acoustic source localization in ocean waveguides is often solved with matched-field

processing (MFP). [1]− [2] Despite the success of MFP, it is limited in some practical applications
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due to its sensitivity to the mismatch between model-generated replica fields and measurements.

MFP gives reasonable predictions only if the ocean environment can be accurately modeled.

Unfortunately, this is difficult because the realistic ocean environment is complicated and unstable.

An alternative approach to the source localization problem is to find features directly

from data. [3]− [4] Interest in machine learning techniques has been revived thanks to increased

computational resources as well as their ability to learn nonlinear relationships. A notable recent

example in ocean acoustics is the application of nonlinear regression to source localization. [5]

Other machine learning methods have obtained remarkable results when applied to areas such as

speech recognition, [6] image processing, [7] natural language processing, [8] and seismology.

[9]− [10] Most underwater acoustics research in machine learning is based on 1990s neural

networks. Previous research has applied neutral networks to determine the source location in

a homogeneous medium, [11] simulated range and depth discrimination using artificial neural

networks in matched-field processing, [12] estimated ocean-sediment properties using radial

basis functions in regression and neural networks, [13], [14] applied artificial neural networks to

estimation of geoacoustic model parameters, [15], [16] classification of seafloor [17] and whale

sounds. [18]

This paper explores the use of current machine learning methods for source range local-

ization. The feed-forward neural network (FNN), support vector machine (SVM) and random

forest (RF) methods are investigated. There are several main differences between our work and

previous studies of source localization and inversion: [5], [11]− [18]

1. Acoustic observations are used to train the machine learning models instead of using

model-generated fields. [11], [12], [14]− [16]

2. For input data, normalized sample covariance matrices, including amplitude and phase

information, are used. Other alternatives include the complex pressure, [5] phase difference, [11]

eigenvalues, [12] amplitude of the pressure field, [14] transmission loss, [15], [16] angular

dependence of backscatter, [17] or features extracted from spectrograms. [18] This preprocessing
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procedure is known as feature extraction in machine learning.

3. Under machine learning framework, source localization can be solved as a classification

or a regression problem. This work focuses on classification in addition to the regression approach

used in previous studies. [5], [11], [13]− [16]

4. Well-developed machine learning libraries are used. Presently, there are numerous

efficient open source machine learning libraries available, including TensorFlow, [19] Scikit-learn,

[20] Theano, [21] Caffe, [22] and Torch, [23] all of which solve typical machine learning tasks

with comparable efficiency. Here, TensorFlow is used to implement FNN because of its simple

architecture and wide user base. Scikit-learn is used to implement SVM and RF as they are not

included in the current TensorFlow version. Compared to older neural network implementations,

Tensorflow includes improved optimization algorithms [24] with better convergence, more robust

model with dropout [25] technique and high computational efficiency.

The paper is organized as follows. The input data preprocessing and source range mapping

are discussed in Secs. 4.2.1 and 4.2.2. The theoretical basis of FNN, SVM and RF is given in

Secs. 4.2.3–4.2.5. Simulations and experimental results in Secs. 4.3 and 4.4 demonstrate the

performance of FNN, SVM and RF. In Sec. 4.5, the effect of varying the model parameters is

discussed. The conclusion is given in Sec. 4.6.

4.2 Localization based on machine learning

The dynamics of the ocean and its boundary cause a stochastic relationship between the

received pressure phase and amplitude at the array and the source range. After preprocessing

we assume a deterministic relationship between ship range and sample covariance matrix. The

pressure–range relationship is in general unknown but may be discovered using machine learning

methods. The received pressure is preprocessed and used as the input of the machine learning

models (Sec. 4.2.1). The desired output may be either discrete (classification) or continuous
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(regression) corresponding to the estimated source range (Sec. 4.2.2). The theory of FNN, SVM,

and RF are described in Secs. 4.2.3–4.2.5.

4.2.1 Input data preprocessing

To make the processing independent of the complex source spectra, the received array

pressure is transformed to a normalized sample covariance matrix. The complex pressure at

frequency f obtained by taking the DFT of the input pressure data at L sensors is denoted by

p( f ) = [p1( f ), · · · , pL( f )]T . The sound pressure is modeled as

p( f ) = S( f )g( f ,r)+ ε, (4.1)

where ε is the noise, S( f ) is the source term, and g is the Green’s function. To reduce the effect

of the source amplitude |S( f )|, this complex pressure is normalized according to

p̃( f ) =
p( f )√

L
∑

l=1
|pl( f )|2

=
p( f )
‖p( f )‖2

. (4.2)

The normalized sample covariance matrices (SCMs) are averaged over Ns snapshots to

form the conjugate symmetric matrix

C( f ) =
1
Ns

Ns

∑
s=1

p̃s( f )p̃H
s ( f ), (4.3)

where H denotes conjugate transpose operator and p̃s represents the sound pressure over the sth

snapshot. The product p̃s( f )p̃H
s ( f ) contains an S( f )S( f )H term, which for large SNR is dominant

and thus reduces the effect of the source phase. Preprocessing the data according to Eqs. (4.2)

and (4.3) ensures that the Green’s function is used for localization. Only the real and imaginary

parts of the complex valued entries of diagonal and upper triangular matrix in C( f ) are used as
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input to save memory and improve calculation speed. These entries are vectorized to form the

real-valued input x of size L× (L+1) to the FNN, SVM and RF.

4.2.2 Source range mapping

In the classification problem, a set of source ranges is discretized into K bins, r1, ...,rK , of

equal width ∆r. Each input vector, xn,n = 1, ..,N, is labeled by tn, where tn ∈ rk,k = 1, ...,K; this

label represents the true source range class and is the target output for the model. SVM and RF

use this classification scheme to train and predict the source range for each sample.

For the FNN, the range class tn is mapped to a 1×K binary vector, tn, such that:

tnk =

 1 if |tn− rk| ≤ ∆r
2 ,

0 otherwise,
(4.4)

tn = tn,1, ..., tn,K therefore represents the expected output probability of the neural network, i.e.

the probability that the source is at range rk for input xn. These target vectors are used to train

the FNN. The FNN output predictions are given as a softmax distribution with maximum at the

predicted range (see Sec. 4.2.3).

In the regression problem, the target output rn ∈ [0,∞) is a continuous range variable for

all three models.

4.2.3 Feed-forward neural networks

The feed-forward neural network (FNN), also known as multi-layer perceptron, is con-

structed using a feed-forward directed acyclic architecture, see Fig. 4.1(a). The outputs are formed

through a series of functional transformations of the weighted inputs. In the FNN, the outputs are

deterministic functions of the inputs. [26]

Here, a three layer model (input layer L1, hidden layer L2 and output layer L3) is used to
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Figure 4.1: (a) Diagram of a feed-forward neural network and (b) Sigmoid function.

construct the FNN. The input layer L1 is comprised of D input variables x = [x1, · · · ,xD]
T . The

jth linear combination of the input variables is given by

a j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 , j = 1, · · · ,M, (4.5)

where M is the number of neurons in L2 and the superscript indicates that the corresponding

parameters are in the first layer of the network. The parameters w(1)
ji and w(1)

j0 are called the

weights and biases and their linear combinations a j are called activations. In L2, the activations

are transformed using an activation function f (·),

z j = f (a j). (4.6)

The logistic sigmoid was chosen as the intermediate activation function for this study, see

Fig. 4.1(b):

f (a) = σ(a) =
1

1+ e−a . (4.7)

Similarly, for output layer L3, the K output unit activations are expressed as linear
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combinations of z j

ak =
M

∑
j=1

w(2)
k j z j +w(2)

k0 , k = 1, · · · ,K (4.8)

where w(2)
k j and w(2)

k0 represent weights and biases for the second layer.

In the output layer, the softmax function is used as the activation function. The softmax is

a common choice for multi-class classification problems. [26] Here, it constrains the output class,

yk(x,w), to be the probability that the source is at range rk: [26]

yk(x,w) =
exp(ak(x,w))

∑
K
j=1 exp(a j(x,w))

, k = 1, · · · ,K (4.9)

where w is the set of all weight and bias parameters and yk satisfies 0≤ yk ≤ 1 and ∑k yk = 1.

Before applying the FNN to unlabeled data, the weights and biases w are determined by

training the model on labeled data. Recall that in the FNN case, tn is the binary target vector, or

true probability distribution (see Sec. 4.2.2), and yk(xn,w) is the estimated probability distribution,

for the input xn (see Sec. 4.2.1).

During training, the Kullback–Leibler (KL) divergence

DKL(tn||y(xn,w)) = ∑
k

tnk [ln tnk− lnynk] , (4.10)

represents the dissimilarity between ynk = yk(xn,w) and tnk, where tn = [tn1, ..., tnk], k = 1, ...,K.

Minimizing the KL divergence DKL is equivalent to minimizing the cross entropy function En

En(tn,y(xn,w)) =−∑
k

tnk lnynk, (4.11)

since the desired output tn is constant (independent of w).

For N observation vectors, the averaged cross entropy and resulting weights and biases
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are

E(w) =− 1
N

N

∑
n=1

K

∑
k=1

tnk lnynk, (4.12)

ŵ = argmin
w

[
− 1

N

N

∑
n=1

K

∑
k=1

tnk lnynk

]
. (4.13)

For the regression problem, there is only one neuron in the output layer representing the

continuous range variable. Instead of using Eq. (4.12), a sum-of-squares error function [26] is

minimized

E(w) =
1
2

N

∑
n=1
|y(xn,w)− rn|2 , (4.14)

where rn is the true source range at sample n.

Several optimization methods are provided in the TensorFlow software. In this paper,

Adam [24](Adaptive Moment estimation) is used.

4.2.4 Support Vector Machine

Unlike neural networks, support vector machines (SVM) are decision machines that do

not provide a posterior probability. [26] Instead, the data is divided into two (or more) classes by

defining a hyperplane that maximally separates the classes.

First, for simplicity, assume the input xn,n = 1, · · · ,N are linearly separable (see Fig. 4.2)

and can be divided into two classes, sn ∈ {1,−1}. The class of each input point xn is determined

by the form [26]

yn = wT xn +b, (4.15)

where w and b are the unknown weights and bias. A hyperplane satisfying wT x+b = 0 is used to

separate the classes. If yn is above the hyperplane (yn > 0), estimated class label ŝn = 1 , whereas

if yn is below (yn < 0), ŝn =−1. The perpendicular distance d of a point xn to the hyperplane is
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Figure 4.2: A linear hyperplane learned by training an SVM in two dimensions (D = 2).

the distance between the point xn and its projection x0 on the hyperplane, satisfying

xn = x0 +d
w
||w||

,

wT x0 +b = 0,
(4.16)

where || · || is the l2 norm. From Eq. (4.16), the distance d is obtained:

d(xn) = sn
wT xn +b
||w||

, (4.17)

where sn is added in Eq. (4.17) to guarantee d > 0. The margin dM is defined as the distance from

the hyperplane to the closest points xs on the margin boundary (support vectors, see Fig. 4.2).

