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ABSTRACT OF THE DISSERTATION

Reducing Uncertainty in Estimates of Environmental Parameters From Ambient
Noise Using Statistical Array Processing

by

Ravishankar Menon

Doctor of Philosophy in Electrical Engineering
(Applied Ocean Sciences)

University of California, San Diego, 2013

Professor William S. Hodgkiss, Chair
Professor Peter Gerstoft, Co-Chair

In recent years, extracting environmental information from diffuse ambient
noise has become an increasingly viable alternative to traditional active source meth-
ods. Due to uncontrollable factors such as noise field directionality, presence of spa-
tially compact sources and unknown medium properties, results from ambient noise
processing are often biased and need careful interpretation. Thus it is important to
develop robust approaches that can perform well in the presence of such detriments.

The first part of the dissertation focuses on interpreting the coherence and at-

tenuation estimates from seismic arrays. Adaptive array processing using stations from

xvi



the Southern California Seismic Network is used to identify the presence of multi-
ple seismic waves, namely the fundamental and first mode Rayleigh wave, and body
waves. The spatial coherence function (SCF) is modeled as a linear superposition of
these waves, with the proportions estimated from data. The SCF shows beating and
phase cancellation effects due to the interactions between wavenumbers, which could
be misinterpreted as attenuation. The array geometry is also shown to limit the ranges
at which the coherence can be estimated well.

The second part of the dissertation focuses on developing statistical techniques
to mitigate the effects of spatially compact sources on the noise processing. Analytical
expressions are derived for the asymptotic eigenvalues of the true spatial covariance
matrix (CM) for a uniform line array in three and two dimensional isotropic noise fields
with and without attenuation. Using random matrix theory, the asymptotic probability
density of the eigenvalues of the sample covariance matrix (SCM) also is derived in
each of these scenarios. These analytical results provide upperbounds for the noise
eigenvalues of the SCM.

In the third part of the dissertation, the analytical results are combined with
a sequential hypothesis testing framework. This then is used to identify the outliers
(which correspond to strong and spatially compact sources) in shallow water ocean
acoustic data. The cross-correlation results after rejecting these outliers are shown to
be unbiased and converge faster with a higher signal-to-noise ratio. The performance
of the eigenvalue rejection technique under different noise model assumptions also is

investigated.
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INTRODUCTION

Exploring an ocean or seismic environment traditionally has been performed
using active sources, which transmit known signals into the environment which are
then recorded by a set of receivers after being modified by the environment. Sources of
opportunity such as earthquakes also have been used to in tomographic applications to
image the Earth’s interior. Despite their widespread use, the use of active sources is not
without its drawbacks. For instance, active sources realistically can only be deployed
in regions that readily are accessible. The logistics involved in successfully carrying
out an active source experiment in remote locations and the costs involved make this
a highly unattractive option. Earthquakes, which are free active sources, primarily
occur only at the plate boundaries which limits the profiling resolution in seismically
inactive regions.

In recent years, it has been demonstrated both theoretically and experimen-
tally [1-5], that temporal cross-correlations of a diffuse noise field recorded on a pair
of receivers yielded the Green’s function (impulse response) between those two points,
shaped by the spectrum of the noise field. This is in fact the very quantity that is
recovered in active source profiling experiments. Since ambient noise is ubiquitous,
this result has generated significant interest in retrieving information from the diffuse

background noise. This technique has diverse applications such as ocean acoustic in-



terferometry [6,7], passive fathometer [8,9], imaging the interior of the earth [10-12],

etc.

1.1 Challenges in Ambient Noise Processing

While the utility of using ambient noise for extracting environmental infor-
mation has been established in the literature, there remain practical challenges in the
processing of ambient noise data and the interpretation of the results. For instance,
theory [1,2] has shown that cross-correlations of noise recorded on two sensors in a
diffuse noise field yields a set of peaks whose locations correspond to the travel-time
for various propagation paths. However, such perfectly diffuse noise fields are seldom
realized outside of controlled laboratory experiments.