The optimal w and b are solved by maximizing the margin dM:

argmax
w,b

dM,

subject to
sn(wT xn +b)
||w||

≥ dM, n = 1, · · · ,N.

(4.18)
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The Eq. (4.18) is equivalent to this optimization problem: [26]

argmin
w,b

1
2
||w||2,

subject to sn(wT xn +b)≥ 1, n = 1, · · · ,N.

(4.19)

If the training set is linearly non-separable (class overlapping), slack variables [26]

ξn ≥ 0 are introduced to allow some of the training points to be miclassified, corresponding the

optimization problem:

argmin
w,b

1
2
||w||2 +C

N

∑
n=1

ξn,

subject to sn(wT xn +b)≥ 1−ξn, n = 1, · · · ,N.

(4.20)

The parameter C > 0 controls the trade-off between the slack variable penalty and the margin.

For the non-linear classification problems, the kernel trick [26] is used to allow data

linearly separable in feature space. For this study, we use the Gaussian radial basis function

(RBF) kernel: [20]

kφ(x,x′) = exp(−γ||x−x′||2). (4.21)

γ is a parameter that controls the kernel shape.

Support vector regression (SVR) is similar to SVM, but it minimizes the ε–sensitive error

function

Eε(yn− rn) =


0, if |yn− rn|< ε,

|yn− rn|− ε, otherwise,
(4.22)

where rn is the true source range at sample n and ε defines a region on either side of the hyperplane.

In SVR, the support vectors are points outside the ε region.

Because the SVM and SVR models are a two-class models, multi-class SVM with K

classes is created by training K(K− 1)/2 models on all possible pairs of classes. The points
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Figure 4.3: (Color online) Decision tree classifier and corresponding rectangular regions shown
for two–dimensional data with K = 2 classes (D = 2, M = 3) and 1000 training points.

that are assigned to the same class most frequently are considered to comprise a single class,

and so on until all points are assigned a class from 1 to K. This approach is known at the

“one-versus-one” scheme, [26] although slight modifications have been introduced to reduced

computational complexity. [27]

4.2.5 Random forests

The random forest (RF) [28] classifier is a generalization of the decision tree model, which

greedily segments the input data into a predefined number of regions. The simple decision tree

model is made robust by randomly training subsets of the input data and averaging over multiple

models in RF.

Consider a decision tree (see Fig. 4.3) trained on all the input data. Each input sample,
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xn,n = 1, ...,N, represents a point in D dimensions. The input data can be partitioned into two

regions by defining a cutoff along the ith dimension, where i is the same for all input samples

xn,n = 1, ...,N:

xn ∈ xxxleft if xni > c,

xn ∈ xxxright if xni ≤ c.
(4.23)

c is the cutoff value, and xxxleft and xxxright are the left and right regions, respectively. The cost

function, G, that is minimized in the decision tree at each branch is [20]

c∗ = argmin
c

G(c),

G(c) =
nleft

N
H(xxxleft)+

nright

N
H(xxxright),

(4.24)

where nleft and nright are the numbers of points in the regions xxxleft and xxxright. H(·) is an impurity

function chosen based on the problem.

For the classification problem, the Gini index [20] is chosen as the impurity function

H(xxxm) =
1

nm
∑

xn∈xxxm

I(tn, `m)

[
1− 1

nm
I(tn, `m)

]
, (4.25)

where nm is the number of points in region xxxm and `m represents the assigned label for each region,

corresponding to the most common class in the region: [20]

`m = argmax
rk

∑
xn∈xxxm

I(tn,rk). (4.26)

In Eq. (4.26), rk,k = 1, ...,K are the source range classes and tn is the label of point xn in region

m, and

I(tn,rk) =


1 if tn = rk,

0 otherwise.
(4.27)

The remaining regions are partitioned iteratively until regions xxx1, ...,xxxM are defined. In
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this paper, the number of regions, M, is determined by the minimum number of points allowed

in a region. A diagram of the decision tree classifier is shown in Fig. 4.3. The samples are

partitioned into M = 3 regions with the cutoff values 1.9 and 4.6.

For RF regression, there are two differences from classification: the estimated class for

each region is defined as the mean of the true class for all points in the region, and the mean

squared error is used as the impurity function

`m =
1

nm
∑

xn∈xxxm

rn,

H(xxxm) = ∑
xn∈xxxm

(`m− rn)
2,

(4.28)

where rn is source range at sample n.

As the decision tree model may overfit the data, statistical bootstrap and bagging are

used to create a more robust model, a random forest. [29] In a given draw, the input data,

xi, i = 1, · · · ,Q, is selected uniformly at random from the full training set, where Q≤ N. B such

draws are conducted with replacement and a new decision tree is fitted to each subset of data.

Each point, xn, is assigned to its most frequent class among all draws:

f̂ bag(xn) = argmax
tn

B

∑
b=1

I( f̂ tree,b(xn), tn), (4.29)

where f̂ tree,b(xi) is the class of xi for the bth tree.

4.2.6 Performance metric

To quantify the prediction performance of the range estimation methods, the mean absolute

percentage error (MAPE) over N samples is defined as

EMAPE =
100
N

N

∑
i=1

∣∣∣∣Rpi−Rgi

Rgi

∣∣∣∣ , (4.30)
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where Rpi and Rgi are the predicted range and the ground truth range, respectively. MAPE is

preferred as an error measure because it accounts for the magnitude of error in faulty range

estimates as well as the frequency of correct estimates. MAPE is known to be an asymmetric

error measure [30] but is adequate for the small range of outputs considered.

4.2.7 Source localization algorithm

The localization problem solved by machine learning is implemented as follows:

1. Data preprocessing. The recorded pressure signals are Fourier transformed and Ns

snapshots form the SCM from which the input x is formed.

2. Division of preprocessed data into training and test data sets. For the training data, the

labels are prepared based on different machine learning algorithms.

3. Training the machine learning models. X = [x1 · · ·xN ] are used as the training input

and the corresponding labels as the desired output.

4. Prediction on unlabeled data. The model parameters trained in step 3 are used to predict

the source range for test data. The resulting output is mapped back to range, and the prediction

error is reported by the mean absolute percentage error.

4.3 Simulations

In this section, the performance of machine learning on simulated data is discussed. For

brevity, only the FNN classifier is examined here, although the conclusions apply to SVM and RF.

Further discussion of SVM and RF performance is included in Secs. 4.4 and 4.5.

4.3.1 Environmental model and source-receiver configuration

Acoustic data is simulated using KRAKEN [31] with environmental parameters simulating

the Noise09 experiment [32], see Fig. 4.4(a). The source frequency is 300 Hz. The source depth
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Figure 4.4: (Color online) (a) Waveguide parameters and source-receiver configuration. (b)
Sound speed profile of water column.

is 5 m in a 152 m waveguide, with a 24 m sediment layer (sound speed 1572–1593 m/s, density

1.76 g/cm3, attenuation coefficient 2.0 dB/λ) and a fluid halfspace bottom (sound speed 5200

m/s, density 1.8 g/cm3, and attenuation coefficient 2.0 dB/λ). The sound speed profile of water

column is shown in Fig. 4.4(b). The vertical array consists of 16 receivers spanning 128–143 m

depth with inter-sensor spacing 1 m.

A source traveling away from the receiver at 2 m/s is simulated by varying the range

from 0.1 to 2.86 km at 2 m intervals. Realizations with different SNRs are generated by adding

appropriate complex Gaussian noise to the simulated received complex pressure signals.

Since the source moves in range and the source level is assumed constant, SNR is defined

at the most distant range bin

SNR = 10log10
∑

L
l=1 |p̂l|2/L

σ2 (dB), (4.31)

where p̂l is sound pressure signal received by the lth sensor at the longest source-receiver distance

and σ2 represents the noise variance.
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4.3.2 Input preprocessing and learning parameters

The SCM for a 16–element vertical array is formed at each range point by averaging over

Ns = 10 successive snapshots (9 snapshots overlapped) according to Eq. (4.3). The number of

neurons in the input layer is therefore D = 16× (16+1) = 272. The range sample interval is 2

m, with 1380 total range samples (1 s duration per snapshot). Thus, a total of N = 1380 input

matrices constitute the sample set spanning the whole range 0.1–2.86 km.

For each SNR, two realizations of noisy measurements are generated. One realization of

size 1380 × 272 is used for the training set. For the test set, the range sample interval is changed

to 20 m, and a realization of size 138 × 272 is used as input.

In the test set, K = 138 output neurons represent ranges from 0.1–2.86 km incremented

by 20 m. The number of neurons in the hidden layer is M = 128. To prevent overfitting, the ”keep

dropout” technique, [25] with probability 0.5, is used. The initial learning rate for the Adam

optimizer [24] is 0.01 and the maximum number of iterations is 1000.

4.3.3 Results

The prediction performance is examined for four SNRs (−10, −5, 0, 5 dB). Figure 4.5

compares range predictions by FNN and the true ranges on test data. For the four SNRs tested,

the MAPE for the FNN predictions is 20.6, 6.5, 0.2 and 0.0%, respectively.

As described in Sec. 4.2, the output ynk of FNN represents the probability distribution

over a discrete set of possible ranges. To demonstrate the evolution of the probability distribution

as the FNN is trained, ynk versus training steps is plotted in Fig. 4.6 for the signal with SNR 5 dB

at range 1.5 km. After 300 training steps, the FNN output probability distribution resembles the

target output.

In Fig. 4.7, the convergence of the FNN algorithm is investigated by plotting the cross

entropy Eq. (4.12) versus the optimization step on training and test data. It shows that the FNN
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Figure 4.5: (Color online) Range predictions by FNN on test data set with SNR of (a) −10, (b)
−5, (c) 0, and (d) 5 dB. The time index increment is 10 s.

Figure 4.6: (Color online) Output probability for range 0.1–2.86 km (the true range is 1.5 km)
after training steps (1, 100, 200, 300). The top line represents the target output.
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Figure 4.7: Cross entropy Eq. (4.11) versus optimization steps on training (solid) and test
(dashed) data with SNR of (a) −10, (b) −5, (c) 0, and (d) 5 dB.

converges after about 300 steps at all SNRs. For low SNRs (< 0 dB), the FNN classifier generates

poor predictions on test data while performing well on training data, which indicates overfitting.

Increasing the training set size can reduce overfitting but additional data may be not

available due to experimental or computational constraints. For higher SNRs (e.g., 0 and 5

dB), both test and training errors converge to low cross entropy, indicating good performance.

Therefore, best performance of machine learning methods is expected for high SNR.