In shallow waters, the ambient ocean acoustic noise field also contains contribu-
tions from strong and spatially compact sources such as ships or other anthropogenic
sources. These discrete noise sources often are persistent and overwhelm the cross-
correlation results, thus introducing a bias in the travel time estimate [7]. This typically
is worked around by either discarding the data that is contaminated by detrimental
sources or increasing the averaging time so that their effect is minimized. However,
neither of these approaches are appealing if ambient noise processing is to eventu-
ally replace traditional active source techniques and be used in real time monitoring
systems.

In seismology, although it is easy to remove the transient spatially compact
sources (earthquakes) by time-gating, similar biases exist in the travel time estimates
due to the directionality of the noise field (e.g. increased microseismic noise near the
coasts) [13]. The noise directionality also influences the spatial coherence between
two sensors and must be accounted for before interpreting the results [14]. In these
cases, increased averaging time does not help reduce the bias since the directionality
is characteristic of the environment.

These challenges form the backdrop for the contributions of this dissertation:

1. In order to interpret the information contained in the estimated spatial coher-

ence from an array of sensors, it is important to know the characteristics of the



noise field. Using sensors from the Southern California Seismic Network, the
spatial spectrum of the ambient seismic noise field is analyzed and a data driven
model for the spatial coherence function is developed. The influence of the array
geometry and data processing on the coherence also is studied, which provides

valuable constraints on the quality of the estimates.

2. The spatial sample covariance matrix or the cross-spectral density matrix
(CSDM) is an important quantity in array processing. By exploiting the symme-
try in the CSDM for a uniform line array of sensors in an isotropic noise field,
analytical results are obtained for the eigenvalues and eigenvalue densities of
the CSDM using random matrix theory (RMT). The resulting density is shown
to have finite support on the real axis, which provides an upperbound on the
magnitude of the eigenvalues of the CSDM from noise. This is valuable in
noise processing applications since the eigenvalues are related to the power
of the noise sources, thus providing a means for identifying the strong and
spatially compact sources. The results also are extended to the case when there

is attenuation in the medium.

3. The eigenvalue bounds thus derived are employed in a statistical testing frame-
work to reject the spatially compact sources. The approach provides a viable
alternative to wholesale rejection of contaminated data. By using the aforemen-
tioned analytical results and analyzing the data in the eigendomain, only the
specific contaminants are rejected leaving much of the remaining data available
for use. A significant improvement in the signal-to-noise ratio is also demon-
strated and performance of the approach under different noise field assumptions

is also studied.

1.2 Spatial Coherence Functions

The spatial coherence function (SCF) of a noise field describes the correlation
between the frequency domain response at two sensors in a noise field. SCFs typi-

cally are used to study the performance of sensor arrays in noise fields with a specified



directional density function (related to the noise power in each direction). Recent ad-
vances in ambient noise interferometry have seen a renewed interest in the study of
SCFs of noise fields, because the cross-correlations of noise between sensors (which
is then used to retrieve the Green’s function between the two points) is related to the
SCF by the Fourier transform.

Consider plane waves at a frequency f, impinging on two sensors at positions A
and B. From the complex valued signals ¢/, (f) and ¢5(f) recorded on them, the power

spectral densities (PSD) at the sensors is given by

Pi(f) = T XY (DY), i={AB), (1.1)

where T is the time interval, T denotes the complex conjugate and (-) the ensemble

average and the cross-spectral density (CSD) is given by

Pas(f) = T XYL (NYLH). (1.2)

The SCF between these two sensors is defined as the normalized cross-spectral density,

Pap(f)
vVPaa(f)Pss(f) '

In a three dimensional, homogeneous, and lossless medium, plane wave noise

Tap(f) = (1.3)

fields can be considered to be generated by point sources distributed uniformly on the
surface of a sphere of infinite radius. Due to the spatial symmetry, the PSD is the same
at every point in the field. Consider the CSD of the noise from an infinitesimal solid

angle dQ incident on two sensors at A and B separated by a distance r [Figure 1.1 (a)]:

dPas(f) =Y A(N VL) dQ
=4 ()I?) e 2mFreosO/e sin(0)do d, (1.4)

where c is the velocity of sound in the medium and T'is taken to be 1. The second step
follows from the fact that the output at B is just a time shifted version of that at A. The
PSD is obtained similarly as dP;(f) = (| tﬁi(f)lz) dQ, for i = A, B. Since the PSD is the

same everywhere, without loss of generality, we can assume {|¢/;(f)|?) to be unity.



Integrating over the entire sphere, the SCF is obtained as [15]

2r
f f —2mfrcos Sll’l(@) do d(p
2r
f f sin(0)d0 do

sin ( 27£fr)
()

where f§ = fr/cis the spacing to wavelength ratio. Thus, the SCF is independent of the

rAB

= sinc(27f) (1.5)

position of the sensors and depends only on their separation distance.

“ (b)
|
@ dk

|
|
|

A

r e

s e B

Figure 1.1: Illustration of sensor locations and geometry in (a) three dimensions and
(b) two dimensions

Similarly, in a two dimensional, homogeneous and lossless medium, the plane
wave noise field can be considered to be generated by point sources distributed uni-
formly on the circumference of a circle of infinite radius [Figure 1.1 (b)]. Proceeding

as before, the SCF is obtained by integrating over the circumference as [16]

27
—2mifrcos(6)/c
e do
f 27xfr
10 = =3, (2]

do

0

=J,(27p) (1.6)



where ], is the Bessel function of the first kind and order zero. As in (1.5), the SCF
depends only on the separation distance between the sensors.

In Chapter 2, the SCF for the seismic noise field is modeled as a linear combi-
nation of the above noise fields. In Chapters 3-6, the SCF is the generating function
for the entries of the CSDM matrix.

1.3 Random Matrix Theory

Random matrix theory (RMT) is a branch of mathematics that deals with the
study of the eigenvalues of matrices whose elements follow a known probability dis-
tribution. RMT first originated in multivariate statistics [17] but gained widespread
attention and popularity after Wigner used the distribution of eigenvalues of a random
matrix to explain the statistics of energy levels in heavy nuclei [18-21]. Today, RMT
has applications in a variety of fields such as finance [22], signal processing [23-25],
information theory and wireless networks [26], graph theory [27], elastodynamics [28]
and wave propagation and scattering in random media [29-31].

Given an N X N square matrix A with eigenvalues a;, the empirical cumulative
distribution (ECD) P, (x) of the eigenvalues is defined as

#{a, < x}

Pa(x) = N , (1.7)

where # denotes the cardinality of the set. For certain distributions of the elements
of A, in the limit N — oo the ECD converges almost surely to a well defined distribu-
tion P(x) [32] and the corresponding probability density function (dP(x)/dx) is often
referred to as the asymptotic eigenvalue density. Most results in RMT are derived in
an asymptotic setting although they hold good for moderate sized matrices as well. Al-
though the eigenvalues of random matrices have been the primary focus, recent results
also discuss the behavior of the eigenvectors [33].

The practical utility of these results primarily are due to the properties of ergod-
icity and universality. Ergodicity implies that the asymptotic results are independent
of the specific realization of the matrix allowing such results to be applied to a specific

instance. Often the asymptotic results hold for different distributions of the matrix
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Figure 1.2: Marcenko—Pastur density for different v = N/M: 0.05 (dashed), 0.25 (solid)
and 1 (dot-dashed).

elements, a property referred to as universality, which allows the results to be used in
several classes of problems.

In this dissertation, RMT is used to study the eigenvalues of the CSDM, which is
a normalized Wishart matrix. Wishart matrices arise frequently in multivariate statis-
tics (covariance and precision matrices), signal processing (cross-spectral density ma-

trices), finance (inter-stock correlation matrix), etc.

Definition 1.1 (Wishart Matrices). The N x N matrix W = XX = $M 5 xH wwhere

X € CN*M js g Gaussian random matrix with columnsx,, ~ CN(0,2), is called a Wishart

matrix with M degrees of freedom, and is denoted S ~ W (£, M)

For the null case when ¥ = I, the asymptotic eigenvalue density of 1;W in the

limit N,M — oo and N/M = v, is given by the Marcenko-Pastur (MP) density [34],

(I =N(A-1)
— ~—— — ] <A<l
Py p(A) = 2mv " (1.8)
0 otherwise

where I = (1-+/v)?and [, = (1++/v)? are the upper and lower limits of the “spread-
ing” of the eigenvalues of the SCM around the true eigenvalue which is 1. As shown in

Figure 1.2, the spreading of the eigenvalues increases for larger v (fewer observations



M compared to the dimension N), and as v — 0, all eigenvalues are equal to that of the
true covariance matrix.