4.4 Experimental results

Shipping noise data radiated by R/V New Horizon during the Noise09 experiment are

used to demonstrate the performance of the FNN, SVM and RF localization. The experiment

geometry is shown in Fig. 4.8, with bottom-moored vertical linear arrays (VLAs) indicated by

triangles and the three ship tracks used for range estimation. The hydrophone sampling rate was

25 kHz.

The data from VLA2, consisting of 16 hydrophones at 1 m spacing, are used for range

estimation. The frequency spectra of shipping noise recorded on the top hydrophone during the
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Figure 4.8: Ship tracks for Noise09 experiment during the periods (a) 01/31/2009, 01:43–02:05
(training data, ship speed 2 m/s), (b) 01/31/2009, 01:05–01:24 (Test-Data-1, ship speed −2 m/s),
and (c) 02/04/2009, 13:41–13:51 (Test-Data-2, ship speed 4 m/s).

three periods are shown in Fig. 4.9. The striations indicate that the source was moving. The SNR

decreases with increasing source-receiver distance.

Data from period 01:43–02:05 on January 31, 2009 are used as the training set and

01:05–01:24 on January 31 and 13:41–13:51 on February 4 are used as the test sets (Test-Data-1

and Test-Data-2).

The GPS antenna on the New Horizon is separated from the noise–generating propeller

by a distance Ld . To account for this difference we use the range between the propeller and VLA2

as the ground truth range Rg:

Rg =


RGPS−Ld for training data and Test-Data-2,

RGPS +Ld for Test-Data-1,
(4.32)

where RGPS represents the range between the GPS antenna and VLA2. According to the R/V New
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Figure 4.9: Spectra of shipping noise during periods (a) 01/31/2009, 01:43–02:05, (b)
01/31/2009, 01:05–01:24, and (c) 02/04/2009, 13:41–13:51.

Horizon handbook, Ld = 24.5 m. In the following, the ranges have been corrected by Eq. (4.32).

4.4.1 Input preprocessing and learning parameters

For the training set and both test sets, the 16× 16 SCM at each range and frequency,

averaged over 10 successive 1-s snapshots, is used as input. There are 1380 samples in the

training data set and 120 samples in each of the test data sets (samples are drawn every 10 s for

Test-Data-1 and 5 s for Test-Data-2). The source-receiver range 0.1–3 km is divided into K = 138

discrete range points.

As in the simulations in Sec. 4.3.2, the keep probability for training dropout of the FNN

is 0.5, the initial learning rate is 0.01 and the maximum iteration step is 1000. The number

of neurons in the hidden layer is chosen as M = 128 for 1 frequency and M = 1024 for 66

frequencies ( see Sec. 4.4.2).
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For the SVM classifier, Gaussian radial basis function kernel is used. The parameters γ

(Eq. (4.21)) and C (Eq. (4.20)) were tested over [10−3 10−1] and [10 103], respectively. Values

of γ = 10−2 and C = 10 are found to be optimal.

For the RF method, the number of trees bagged is 500, with a minimum of 50 samples

required for each leaf.

The performance of all test cases for the FNN, SVM, RF and conventional MFP is

summarized in Tables 4.1 and 4.2.

4.4.2 SCM inputs

Because the shipping noise has a wide frequency band as seen from Fig. 4.9, the perfor-

mance of the machine learning with the single and multi-frequency inputs is investigated. The

FNN classifier is again used an example to illustrate the benefit of using multiple frequencies.

Input SCMs are formed at 550, 950, and 300–950 Hz with 10 Hz increments (66 fre-

quencies). For the multi-frequency input, the SCMs are formed by concatenating multiple

single-frequency SCM input vectors. For example, the dimension of a single frequency input

sample is 272, whereas the multi-frequency input has a dimension 272×N f for N f frequencies.

The FNN is trained separately for each case and the source-receiver range is then predicted at the

selected frequencies.

The prediction results on the two test data sets are shown in Figs. 4.10(a–f) along with

Rg. For single frequency inputs, the minimum error is 12% (Fig. 4.10(d)) at 550 Hz and the

highest error is 18% at 950 Hz (Fig. 4.10(e)), both on Test-Data-2. For multi-frequency inputs,

the minimum prediction error is 6% on Test-Data-2. In general, the FNN predictions are better at

close ranges due to higher SNR, as expected from the simulation results. However, the FNN with

multi-frequency inputs performs well regardless of source range.
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Figure 4.10: Range predictions on Test-Data-1 (a, b, c) and Test-Data-2 (d, e, f) by FNN. (a)(d)
550 Hz, (b)(e) 950 Hz, (c)(f) 300–950 Hz with 10 Hz increment, i.e. 66 frequencies. The time
index increment is 10 s for Test-Data-1, and 5 s for Test-Data-2.

4.4.3 Source localization as a classification problem

Source localization is first solved as a classification problem. Only the best MAPE

obtained by FNN (Sec. 4.2.3), SVM (Sec. 4.2.4) and RF (Sec. 4.2.5) is shown here (Fig. 4.11).

These results are summarized in Table 4.1.

The lowest MAPE is achieved by the SVM, with 2% on both data sets. RF also reaches

2% MAPE for Test-Data-2 and 3% for Test-Data-1. FNN has 3% MAPE for both test sets.

The performance of these three machine learning algorithms is comparable when solving range

estimation as a classification problem.

The performance of these machine learning algorithms with various parameters (e.g.

number of classes, number of snapshots and model hyper-parameters) is examined in Sec. 4.5.
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Figure 4.11: Source localization as a classification problem. Range predictions on Test-Data-1
(a, b, c) and Test-Data-2 (d, e, f) by FNN, SVM and RF for 300–950 Hz with 10 Hz increment,
i.e. 66 frequencies. (a)(d) FNN classifier, (b)(e) SVM classifier, (c)(f) RF classifier.

4.4.4 Source localization as a regression problem

Source localization can be also solved as a regression problem. For this problem, the

output represents the continuous range. In the training process, the input data remain the same, the

labels are direct GPS ranges, and the weights and biases are trained using least-squares objective

functions.

The range predictions by FNN with different number of hidden layers along with the

GPS ranges are given in Fig. 4.12 showing that increasing number of hidden layers significantly

reduces the error of FNN regression. Figure 4.13 shows the results of SVM (Fig. 4.13(a)(c)) and

RF regressors (Fig. 4.13(b)(d)) on two data sets. For these methods, since additional layers cannot

be added to increase the algorithmic complexity, the performance lags FNN. The best MAPE

values for each regressor are shown in Table 4.1. Compared with classifiers, the FNN, SVM and

RF degrade significantly for solving regression tasks.
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Figure 4.12: Source localization as a regression problem. Range predictions on Test-Data-1 (a,
b, c) and Test-Data-2 (d, e, f) by FNN for 300–950 Hz with 10 Hz increment, i.e. 66 frequencies.
(a)(d) 1 hidden layer, (b)(e) 2 hidden layers, (c)(f) 3 hidden layers. Each hidden layer consists of
512 neurons.

Figure 4.13: Source localization as a regression problem. Range predictions on Test-Data-1
(a, b) and Test-Data-2 (c, d) by SVM and RF for 300–950 Hz with 10 Hz increment, i.e. 66
frequencies. (a)(c) SVM for regression, (b)(d) RF for regression.
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Figure 4.14: Localization using Bartlett matched-field processing based on synthetic replica
fields on Test-Data-1. (a) ambiguity surface and (b) maximum peaks for 550 Hz, (c) ambiguity
surface and (d) maximum peaks for 300–950 Hz with 10 Hz increment. Circles and solid lines
denote predictions and GPS ranges respectively.

4.4.5 Conventional matched-field processing

The Bartlett MFP [1] is applied to Noise09 data for comparison. Two kinds of replica

fields are used in the Bartlett processor. The first is generated by KRAKEN using the Noise09

environment in Fig. 4.4, with the corresponding ambiguity surfaces and maximum peaks shown

in Fig. 4.14. We use the measured data (i.e. training data, 01/31/2009, 01:43–02:05) as the second

group of replica fields as proposed in Ref. [3]. The results are shown in Fig. 4.15. For each case,

both single frequency (550 Hz) and broadband (300–950 Hz) are considered.

From Figs. 4.14 and 4.15, the Bartlett MFP fails to determine source positions using

a single frequency, while the FNN still generates a number of reasonable predictions (see Fig.

4.10(a)). Despite improved performance using broadband MFP, there are some errors due to

sidelobes. The MAPE of MFP predictions is shown in Table 4.1. The minimum MAPE of Bartlett

MFP is 19% on Test-Data-1 and 30% on Test-Data-2, which is much larger than the machine

learning classifiers.
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Figure 4.15: Localization using Bartlett matched-field processing (training data as replica
fields) on Test-Data-1. (a) ambiguity surface and (b) maximum peaks for 550 Hz, (c) ambiguity
surface and (d) maximum peaks for 300–950 Hz with 10 Hz increment. Circles and solid lines
denote predictions and GPS ranges respectively.

Table 4.1: Best MAPE rate of FNN, SVM, RF and MFP predictions.

Model
MAPE

Test-Data-1
(%)

Test-Data-2
(%)

FNN classifier 3 3
SVM classifier 2 2
RF classifier 3 2

FNN regressor 10 5
SVM regressor 42 59
RF regressor 55 48

MFP 55 36
MFP with
measured

replica

19 30
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4.5 Discussions

4.5.1 Range resolution

The number of classes, corresponding to the resolution of range steps, was varied to

determine its effect on range estimation results. Previously (see Sec. 4.4) K = 138 classes were

used, corresponding to a range resolution of 20 m. The MAPE for predictions with different

numbers of output classes by FNN, SVM and RF classifiers is given in Table 4.2 with 10 snapshots

averaged for each sample. These three classifiers perform well for all tested range resolutions.

4.5.2 Snapshots

The number of snapshots averaged to create the SCMs may also affect the performance.

Increasing the number of snapshots makes the input more robust to noise, but could introduce

mismatch if the source is moving or the environment is evolving across the averaging period. The

range estimation methods are tested using 1, 5, and 20 snapshots and the corresponding MAPE is

shown in Table 4.2. All of the three models degrade with 1 snapshot due to low SNR and become

robust with more snapshots.

4.5.3 Number of hidden neurons and layers for FNN

The MAPE of FNN with different numbers of hidden neurons and layers is given in

Table 4.2. FNN has the minimum error when the number of hidden neurons is chosen as 128 or

2048 for Test-Data-1 (7%) and 512 for Test-Data-2 (4%). From Table 4.2, the FNN with two

hidden layers did not improve the prediction performance.
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Figure 4.17: MAPE of the RF classifier versus the number of trees and the minimum samples
per leaf on (a) Test-Data-1 and (b) Test-Data-2. There are 138 output classes and 10 snapshots
averaged for each sample.

4.5.4 Kernel and regularization parameters for SVM

When using a Gaussian radial basis function kernel, the parameters γ in Eq. (4.21) and the

regularization parameter C in Eq. (4.20) determine the best separation of the data by SVM. The

MAPE versus these two parameters on two data sets is shown in Fig. 4.16. As seen from the result,

there exists an optimal interval for these two parameters (i.e. 10 <C < 103 and 10−3 < γ < 10−1).

The SVM fails when γ and C are out of this interval, but is robust when γ and C are within the

appropriate range.
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4.5.5 Number of trees and minimum samples per leaf for RF

The number of decision trees and the minimum samples per leaf [20] are the most

sensitive parameters for the RF. Figure 4.17 shows the MAPE versus these two parameters. The

RF parameters have a smaller range of possible values than SVM, but the RF classifier will not

fail for any of these choices. The RF classifier has the best performance for more than 500 trees

and 20 to 50 minimum samples per leaf.

4.5.6 Multiple sources and deep learning

In our study, only one source is considered. The simultaneous multiple source localization

problem is more challenging, especially for sources close to each other. Solving this problem

with FNN is a multiple binary classification problem and will require additional training data.

Although the FNN with one hidden layer works well for the data sets in this paper,

more complicated machine learning algorithms, e.g. deep learning, may be necessary for more

complicated experimental geometries or ocean environments.

4.6 Conclusion

This paper presents an approach for source localization in ocean waveguides within

a machine learning framework. The localization is posed as a supervised learning problem

and solved by the feed-forward neural networks, support vector machines and random forests

separately. Taking advantage of the modern machine learning library such as TensorFlow and

Scikit-learn, the machine learning models are trained efficiently. Normalized sample covariance

matrices are fed as input to the models. Simulations show that FNN achieves a good prediction

performance for signals with SNR above 0 dB even with deficient training samples. Noise09

experimental data further demonstrates the validity of the machine learning algorithms.
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Table 4.2: Parameter sensitivity of FNN, SVM and RF classifiers.

Part I: FNN classifier
# layers Hidden nodes # Classes Snapshots MAPE (%)

1 1024 1380 10 7 5
1 1024 690 10 3 6
1 1024 276 10 6 8
1 1024 138 10 8 6
1 1024 56 10 7 4
1 1024 28 10 10 4
1 1024 14 10 16 7
1 1024 138 1 10 5
1 1024 138 5 6 3
1 1024 138 20 8 3
1 64 138 10 9 9
1 128 138 10 7 7
1 256 138 10 8 6
1 512 138 10 8 4
1 2048 138 10 7 5
2 128 138 10 9 8
2 256 138 10 9 9
2 512 138 10 6 8

Part II: SVM classifier

γ C
# Classes Snapshots MAPE (%)

1380 10 2 3
690 10 2 3
276 10 4 3
138 10 2 2

10−2 10 56 10 3 3
28 10 5 3

138 1 17 5
138 5 2 3
138 20 3 2

Part III: RF classifier
# Trees Samples # Classes Snapshots MAPE (%)

1380 10 4 10
690 10 3 4
276 10 3 3
138 10 3 2

500 50 56 10 9 5
28 10 13 9

138 1 20 15
138 5 6 5
138 20 3 2
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The experimental results show that multi-frequency input generates more accurate pre-

dictions than single frequency (based on FNN). In addition, it shows that classification methods

perform better than regression and MFP methods. We tested three classification methods (FNN,

SVM, RF), all of which performed good with the best MAPE rate 2–3%. In the current study, the

training and test data were from the same ship. In a realistic application, data from multiple ships

of opportunity can be used as training data by taking advantage of the Automatic Identification

System (AIS), a GPS system required on all cargo carriers. The tracks were quite similar and it

would be interesting to test the performance as tracks deviate.

Machine learning is an attractive method for locating ocean sources because of its ability

to learn features from data, without requiring sound propagation modeling. It can be used for

unknown environments.
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Chapter 5

A feedforward neural network for

direction-of-arrival estimation

This chapter examines the relationship between conventional beamforming and linear

supervised learning, then develops a nonlinear deep feedforward neural network (FNN) for

direction-of-arrival (DOA) estimation. First, conventional beamforming is reformulated as a

real-valued, linear inverse problem in the weight space, which is compared to support vector

machine and a linear FNN model. In the linear formulation, DOA is quickly and accurately

estimated for a realistic array calibration example. Then, a nonlinear feed-forward neural network

(FNN) is developed for two-source DOA and for K-source DOA, where K is unknown. Two

training methodologies are used: exhaustive training for controlled accuracy, and random training

for flexibility. The number of FNN model hidden layers, hidden nodes, and activation function

are selected using a hyperparameter search. In plane wave simulations, the 2-source FNN

resolved incoherent sources with 1◦ resolution using a single snapshot, similar to Sparse Bayesian

Learning (SBL). With multiple snapshots, K-source FNN achieved resolution and accuracy

similar to Multiple Signal Classification (MUSIC) and SBL for an unknown number of sources.

The practicality of the deep FNN model is demonstrated on Swellex96 experimental data for
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multiple source DOA on a horizontal acoustic array.

5.1 Introduction

Motivated by its notable success, [1] machine learning and deep learning have been

used within a variety of acoustics domains [2], including source localization in underwater

acoustics. [3–8]

The feed-forward neural network (FNN) has shown potential for direction-of-arrival

(DOA) estimation in the time domain for single speaker noisy environments [9] and in the

frequency domain for multiple speakers in noisy environments. [10] FNN and convolutional

networks (CNN) have also been used for multiple-frequency spectral estimation. [11, 12] Un-

derwater acoustic DOA estimation is challenged by array position uncertainty and source phase

ambiguity. To overcome this problem, spectral covariance matrix estimates from a linear array

were used to train an FNN for range localization. [3, 4, 8, 13]

This paper describes a feedforward network for DOA estimation of an arbitrary number

of plane wave sources. First, Conventional Beamforming (CBF) is rewritten as linear in the

covariance matrix of the replicas and the sample covariance matrix (SCM). The real, linear

formulation of CBF can be solved directly for the replicas. Machine learning algorithms including

support vector machine (SVM) and FNN can solve this linear problem. The method is applied

to a perturbed array calibration example and solved using open-source software, [14] thus

demonstrating that machine learning can be used as well as CBF by relying on representative

data instead of an assumed physical model.

Second, motivated by nonlinear kernels used in SVM beamforming applications, [15–19]

deep FNN is developed for DOA estimation. The FNN is trained with SCMs, allowing for the

addition of array preprocessing. For two sources, the performance of the network is compared on

coherent and incoherent sources for varying signal-to-noise ratio (SNR). The number of hidden
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nodes and hidden layers is found by hyperparameter search. Then, a K-source FNN is trained

by randomly selecting a large training set. The performance of both methods are shown on

simulations against Sparse Bayesian Learning [20] and Mulitple Signal Classification (MUSIC)

subspace method. The DOA performance of the two-source and K-source FNN models are

demonstrated on sources in the Swellex96 experiment.

In Section 5.2, CBF is rewritten as a real-valued, linear problem. In Section 5.3, the theory

of linear SVM, linear FNN, and deep FNN are introduced, with an example application for a

perturbed array. In Section 5.4, an FNN for the two-source DOA estimation problem is presented,

then extended to the K-source problem, and simulations are conducted to examine its performance

compared to SBL and MUSIC. Section 5.5 demonstrates the real-world performance of both deep

FNNs, SBL, and MUSIC (or CBF) using the Swellex96 data. Last, Section 5.6 mentions ongoing

work using Convolutional Neural Networks (CNN) and the tradeoffs for selecting deep learning

models.

5.2 Background and notation

In this section, the linearity of Conventional Beamforming (CBF) is expressed in terms

of the SCM real and imaginary components using algebraic properties of the matrix trace. With

this formulation, the spatial filters w can be solved by inversion techniques. This formulation

also allows the creation of an SCM feature vector that is used with nonlinear machine learning

techniques for high-resolution DOA estimation.

CBF is a spatial filtering method that estimates source angles by assuming plane wave

propagation (for details, see e.g. DeFatta et al. [21]). Figure 5.1 shows an example of ocean

waveguide propagation for a single underwater source, where the sea surface-generated noise and

diffuse shipping noise is modeled as additive Gaussian noise.

For measured data, p∈CN×1, the plane wave replicas w∈CN×1 are often assumed, such
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Table 5.1: Symbolic and mathematical notation. ()T is the matrix transpose and ()H the
Hermitian transpose, Tr{} refers to the trace of a square matrix, a|| · ||22 the `2 norm and || · ||2F
the Frobenius norm.

Symbol Cardinality Definition

CBF
a(θm) C

N×1 Replica vector for a 1D array with N sensors
Acov = a(θm)a(θm)

H
C

N×N Covariance matrix of the replica vectors
acov R2N2×1 Vectorized replica covariance matrix

B(θm) Scalar CBF output at candidate angle θm
l = [1, ...,L] Snapshot index, the lth spectral estimate

n∼ CN (0,σ2) C
N×1 Complex Gaussian noise with variance σ2 on an N-

sensor array
pl( f ) CN×1 N× 1 complex pressure vector at frequency f and

snapshot l
P = 1

L ∑
L
l=1 plpH

l CN×N SCM at time t, estimated over L snapshots
sk( f ) Source amplitude at frequency f
x,xt R2N2×1 Vectorized SCM or vectorized SCM at time t (for

samples in a data set)
xu,b RN(N+1)×1 Vectorized upper triangular and diagonal SCM at

time t
xn,yn Horizontal and vertical positions of the nth array

sensor
θk DOA of the kth source, k = 1, ...,K
θm Candidate DOA, where m = 1, ...,M

θt,k, θ̂
k
t True and estimated angle of the kth source at time t

SVM, FNN
as Activation of an FNN hidden layer

αm, µm Lagrange constants for the mth class at sample t
D = N2 +N Dimension of the feature vector (number of features)

ξm SVM slack variable for the mth class at sample t
S Number of hidden nodes in a hidden layer
t {−1,1} Target label for the SVM

wm RD×1 SVM hyperplane for class m, or FNN weight vector
for the mth output class

WM RS×M Matrix of FNN weight vectors from S hidden nodes
to M outputs

y,yt {0,1}M×1 True label across M classes and true label at time t
(for samples in a data set)

ŷt RM×1 Estimated label across M classes at time t

SBL
A = [a(θ1), ...,a(θM)] CN×M Replica matrix.

ΓΓΓ = diag(γ) CN×N SBL signal covariance matrix
σ2 Gaussian noise variance

Y = [p1, ...,pL] CN×L Matrix of observation vectors at L snapshots
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Figure 5.1: Single source received on a horizontal line array. The direct sound propagation is
planar. Noise and distant sources are modeled as additive Gaussian noise.

that for K sources each with frequency f , angle θk, and phase speed c on an N-element array

spaced at `,

an(θk) =
1√
N

ei 2π f
c (n−1)`sin(θk), n = 1, ...,N. (5.1)

a(θk) = [a1(θk), ...,aN(θk)]
T ,n∼ CN (0,σ2),

pl =
K

∑
k=1

sk( f )a(θk)+n, (5.2)

where n is the element index (n = 1 at first element) and sk( f ) is the kth complex-valued source

amplitude at frequency f . The noise is assumed complex Gaussian with variance σ2.