In Chapter 3, expressions similar to (1.8) are derived for the case when ¥ cor-
responds to the CSDM in an isotropic noise field. Corresponding relations for the
upperbound (I} ) then are used in Chapter 6 to reject the strong and spatially compact

noise sources..

1.4 Scope of This Dissertation

The bulk of this dissertation is contained in four chapters — Chapters 2, 3, 4 and
6. These chapters are a full reprint of papers that were either published in a professional
journal or submitted for consideration in one.

Chapter 2 deals with the challenges involved in estimating the spatial coher-
ence using a random array of sensors in a directional noise field. The seismic noise field
in the 0.05-0.2 Hz band primarily is due to microseisms, which are continuous seismic
background noise generated by ocean waves. The SCF typically is modeled as a super-
position of plane waves propagating along the surface (fundamental mode Rayleigh
waves). Using adaptive beamforming on stations from the Southern California Seis-
mic Network, we identify the presence of higher mode Rayleigh waves. In addition,
body waves that are generated in the deep ocean from distant storms and propagate
through the Earth’s mantle and core, also are consistently observed in the microseism
band. An improved model for the seismic SCF then is obtained by incorporating the
effect of these waves as linear combinations of the elementary SCFs in Chapter 1.2. The
resulting SCF shows beating and phase cancellation effects from interactions between
the different wavenumbers associated with the different seismic waves and these could
be misidentified as being due to attenuation in the medium. The influence of the ar-
ray geometry and signal processing techniques on the estimation of coherence also is
discussed and taken into consideration.

Chapter 3 derives the asymptotic eigenvalues of the true noise covariance ma-
trix (CM) for a line array with equidistant sensors in an isotropic noise field. The CM

in the frequency domain is a symmetric Toeplitz sinc matrix which is shown to have



at most two distinct eigenvalues in the asymptotic limit of an infinite number of sen-
sors. For line arrays with inter-element spacing less than half a wavelength, the CM
turns out to be rank deficient, which has implications in algorithms that require the
inverse of the CM. The asymptotic eigenvalue density of the spatial sample covariance
matrix (SCM) or CSDM then is derived using RMT for all ratios of the inter-element
spacing to the wavelength. These analytical results are useful because they provide an
upperbound on the eigenvalues of the SCM from background noise. These then can be
used to determine statistically those eigenvalues that are due to detriments (e.g. nearby
ships) in the noise field as is done in Chapter 6.

Chapter 4 derives analytical expressions for the eigenvalues of the CM in the
presence of attenuation. It is shown that attenuation has effects similar to that of a
low-pass filter and tends to raise the value of the lower eigenvalues while lowering
those of the large eigenvalues. The asymptotic eigenvalue density for the SCM in this
case is obtained as an approximation using the polynomial method of random matrices
[35,36].

Chapter 5 examines the eigenvalues of the SCM for a towed array in deep wa-
ter. The coherent noise is modeled as in Chapters 3 and 4 and it is shown that the
eigenvalues from data compare well with theory. The eigenvalues also show a sharp
drop in power for element spacing to wavelength ratios less than 1/2, which is related
to the edge of the visible region.

Chapter 6 applies the theoretical results in Chapter 3 to shallow water exper-
imental data. As mentioned in Section 1.1, the influence of spatially compact sources
in the ocean (usually ships) often results in a bias of the travel time estimates obtained
from the cross-correlations. A sequential hypothesis testing framework using the an-
alytical results of Chapter 3 is developed. Applying the test to acoustic data from the
Shallow Water 2006 experiment reveals eigenvalues dominated by loud sources that
are statistical outliers for the assumed diffuse noise model. Travel times obtained from
cross-correlations using only the diffuse noise component (i.e., by discarding or atten-
uating the outliers) converge to the predicted travel times based on the known array
sensor spacing and measured soundspeed at the site. These estimates are also stable

temporally, thus demonstrating the effectiveness of this approach.
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Finally, Chapter 7 presents the conclusions and possible future extensions of

this research.
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FACTORS INFLUENCING THE ESTIMATE
OF SPATIAL COHERENCE FROM SEISMIC