For data collected at the lth snapshot, pl , the SCM across L snapshots is written as P, see

(5.5). In Sec. 5.4, the effect of varying L is studied by simulation. The plane wave CBF result is

B(θm) =
1
L

L

∑
l=1
|aH(θm)pl|2

=
1
L

L

∑
l=1

Tr{aH(θm)plpH
l a(θm)}

=Tr{aHPa}=Tr{aaHP}=Tr{AH
covP}, (5.3)
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where a, equivalent to a(θm), is the plane wave replica vector at a candidate angle θm.

Acov =AR
cov+iAI

cov = a(θm)aH(θm), (5.4)

P=
1
L

L

∑
l=1

plpH
l = PR+iPI

=PR
u+PR

u
T
+i(PI

u−PI
u

T
)+PR

d . (5.5)

AR
cov and AI

cov are the real and imaginary components of (5.4), likewise for P. PR
u is an upper

triangular matrix and PR
d a diagonal matrix. Defining B(θm) in terms of P and Acov allows their

Hermitian properties to be exploited:

Tr{AR
cov

T PI}=Tr{AR
cov

T
(PI

u−PI
u

T
)+AR

covPI
d}

=Tr{AR
cov

T
(PI

u−PI
u

T
)}+0 = 0. (5.6)

Likewise, Tr{(AI
cov)

T PR}= 0. Rewriting (5.3),

Tr{AH
covP}= Tr{AR

cov
T PR}+Tr{AI

cov
T PI} (5.7)

Defining vectorization of A as vec(A) =[A11, ..., AN1, A12, ...,ANN ]. Then,

B(θm) = vec(AR
cov)

Tvec(PR)+vec(AI
cov)

Tvec(PI)

= aT
covx, (5.8)

acov = [vec(AR
cov),vec(AI

cov)] ∈RN2×1

x = [vec(PR),vec(PI)] ∈RN2×1 (5.9)

A secondary benefit of expressing CBF in terms of P and Acov is that, keeping only the upper

diagonal terms, the number of features in the input vector is reduced from 2N2 to N2. This

116



reduced formulation has been used for FNN range estimation. [3]

For CBF, the estimated DOA is found by

θ̂k = argmax
θm

B(θm). (5.10)

If data x ((5.9), derived from P) is known to correspond to the true angle θm, then the optimal

replicas vectors can be obtained from Eq. (5.8) by replacing acov with a variable w ∈CN2×1. A

Lagrange multiplier λ is introduced to satisfy ‖w‖2
2 = 1, based on the CBF weight vectors in

(5.1),

ŵ = argmin
w

{
−wT x+λ(‖w‖2

2−1)
}
. (5.11)

The minimum is found by differentiating (5.11) with respect to w and λ, and finding the stationary

points:

∂

∂w

[
−wT x+λ(‖w‖2

2−1)
]
=−x+2λw = 0 (5.12)

∂

∂λ

[
−wT x+λ(‖|w‖2

2−1)
]
=‖w‖2

2−1 = 0. (5.13)

Combining (5.12) and (5.13) and solving for w, an estimate of the covariance weight vector, ŵ,

is obtained,

ŵ =
x
‖x‖2

. (5.14)

Under the plane wave assumption, the optimal covariance weights (5.14) for CBF for a single

incoming plane wave are the normalized covariance data x corresponding to the plane wave

direction, as in (5.9).
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5.3 Machine learning Theory

The data-driven methods of Support Vector Machine (SVM) and Feed-forward Neural

Network (FNN) are here introduced as architectures for estimating DOA. First, the linear formula-

tions of SVM and FNN are presented for solving the linear CBF in Sec. 5.2. Then, the nonlinear

formulation of FNN is developed.

5.3.1 Feed-forward neural network

The FNN is an inference model [22] that transforms its inputs using a set of weights and

activation functions. The weights are first trained on a set of T examples, X = [x1, ...,xt , ...,xT ],

whose training labels, or classes, are known. The training labels for M classes are M-dimensional

binary vectors, yt = [y1
t , ...,y

M
t ], where

ym
t =


1 m = mtrue

0 m 6= mtrue

, m = 1, ...,M (5.15)

for an input class mtrue. The output of FNN is a likelihood-like distribution, at each time t, over

M classes, ŷt = [ŷ1
t , ..., ŷ

M
t ], with

ŷm
t = f

(
D

∑
i=1

wi,mxi

)
= f (wmT xt), m=1, ...,M (5.16)

where f (·) is an arbitrary function and wm a weight vector. The locally optimal set of weights wm,

m = 1, ...,M, is estimated through inversion by minimizing a cost function, J, over t = 1, ...,T

input samples,

ŵm=argmin
wm

{
−

T

∑
t=1

(J(yt , ŷt(wm,xt)))

}
. (5.17)
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Linear FNN

For a single set of weights, wm, with linear activation f (z), e.g. unity, f (z) = z, FNN

becomes a linear regression. Using the inputs xt from (5.9), this becomes

ŷm
t = wmT xt , m = 1, ...,M. (5.18)

For comparison to (5.8), the linear FNN cost function is applied:

J(yt , ŷt(xt)) = yT
t ŷt(wm,xt). (5.19)

Setting a constraint on the weight matrix, WM = [w1, ...,wM]T , the solution for the mth weight

class is

ŵm =argmin
wm

{
−

T

∑
t=1

wmTxt+
µ
M

∥∥WM∥∥2
F

}
(5.20)

Assume that one example for each class may be used to train the FNN such that m corresponds to

t, m =̂ t and wm = wt . Differentiating with respect to the mth weight,

∂

∂wm

(
−

T

∑
t=1

wtTxt+
µ
M

∥∥WT∥∥2
F

)
=−xm +

2µ
M

wm

ŵm =
M
2µ

xm, (5.21)

where µ controls the regularization.

For the linear FNN model, if the training data xt from (5.9) have one training example at

each angle such that xt = xm, then the optimal FNN weights from (5.21) are identical to the CBF

covariance weights in (5.14) when µ = M
2 ‖p‖2 .
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Figure 5.2: Example of SVM hyperplane w and slack variables ξ∗t (ξ∗t =
ξt
||w||22

) in two dimensions
for the non-separable case, from Hastie et al. (2008). [23]

5.3.2 Support Vector Machine

SVM optimally separates a set of training data into two labeled classes, [23]

tt ∈ {−1,1}, (5.22)
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Figure 5.3: Ambiguity surfaces from (5.35), (5.36) for CBF and linear SVM at θt = 50◦, with
the constraint value of C varied for SVM.
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where tt is the target for input sample xt from (5.9). tt = 1 (positive) if xt is in the desired class.

Figure 5.2 shows an example of the SVM classifier in two dimensions for two data classes.

The SVM is a soft margin classifier. Its solves the tradeoff between a linear classifier,

∑
T
t=1 αm

t ttxT
t wm, and a penalty term on the number of misclassified samples, C ∑

T
t=1 ξm

t , [23]

where C is an empirical parameter,

min
wm,ξm

t

{
1
2
||wm||22+C

T

∑
t=1

ξ
m
t −

T

∑
t=1

µtξ
m
t−α

m
t [ttx

T
t wm−1+ξ

m
t ]

}
(5.23)

where ξm
t ≥ 0, and µm

t and αm
t are Lagrange multipliers. wm is a hyperplane that divides the data

xt into classes. For the mth class, the hyperplane wm ∈CN2×1 separates xt ∈ m from all other

data. The solution for wm is [23]

wm =
T

∑
t=1

α
m
t ttxt . (5.24)

Thus wm is a linear combination of the inputs xt , whose contribution αm
t is a result of the

choice of C, which controls the tradeoff between correct classification and margin width.

As C→ ∞, the penalty on ξm
t requires that ξm

t = 0 ∀m in order to satisfy (5.23). SVM

becomes a linear classifier,

min
wm
{1

2
||wm||22−

T

∑
t=1

α
m
t [tt(x

T
t wm)−1]} (5.25)

Again assuming a single training example for each class such that wm = wt , and differentiating
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Figure 5.4: Model of the FNN with one hidden layer with S nodes. Input nodes D = N2, and
output nodes M = 180, where M is the number of arrival angles.

w.r.t wm,

∂

∂wm

(1
2
||wt ||22−

T

∑
t=1

α
t
t [tt(x

T
t wt)−1]

)
= wm−α

m
mxT

m

ŵm = α
m
mxm (5.26)

As with linear FNN (5.21) and CBF (5.14), the SVM weight solution for the mth class when

trained on unique examples is proportional to the CBF covariance weights.

Figure 5.3 shows the normalized ambiguities for SVM and CBF at θm = −50◦ for

C = [0.1,1,10,100,10000], demonstrating the convergence of linear SVM to the linear CBF as

C→ ∞. SVM was trained on a set of noiseless plane waves with one example at each angle,

θm ∈ [−90◦,90◦), M=180, using Scikit-learn software; [24] the SVM and CBF ambiguities are

shown for the training data.
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Figure 5.5: The recitified linear unit (ReLU) and exponential linear unit (ELU) activation
functions introduce nonlinearity in the hidden layers of the FNN.

5.3.3 Nonlinear FNN

With hidden layers, the FNN model (Fig. 5.4) is expressed as a series of weighted

functional transformations. For a two layer network, [25]

ŷm
t =g(wm(2)a+wm(2)

0 ), (5.27)

a = [a1,...,aS], as= f (ws(1)T
xt+ws(1)

0 ),

where ws(1) and ws(1)
0 are the weights and bias constants of layer 1, similarly for wm(2) and wm(2)

0

in layer 2. as is the output of sth hidden node. S is the number of nodes in layer 1, the hidden

layer. (1) and (2) denote the first (hidden) or second (output) layer. Each hidden layer introduces

S(S+1) unknown weight and bias parameters.

A common choice for the activation function f (), used here, is the rectified linear unit

(ReLU), see Fig. 5.5:

as= f (vs)=max(0,vs), vs=wsT xt +ws
0 (5.28)

where s = 1, ...,S.
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each K ∈ [1,10], there were 105±450 training samples.

A second activation function, the exponential linear unit (ELU), [26] was compared to

ReLU. ELU prevents the problem of ”dying ReLU”, where the gradients reduce to zero and

prevent weight updates during training, by allowing a small negative component of the activation:

as= f (vs)=


exp{vs}−1 vs ≤ 0,

vs vs > 0.
(5.29)

The softmax function [14, 22] was used for the output function, g(), and the cross-entropy error

was used as the training cost function,

ŷm
t =g(zm)=

ezm

∑
M
j=1 ez j , zm=wm(2)a+wm(2)

0 , (5.30)

argmin
wm

{
−

T

∑
t=1

M

∑
j=1

y j
t,trueln[y j

pred(a
s)]

}
. (5.31)

with as from (5.28), and m = 1, ...,M. The softmax sums all outputs to 1, with ∑
M
m=1 ŷm

t . This

property gives the output resemble a probability for M classes.
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5.3.4 Methods

The machine learning models were trained with simulated plane wave data according to

(5.2), |sk|= 1 and f = 200 Hz. Waves were simulated on an N = 20 element uniform linear array.

A sound speed of c = 1500 m/s was assumed, with array element spacing of λ/3 (2.5 m).

For the linear FNN and 2-source FNN in Secs. 5.3.5 and 5.4, the training data included all

scenarios, with θm ∈ [−90◦,90◦), ∆θ = 1◦, M = 180, for each source. Thus, the single source

case contains T = 180 samples and the two source case contains T = 16110 unique samples.

For the K-source FNN in Sec. 5.4, the training set was generated with T = 106 random samples

(Fig. 5.6), where K ∈U{1,10} sources with θk ∈ [−90◦,90◦) and L ∈U{1,10} snapshots for

each sample. U() is the uniform distribution.

Keras [14] software with Tensorflow backend was used to train the FNN weights. The

Adam [27] optimizer was used with an initial learning rate of 10−3, then the learning rate was

reduced by 0.5 per 100 epochs for smooth convergence. The FNN was trained on the training set

with 1000 epochs (100 epochs for the linear example). One epoch is one cycle through the entire

training set.

For SVM, Scikit-Learn [24] with the LinearSVC module with one-versus-rest formulation

was used to solve (5.23), where C = 104 (i.e. linear).

A validation set with 104 random samples was used in Sec. 5.4 to choose the FNN

parameters: number of hidden layers, hidden nodes per layer, and activation function. For

each sample, the number of sources was randomly generated was K ∈ U{1,2} (2 source) or

K ∈ U(1,10} (K-source) sources with θk ∈ U[−90◦,90◦) and L = 1 or L = 10 snapshots, as

specified in the results.

The performance of FNN models was compared using a test set with 104 random samples

generated identically to the validation set. In addition, Gaussian random noise was added with
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variance σ2 according to the signal-to-noise ratio (SNR)

σ
2 = ‖p1‖2

2×10−
SNR
10 . (5.32)

The SCM P was averaged for L snapshots according to (5.5) before generating the FNN inputs.

The error between the estimated θ̂k
t and the true DOA θt,k is

Error=
1

K̂T

T

∑
t=1

K̂

∑
k=1

∣∣∣θt,k− θ̂
k
t

∣∣∣ , (5.33)

Accuracy =
1

KT

T

∑
t=1

K

∑
k=1

1
[∣∣∣θt,k− θ̂

k
t

∣∣∣≤ 1◦
]
, (5.34)

where the error is measured only for detected sources, K̂ ≤ K. 1[x] is the indicator function,

which is 1 if x =True and False otherwise. Error is a measure of prevision for correctly identified

sources. Unresolved sources lead to lower accuracy but do not contribute to the error measure in

(5.33).

5.3.5 Array Calibration Example

Linear machine learning methods SVM and FNN are used as a perturbed array calibration

technique. The linear models are quickly trained on a source with known DOA, then the learned

weights act like measured replicas for the perturbed array. In an experimental scenario, linear

machine learning could be rapidly applied to generate accurate replicas for an array with unknown

or perturbed sensor positions.
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Figure 5.7: (a) Perturbed array element locations, (b) ambiguity surface from (5.35)–(5.37) at
θm = 80◦ for CBF, linear FNN and SVM with C = 104, and (c) predictions at all angles. Linear
FNN is identical to SVM in this example.

CBF : B(θm) = aT
cov(θm)xt , (5.35)

Linear FNN : ŷm
t = wmT xt (5.36)

SVM : dm = wmT xt , m = 1, ...,M. (5.37)

The weights for CBF are given in (5.1). The weights for FNN and SVM are given

according to (5.21) and (5.24). For an ideal vertical linear array, the element positions x,y are

x = [0, ...,0] and y = [0, ...,(N−1)`], with y positive downward and xn perpendicular to y on a
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Cartesian coordinate system. If the elements are randomly perturbed in x, then the new sensor

positions are (Fig. 5.7a)

xn ∼N (0,12), x1 = 0

yn = yn−1 +
√

`2− (xn− xn−1)2, y1 = 0. (5.38)

This assumes the distance between adjacent elements remains fixed at `. A plane wave of

frequency f is expressed by a projection onto the nth sensor,

wn(θ) = ei 2π f
c (yn sin(θ)−xn cos(θ)), n = 1, ...,N. (5.39)

If CBF is applied assuming the linear array, the element displacement introduces a phase

offset according to (5.38) and (5.39). For an array fixed at one end and free at the other, the y-axis

errors will be compounded along the array. Near endfire (±90◦), the y errors are heavily weighted

and cause systematic bias in the ambiguity surface as seen in Fig. 5.7b and c. The supervised

machine learning method removes ambiguity bias by calibration the weights to the true element

positions.

5.4 Deep learning for DOA estimation

Nonlinear machine learning methods are necessary for inferring nonlinear solutions. For

example, the binary XOR function does not have a linear solution but can be mapped by a simple

neural network into a new feature space where it can be replicated using a linear model. [28]

The nonlinear FNN was used to estimate DOA. For the two source problem, the FNN was

trained on all combinations, with M = 180 and C(M,2) = 16,110 training samples. This problem

can also be solved using an exhaustive search. Then, the method was extended to K sources

(K ≤10 in these examples). In this case, exhuastive search is impractical. Instead, uniform
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Figure 5.8: Validation accuracy vs SNR for FNN trained on coherent (solid) and incoherent
(dashed) sources. The validation set was generated from 1000 random simulations of 2 sources
with L = 1 snapshot. The FNN input features depend on the relative source phases.

random sampling was employed to select a training set with 106 samples, with K sources and L

snapshots for each sample.

The predictions are compared to CBF (5.35), MUSIC (5.41), and SBL, with the ambiguity

surfaces given by

FNN : ym
t =

ezm

∑
M
j=1 ez j , m = 1, ...,M. (5.40)

MUSIC : B(θm) = (aH(θm)PnPH
n a(θm))

−1 (5.41)

SBL : γm, ΓΓΓ = diag(γ1, ...,γm, ...,γM). (5.42)

where Pn ∈ CN×(N−K) is the matrix of the noise eigenvectors of the SCM, P in (5.5). SBL is

summarized in Appendix A.

129



5.4.1 Source coherence

Consider two plane wave sources with random phases at each snapshot l, φl
k ∈U(−π,π),

then from (5.2)

pl =
2

∑
k=1

ska(θk)=
2

∑
k=1

|sk|√
N

eiφl
kei 2π f

c (n−1)`sin(θk) (5.43)

for n = 1, ...,N. The sources will be coherent if, over L, samples

EL(s1s2ei(φl
1−φl

2)) = ρEL(s1φ
l
1)EL(s2φ

l
2) (5.44)

when |ρ|= 1. If ρ < 1, the sources will be correlated; ρ = 0 corresponds to incoherent sources

(see (6.586-6.588) in Optimal Signal Processing [29]). From (5.5), the terms of the SCM are

Pn1,n2 = PR
n1,n2

+iPI
n1,n2

=(pn1 pH
n2)

R + i(pn1 pH
n2)

I (5.45)

where the indices n1,n2 = 1, ...,N. Combining (5.43) and (5.45) and applying the identity

eiΘ = cos(Θ)+ isin(Θ), each element in the SCM is

PR
n1,n2

=
1
N

[ 2

∑
k=1
|sk|2cos

(2π f
c

(n1−n2)`sin(θk)
)
+

2s1s2 cos
(2π f

c
(n1 sin(θ1)−n2 sin(θ2))`+∆φ

)]
(5.46)

PI
n1,n2

=
1
N

[ 2

∑
k=1
|sk|2 sin

(2π f
c

(n1−n2)`sin(θk)
)]

(5.47)
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where ∆φl = φl
1−φl

2. If ∆φl ∈ [−π,π], the expected value of P across L→ ∞ snapshots is

<PR
n1,n2

>=
1
N

[ 2

∑
k=1
|sk|2cos

(2π f
c

(n1−n2)`sin(θk)
)
+

2s2s2

∫ 2π

0

∫ 2π

0
cos
(2π f

c
(n1 sin(θ1)−n2 sin(θ2))`+∆φ

l
)

dφ1dφ2

]
=

1
N

2

∑
k=1
|sk|2cos

(2π f
c

(n1−n2)`sin(θk)
)

(5.48)

since the cosine is integrated over a full period. The limit of large snapshot averaging corresponds

to ρ→ 0 and estimates the SCM for two incoherent sources.

The 2-source FNN was trained on noiseless coherent and incoherent sets (Fig. 5.8). With

few snapshots, the cross terms from source incoherence lead to DOA errors, despite noiseless data.

The effect can be reduced by training the FNN on multiple (5) incoherent instances. Figure 5.8

shows that the coherently trained FNN (tested on coherent) achieves an accuracy of 1 for noiseless

validation data because the input features for the training and validation set are identical. By

increasing the number of incoherent training instances, the incoherent model improves from 0.94

to 0.99 accuracy on validation data, demonstrating its increased robustness to random source

phases.

5.4.2 Hidden layers and nodes

The number of hidden layers, hidden nodes, and activation function for the 2-source and

K-source FNN was selected using the accuracy on the validation sets described in Sec. 5.3.4.

Each additional hidden layer introduces (S+1)S model parameters (weights and biases) for S

hidden nodes, improving the representation capability but increasing the model complexity.

The results in Fig. 5.9(a)–(c) suggest that a minimum of 3 hidden layers improves the

accuracy on validation data compared to shallower FNNs. Likewise, at least 512 hidden nodes

were required for highest accuracy (Fig. 5.9(d), shown for 2-source FNN), while more than 512
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Figure 5.9: Validation accuracy vs (a,b) number of hidden layers and (c) number of hidden
nodes for (a,c) 2-source FNN and (b) K-source FNN. All cases used L = 1 snapshots; L = 10 is
also shown in (b).
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Figure 5.10: Test set DOA single-snapshot estimation of two incoherent sources traveling
along an intersecting path. (a) The maximum peaks for all samples are found by taking the
top two peaks of the ambiguity surfaces. Missing detections (NaNs) are shown at the top of
the grid. (b) Sample ambiguity surface near the source crossing (see (5.35), (5.40)–(5.42)) at
θ1 = 1◦,θ2 =−2◦.

hidden nodes did not improve the results.

The effect of the hidden layer activation function depended on the FNN model. For

2-source FNN, ELU greatly reduced the accuracy of the FNN, while ReLU was consistent and

accurate across number of hidden layers and nodes. For K-source FNN, ELU and ReLU were

more consistent, with ELU leading to a small increase in accuracy.