ARRAYS

Recent studies have demonstrated that the coherence of seismic noise between
two stations can be used to retrieve the phase velocity and attenuation. In this arti-
cle, we study some of the factors that influence the estimate of the coherence in the
microseism band (0.05-0.2 Hz). High resolution adaptive beamforming using stations
from the Southern California Seismic Network shows a persistent presence of a higher
mode Rayleigh and body waves are consistently observed in the microseism band. The
presence of multiple seismic waves has implications for the spatial coherence func-
tion (SCF) between pairs of sensors. Assuming only the fundamental mode Rayleigh
wave and a uniform noise distribution, the SCF is a zeroth order Bessel function with a
wavenumber corresponding to the fundamental. Here, the SCF is modeled as a sum of
the SCF for each wavetype and such a model is shown to better describe the observed
coherence. The resulting SCF shows multi-path effects from interactions between the
wavenumbers associated with the different seismic waves, and these could be misiden-
tified as being due to attenuation or focusing and defocusing effects from anisotropy

in the medium. The estimated coherence from the data also is influenced by other fac-

13
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tors such as the geometry of the array, inhomogenities in the medium and the data

processing.

2.1 Introduction

There has been significant interest over the past decade, in using the seismic
ambient noise field for various applications such as surface wave tomography [1-3],
seismic imaging [4] and studies of phase velocity anisotropy [3], among several oth-
ers. Much of this interest stemmed from the observation that averaging the cross-
correlations of diffuse waves between a pair of receivers yielded the Green’s function
between the two points [5, 6], followed by several key theoretical developments [7-9]
and experimental evidence of its success [10-13].

Recently, several works have focused on using the coherence (normalized cross-
spectral density) of seismic noise between two stations to retrieve the medium phase
slowness and the frequency dependent attenuation coefficient [14-18]. Estimates of at-
tenuation inherently are more difficult because they are influenced in non-trivial ways
by several factors such as noise directionality [19], site amplification factors, focusing
and defocusing effects [20], and scattering in the medium. The noise directionality can
be overcome by binning the coherence into distinct distance bins and averaging the ob-
servations in each bin amounts to an azimuthal average, which renders the noise field
reasonably isotropic [15]. However, [21] and [22] demonstrated numerically that in
order to recover the attenuation from noise cross-correlations, the noise distrubution
must be known. Using a ray-theoretical framework to analyze the effect of source dis-
tribution on the amplitudes of noise cross-correlations and coherence, it was shown
that the azimuthal anisotropy impacts the amplitudes significantly, and is not over-
come by averaging [23].

In this article we investigate the influence of array processing and the noise
field on the estimate of the coherence. Although averaging is ubiquitous in ambient
noise applications, depending on the quantity being averaged, it can result in biased
estimates or produce altogether incorrect results. For example, in section 2.4 and 2.4.2

we discuss how the geometry of the array (here SCSN) impacts the coherence estimate
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due to decreasing number of raypaths with distance. Likewise, averaging neighboring
frequency bins to obtain a stable result can introduce attenuation-like behavior due to
the oscillatory nature of the coherence.

Adaptive beamforming on the Southern Californa Seismic Network (SCSN) ar-
ray (section 2.3.3) in the microseism band (0.05-0.2 Hz) shows persistent higher mode
Rayleigh waves and body waves between 0.12-0.2 Hz (section 2.5.1). Microseisms
are continuous seismic signals generated by ocean waves, classified simply as single
frequency (SF) or double frequency (DF) microseisms. Here, the terms refer to the
frequency bands: 0.05-0.12 Hz for the SF and 0.12-0.2 Hz for the DF microseisms.
Although higher mode Rayleigh waves have been reported previously [24-26], and
P-waves from pelagic storms are also known to be present at the higher frequen-
cies [24,27-30], the coherence is often modeled as only consisting of the fundamental
mode. Modeling the coherence as a linear superposition of the different seismic waves,
and results show that it better describes the coherence estimated from data (section 2.6),

than the simple isotropic model.