5.4.3 DOA estimation of incoherent sources

Figure 5.10 demonstrates the performance of the incoherently trained 2-source FNN as

a high–resolution beamformer on a single-snapshot two source transit scenario. SBL and CBF

results are shown for comparison. In Fig. 5.10a, both 2-source FNN and SBL fail close to the

source crossing, while CBF is unable to separate sources within 6◦. These failures are shown by

NaNs.

Figure 5.11 shows a random sample from the K-source test data set with K = 3 sources.

High resolution methods, including deep FNN and SBL, are used to localize the two close sources.

MUSIC performance is unreliable for estimating DOA of incoherence sources with a single
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Figure 5.11: Ambiguity surfaces for CBF (5.35), MUSIC, SBL, and deep FNN (5.40)-(5.42)
for a random sample with K = 3 sources, using (a) L =1 snapshots and (b) L =10 snapshots.
The true sources are at −31◦, 53◦, and 56◦.

snapshot.

A comparison of beamforming methods for the 2-source incoherent case is shown in

Table 5.2. Both SBL and 2-source FNN are feasible single snapshot DOA estimators. At 10

snapshots, MUSIC is also highly accurate without noise. All high resolutions methods surpass

CBF in their ability to resolve close sources. All methods showed improved performance at 10

snapshots.
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Table 5.2: Mean error (5.33) and accuracy (5.34) for test data with K = 2 sources, θk ∈
[−90◦,90◦).

1 snapshot
Method Error

(◦)
Acc. (%)

CBF 1.09 77.5

SBL 0.06 98.0
FNN
(7)

0.16 95.9

10 snapshots
Method Error

(◦)
Acc. (%)

CBF 0.52 86.7
MUSIC 0.00 99.5

SBL 0.06 98.5
FNN
(7)

0.14 96.6

Table 5.3: Mean error (5.33) and accuracy (5.34) for test data with K ∈ U(1,10) random
sources, θk ∈ [−90◦,90◦).

1 snapshot
Method Error

(◦)
Acc. (%)

CBF 2.07 50.5

SBL 0.64 82.1
FNN
(7)

0.92 83.1

10 snapshots
Method Error

(◦)
Acc. (%)

CBF 0.97 61.6
MUSIC 0.00 97.1

SBL 0.10 93.9
FNN
(7)

0.13 91.6
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Figure 5.12: (a) Map of the Swellex-96 experimental setup for May 13, 1996. Shown are
transits of the deep towed source and the loud interferer along with four hydrophone arrays. (b)
Element orientation for HLA North, used in this study.

5.5 Swellex96

As an experimental test, the azimuth (North = 0◦, East = 90◦) of the Swellex-96 S95

deep source tow event and a loud interferer to the North horizontal line array (North HLA) was

estimated. [30–32] The Swellex-96 experiment was conducted in a shallow water waveguide with

downward refracting sound speed and two sediment layers (Fig. 5.12). [33] Azimuth estimation

has been shown to be less sensitive to the sloping bottom for this experiment. [34] A range-

independent environment with plane wave propagation is here assumed for the source tow and

interferer tracks.

Training data for the FNN was generated with plane waves according to (5.2) using the

measured positions of the HLA North array elements. The models were trained on data described

in Sec. 5.3.4.
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Figure 5.13: (a-d) Single-snapshot and (e-h) 10 snapshot. (a,e) K-source FNN, (b,f) 2-source
FNN, (c,g) SBL, (d) CBF, and (h) MUSIC ambiguities, normalized to max at each time, for the
Swellex-96 S95 source tow event (circles) and a loud interferer (stars). Array endfire (solid) and
broadside (dashed) directions are shown.

The experimental data (test data) was recorded from 11:45–12:50 GMT, May 13, 1996

on HLA North with a sampling rate of 3267.8 Hz. The data was processed using an FFT length

of 4096 samples, or 1.25 s (bin width 0.8 Hz). The covariance matrix was constructed at 79 Hz

according to (5.5) and contains a tonal from the towed source and strong ship noise, with L = 1

(Fig. 5.13(a-c) and L = 10 (Fig. 5.13)(d-f) snapshots. There were 3120 total test samples (1.25 s

chunks over 65 min.).

Figure 5.13 shows the ambiguity surfaces with L = 1 and L = 10 snapshots across azimuth

and time for FNN, SBL, and CBF. All ambiguities are normalized to their maximum for each
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time. The ambiguities for SBL and FNN were convolved with a 3x3 unit filter to widen the peak

for improved visualization.

The results demonstrate that FNN can estimate DOA for an unknown number of sources

in single-snapshot experimental data. At high SNR, the performance of the FNN is similar to

SBL in simulated and experimental results. [35] In experiment, CBF exhibits higher ambiguity

sidelobes, while MUSIC exhibits lower SNR without additional regularization. The interferer at

340◦ is a secondary source, FLIP.

A benefit of neural network estimation is that the heavy computation is conducted offline.

Using a TITAN XP graphics processing unit (GPU), the 2-source FNN training for Sec. 5.5 takes

20 minutes and the K-source FNN training takes 6 hours. DOA estimation CPU time took 0.06 s

for CBF, 20 s for SBL, and 0.5 s for both FNNs on a Macbook Pro with Intel Core i7 processor,

for a single sample of Sec. 5.5.

5.6 Convolutional Neural Network

Convolutional networks [28] (CNNs) are deep neural networks that leverage spatial re-

lationships in 2D data. Here, the SCM was used as an input image, Xt = [Re{Pt}, Im{Pt}] ∈

R
N×N×2, with dimensions N = 20 and two channels representing the real and imaginary compo-

nents. 2D filters K j ∈RNc×Nc , j = 1, ...,S, were convolved with the input image, where Nc = 3

(typically, Nc < 10), [28] and translated with a stride of 1 across the image. The output dimension

of a single hidden layer was thus (N −Nc + 1)× (N −Nc + 1)× 2, a decrease by 2 in each

dimension when Nc = 3.

Three CNN models were tested, see Fig. 5.14. The first model in Fig. 5.14a was a 9-layer

convolutional model with output of size (2×2). In the second model, zero-padding was used

to increase the output size at each layer to 20×20 (not shown). The third model in Fig. 5.14b

included zero-padding at each layer and three MaxPool layers, which downsampled the image by
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Figure 5.14: CNN models for DOA estimation with 9 convolutional layers and 2 dense layers.
(a) 9 convolutional layers and (b) with zero–padding and MaxPool layers. A model with
zero–padding only was also tested.

taking the max value within 2×2 patches, resulting in an output layer of size (2×2).

All CNN models included two fully connected layers followed by an output softmax layer.

The cross-entropy error [36] in was used for categorical classification training, see Appendix

5.8.2 for details.

The results of the three CNN models are shown in Table 5.4. The addition of zero-padding

increases the error. The addition of MaxPool layers may marginally improve the error caused by

zero-padding.

5.7 Conclusion

In this paper, CBF was formulated as linear in the weight covariance matrix and the data

SCM instead of quadratic in the beam weights. With a set of measured data and labels, the linear

formulation was used to directly learn the CBF weights in a perturbed array scenario.

The linearized SCM was used as an input to a deep FNN model for estimating DOA. First,

the deep FNN was trained exhaustively for the noiseless two source scenario. Then, the deep

139



Table 5.4: Mean absolute error and accuracy for FNN and three CNN models.

Method Error
(◦)

Accuracy
(%)

1 snapshot
FNN (5) 1.10 81.0

CNN 1.05 74.1
CNN, Zero-Padding 3.21 59.8
CNN, Zero-Padding,

MaxPool
1.79 68.3

10 snapshots
FNN (5) 0.13 91.3

CNN 0.29 82.8
CNN9, Zero-Padding 0.68 82.3
CNN9, Zero-Padding,

MaxPool
0.35 83.0

FNN was trained using a dataset with K randomly generated number of sources DOAs, with

K ∈ (1,10) and θk ∈ [−90◦,90◦). On a separate test set, both 2-source and K-source deep FNN

as well as SBL estimated DOA accurately using a single snapshot.

The FNN models were selected by measuring DOA estimation accuracy on a noiseless

validation set. The number of hidden layers in each model were varied for ReLU and ELU

hidden activation functions. Generally, deeper models with increased hidden nodes per layer had

improved accuracy.

The real world applicability of the 2-source and K-source FNN were demonstrated on the

S95 source tow and loud interferer in the Swellex96 experiment. For single-snapshot estimation,

FNN performs comparable to SBL, and both methods have increased resolution over CBF. Similar

results are seen for 10 snapshots. The prediction step of FNN is faster than SBL while giving

comparable performance.

Finally, the potential of the convolutional neural network was demonstrated for future

research. A major challenge of the convolutional neural network is the small dimensionality of

the input SCM, which may be addressed with more sophisticated network structures.
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5.8 Appendix

5.8.1 Sparse Bayesian Learning

Sparse Bayesian Learning (SBL) is a compressive sensing technique that uses a Bayesian

framework to solve sparse parameter estimation problems. The algorithmic implementation is

detailed in Nannuru et al. [20]

First, assume that the observation in (5.2) can be represented by a sparse dictionary of

weights and the plane wave replicas,

Y = [p1, ...,pl, ...pL] = AX+N, (5.49)

where

A = [a(θ1), ...,a(θM)],

X= [x1, ...,xL],

N = [n1, ...,nL], nl ∈ CN N×1

with a(θm) from (5.1). xl ∈ CN is a sparse vector with K � M nonzero entries in (5.2). The

nonzero indices, or active sources, must remain active across all snapshots.

Assume p(pl|xt) are i.i.d for l = 1, ...,L, with the likelihood function [20, 37]

p(Y|X) =
L

∏
l=1

p(pl|xl) =
L

∏
l=1

CN (pl;Axl,σ
2I). (5.50)
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The prior over X is zero-mean complex Gaussian and the evidence is given by Bayes’ rule:

p(X) =
L

∏
l=1

p(xl) =
L

∏
l=1

CN (xl;0,ΓΓΓ), (5.51)

p(Y) =
∫

p(X)p(Y|X)dX=
L

∏
l=1

CN (pl;0,ΣΣΣ) (5.52)

where ΓΓΓ = diag(γ1, ...,γM) = diag(γ) is a diagonal covariance and the model covariance is given

by ΣΣΣ = σ2I+AΓΓΓAH .

SBL solves for Γ by maximizing (5.52)

(̂γ1,...,γ̂M) = argmax
γ

log p(Y)

=argmax
γ

{
−1

L

L

∑
l=1

(pH
l ΣΣΣ
−1pl+log |ΣΣΣ|)

}
(5.53)

A fixed-point update rule [38] is derived by differentiating (5.53)

γ
new
m = γ

old
m

1
L
||YHΣΣΣ−1

p a(θm)||2

a(θm)HΣΣΣ
−1
p a(θm)

(5.54)

Thus SBL estimates the signal power, γm, for each DOA. The source DOAs and number of sources

correspond to the estimates γm 6= 0.

5.8.2 FNN Training Loss

The neural network output depends on its application and the problem set-up. The model

may be trained with different combinations of output and cost function, which measures the

estimation error at the output compared to the training labels. For multiclass classification, used
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in this paper, the most common output function is the softmax function [36]

ŷm
t =

ezm

∑
M
j=1 ez j , zm=

S

∑
s=1

ws,m(2)as+wm(2)
0 , (5.55)

where as is the activation at the sth hidden node, ws,m(2) and wm(2)
0 are the weights and bias, and

ŷm
t is the output prediction for a single class, normalized between 0 and 1. The softmax is a

likelihood-like function. As in probability estimates, all classes sum to 1.

The corresponding cost function is the categorical cross-entropy, which measures the

similarity between the predicted and true class across T samples and M classes,

J(ŷm
t ) =−

T

∑
t=1

M

∑
m=1

ym
t ln[ŷm

t (a
s)]. (5.56)

For a regression problem, the target value is predicted directly instead of its likelihood. The

regression output function is linear output,

ŷt = ∑
s

ws(2)as+w(2)
0 . (5.57)

The mean squared error [39] can be used to measure the closeness of the estimated to the target

value,

J(ŷt) =
T

∑
t=1
|yt−ŷt |2. (5.58)

The cosine proximity is an alternative regression cost function that measures the similarity between

the target and estimate, [14]

J(ŷt) =−
T

∑
t=1

yt · ŷt . (5.59)
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Chapter 6

Conclusion

In this dissertation, supervised and unsupervised machine learning methods were used to

solve problems within two areas of passive underwater acoustics: characterizing and classifying

unlabeled passive acoustic data, and localizing seagoing vessels in passive acoustic recordings.

The methodologies incorporated intuition from decades of research development in statistical

processing for various underwater soundscapes [1, 2] as well as localization techniques using array

processing and physical models of ocean sound propagation. [3–12] This work also leveraged

recent advances in machine learning software and algorithm development. [13–15]

Statistical spectral processing methods were discussed for analyzing ambient noise in

the Eastern Arctic on a drifting vertical hydrophone array between April and September 2013.

Noise sources were observed manually, including ice noise, bowhead whale calling, airgun survey

pulses, and earthquake T –phases. The data were processed into three and four day median spectral

estimates that demonstrate the variation in the occurrence and received level. The median spectral

ambient noise estimate for May 2013 was lower than a nearby estimate from April 1982 [16]

but similar to an estimate from an ice–covered region in the Beaufort Sea (Western Arctic) in

April 1975, [17] indicating that local ice source effects may be as significant as regional effects

in determining ambient noise levels in the Arctic. This study demonstrated the importance of
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environmental factors in data-driven soundscape analysis.

Next, unsupervised machine learning was used to cluster whale song and coral reef fish

calling, two major contributors observed in a Hawaiian coral reef soundscape in February 2020.

Two clustering approaches were proposed. First, handpicked features known to be associated with

coral reef fish species [2, 18, 19] and other relevant acoustic metrics [20, 21] were extracted and

clustered using common unsupervised clustering methods. In simulations, the handpicked features

overlapped for the signals, reducing unsupervised clustering accuracy. Then, deep embedded

clustering (DEC), a deep convolutional network approach, was used to jointly learn features and

cluster labels directly from the spectrograms. In simulations, DEC demonstrated higher accuracy

and recall than the handpicked features and was more likely to correctly classify existing whale

song events. When applied to automatically detected events on the Hawaiian coral reef, DEC

achieved separation of whale song events from fish calling but suffered from reduced accuracy

due to class imbalance, while clustering of handpicked features did not have good agreement with

the manual labels.

In the final chapters, underwater source localization was considered within a machine

learning framework. First, source ranging was posed as a supervised learning problem and solved

separately using feed-forward neural networks (FNN), support vector machines (SVM) and

random forests (RF). Normalized sample covariance matrices (SCM) were used as input to the

machine learning models. Simulations showed that FNN achieved good prediction performance

for SNR above 0 dB. When applied to experimental data, it was discovered that multi-frequency

inputs generated more accurate predictions than single frequency (based on FNN) and that

classification methods performed better than regression and MFP methods.

Then, CBF was formulated as linear in the weight covariance matrix and the data SCM

and used to directly learn the CBF weights in a perturbed array scenario. The linearized SCM

was used as an input to a deep FNN model for estimating DOA. The deep FNN was trained for

both a noiseless two source scenario and for K randomly generated number of sources DOAs,
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with K ∈ (1,10) and θk ∈ [−90◦,90◦). On a separate test set, both 2-source and K-source deep

FNN as well as sparse Bayesian learning (SBL) [22] estimated DOA accurately using a single

snapshot. Generally, deeper FNN models with increased hidden nodes per layer had improved

accuracy. In experimental data with two transiting seagoing vessels, FNN performed comparably

to SBL, and both methods had increased resolution over CBF.

Each study in this dissertation demonstrated the potential of using data-driven and machine

learning methods for passive underwater acoustics problems. Future work is needed to further

develop these methods and broadly apply them to a set of problems. Initially, collection of

more good quality acoustic data from regions of interest, including the Arctic and coral reefs,

will better enable the advantage in using machine learning and big data processing. The issue

of training set diversity for localization problems should be considered more deeply, either

by relying on sophisticated propagation models that reflect complexity in the ocean [23, 24]

or, preferably, by including larger experimental training sets that represent ocean processes in

acoustic channels. Alternate input formats could be used to incorporate relevant physical variation.

Last, the algorithms used for each passive acoustics problem should be designed to overcome

potential concerns with the environmental and data properties, such as class imbalance among

types of acoustic signals or temporal overlap. In some cases, development of new algorithms may

be necessary. Overall, the application of recent machine learning methods to passive underwater

acoustics is relatively new, but its underlying aim echoes decades of advances driven by the

underwater acoustic signal processing community.
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M. Perrot, and É Duchesnay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res,
12:2825–2830, 2011.

[15] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[16] N. C. Makris and I. Dyer. Environmental correlates of pack ice noise. J. Acoust. Soc. Am,
79:1434–1440, 1986.

151



[17] B. M. Buck and J. H. Wilson. Nearfield noise measurements from an arctic pressure ridge.
J. Acoust. Soc. Am, 80:256–264, 1986.

[18] D. A. Mann and P. S. Lobel. Propagation of damselfish (pomacentridae) courtship sounds.
J. Acoust. Soc. Am., 101(6):3783–3791, February 1997.

[19] K. P. Maruska, K. S. Boyle, L. R. Dewan, and T. C. Tricas. Sound production and spectral
hearing sensitivity in the Hawaiian sergeant damselfish, abudefduf abdominalis. J. Exp.
Biol., 210:3990–4004, 2007.

[20] S. B. Martin, K. Lucke, and D. R. Barclay. Techniques for distinguishing between impulsive
and non-impulsive sound in the context of regulating sound exposure for marine mammals.
J. Acoust. Soc. Am., 147(4):2159–2176, April 2020.

[21] M. Malfante, J. I. Mars, M. D. Mura, and C. Gervaise. Automatic fish sounds classification.
J. Acoust. Soc. Am., 143(5):2834–2846, May 2018.

[22] K. L. Gemba, S. Nannuru, and P. Gerstoft. Robust Ocean Acoustic Localization With Sparse
Bayesian Learning. IEEE J. Sel. Top. Sig. Proc., 13(1):49–60, 2019.

[23] David Van Komen, Tracianne B. Neilsen, David P. Knobles, and Mohsen Badiey. A
convolutional neural network for source range and ocean seabed classification using pressure
time-series. Proceedings of Meetings on Acoustics, 36(1):070004, 2019.

[24] H. Niu, Z. Gong, E. Ozanich, P. Gerstoft, H. Wang, and Z. Li. Deep-learning source
localization using multi-frequency magnitude-only data. J.Acoust. Soc. Am., 146:211–222,
July 2019.

152


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Statistical analysis of ambient noise spectra
	Localization in underwater acoustic waveguides
	Supervised machine learning
	Neural networks
	Support vector machine
	Random forest

	Dissertation Overview
	Bibliography

	Eastern arctic ambient noise on a drifting vertical array
	 Introduction
	 Methods
	 Acoustic measurements
	 MicroCATs
	GPS coordinates
	Bathymetry
	Sea Ice Concentration
	Filtering/Noise Removal

	Arctic ambient noise source effects
	Underwater Sound Propagation
	Ice–generated noise
	Biological Sources
	Seismic Survey Signals
	Arctic Basin Earthquakes

	Arctic ambient noise levels
	Eastern Arctic Ambient Noise, Summer 2013
	Comparison of Arctic Ambient Noise

	Conclusions
	Acknowledgments
	Bibliography

	Unsupervised clustering of coral reef bioacoustics
	Unsupervised clustering
	Maximum likelihood of Gaussian clusters
	K-Means
	Agglomerative hierarchical clustering
	Clustering simulations
	Visualization of high-dimensional data

	Feature extraction
	Handpicked features
	Deep embedded clustering
	Feature matrix

	Simulations
	Data collection and Processing
	Event detection

	Clustering Analysis
	Metrics
	Simulations
	Experiment

	Discussion
	Acknowledgements
	Bibliography

	Source localization in an ocean waveguide using supervised machine learning
	 Introduction
	 Localization based on machine learning
	 Input data preprocessing
	 Source range mapping
	 Feed-forward neural networks
	 Support Vector Machine
	 Random forests
	 Performance metric
	 Source localization algorithm

	 Simulations
	 Environmental model and source-receiver configuration
	 Input preprocessing and learning parameters
	 Results

	 Experimental results
	 Input preprocessing and learning parameters
	 SCM inputs
	 Source localization as a classification problem
	 Source localization as a regression problem 
	 Conventional matched-field processing 

	 Discussions
	 Range resolution
	 Snapshots 
	 Number of hidden neurons and layers for FNN
	 Kernel and regularization parameters for SVM
	 Number of trees and minimum samples per leaf for RF
	 Multiple sources and deep learning 

	 Conclusion
	Acknowledgments
	Bibliography

	A feedforward neural network for direction-of-arrival estimation
	Introduction
	Background and notation
	Machine learning Theory
	Feed-forward neural network
	Support Vector Machine
	Nonlinear FNN
	Methods
	Array Calibration Example

	Deep learning for DOA estimation
	Source coherence
	Hidden layers and nodes
	DOA estimation of incoherent sources

	Swellex96
	Convolutional Neural Network
	Conclusion
	Appendix
	Sparse Bayesian Learning
	FNN Training Loss

	Acknowledgments
	Bibliography

	Conclusion
	Bibliography