2.2 Background

2.2.1 Spatial Coherence Functions

The spatial coherence function (SCF) of a noise field describes the correlations
between the response at two stations in the frequency domain. Consider seismic sur-
face waves at a frequency f, with a normalized azimuthal weight function W(#0), in-
cident on two stations A and B positioned r apart with an interstation azimuth of (.
From the complex valued signals 1/, (f) and y/z(f) recorded, the cross-spectral density
(CSD) is given by

Pas(f) = T XYA(N VL) (2.1)

where T denotes the time interval, © denotes the complex conjugate and (-) the ensem-
ble average. The SCF between these two sensors is defined as the normalized cross-

spectral density,

Pas(f)
VPaa(f)Ps(f) ’

I'(r,{) = (2.2)
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where Paa(f) = T_1<¢A(f)lﬁ1(f)> and Ppp(f) = T‘1<¢B(f)l//£(f)> are the respective

power spectral densities.
Following [31, equation (19)], the SCF for a given noise distribution W(0) is

obtained by integrating over all azimuths, as:

1 2r

Lyp(r ) = Py . W(0) exp (12xfrcos(0 — {)s) do

= i 1"e, J (27frs)a, cos(v{) + b, sin(v{)] (2.3)
v=0

where s is the frequency dependent slowness (inverse phase velocity) of the medium,
ey is 1 for v = 0 and 2 otherwise, and a,, b, are the Fourier coefficients of W(6). Thus
for arbitrary noise fields, the SCF depends on the inter-station azimuth {. When the
noise field is isotropic, then W(6#) = 1 and only the v = 0 term is non-zero, and the
SCF is I'yp(r) = J,(27frs) [32], i.e. it is independent of the interstation azimuth ¢ and
is simply a function of the frequency fand the separation distance r.

For body waves, which propagate three dimensionally, the SCF for a noise dis-

tribution W(6, ¢) is given by [31, equation (43)],
2m T
[sp(r, ¢, €) :%Tfo fo W(6, ) sin(6) exp [127frs
X (sin(0) sin(&) cos(¢p—{)+cos(6) cos(¢))] dfde

= 3 Py cos(O)n(2frs)

=0 m=0

S

X [a) cos(mé)+ by sin(mé)] (2.4)

where £ is the inter-station angle from the z-axis, P’ is the associated Legendre func-
tion of the first kind, order m and degree n, a)' and b} are the coefficients in the spher-
ical harmonic expansion of W(0, ¢) and j, is the spherical Bessel function of order n.
When the noise field is isotropic, then W(0, ¢) = 1 and only the n = 0 term remains,
and the SCF is I'sp = jo(27frs) [33] (or sinc).

The effect of medium attenuation on the coherence often is modeled by a multi-
plicative exponential term, e”*", where « is the attenuation coeflicient [15,34-36]. The

coherence (in 2D) then is written as

[o(r.d) = e “T(r{) (2.5)
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where T', denotes the SCF with attenuation. When the noise field is isotropic, (2.5)
reducestoT',(r) = e" "] (27frs), which is the relation used for attenuation tomography
[15,16]. However, recent works [20, 23,37] suggest that the attenuation factor in the

coherence due to an isotropic surface wave field might not be exponential.

2.2.2 Estimating the SCF from seismic arrays

In general, the seismic ambient noise field is not isotropic, and the observed
coherence between station pairs depends on the distribution of noise sources [23,31].
High density seismic networks such as the SCSN have several station pairs of varying
inter-station azimuths and distances (over 10000 pairs for SCSN). It then is possible
to leverage the multitude of pairs available at a certain distance of separation to miti-
gate the effect of the directionality of the noise field, at the cost of assuming uniform
medium properties for the entire study region.

[15] suggested averaging the observed coherence for multiple station pairs at
a fixed separation distance, to approximate an isotropic noise distribution. Mathemat-
ically, this can be seen by integrating (2.3) over all station pair azimuths ({ from 0 to
27). Regardless of the noise distribution W(6), only the v = 0 term remains.

From the observed inter-station coherencies f(r,j, {;), the “average spatial co-
herence” (ASC) for the array is obtained by binning the observations into A; wide
bins and averaging them [15]. The average coherence I',, for the nth distance bin d, is

obtained as
Iy = R(T(rgy)) V(L) € D, (2:6)
where D, = {(i,)) | dy < rij < dpy1} is the set of station pairs in the nth distance bin and
‘R denotes the real component. The imaginary part of the ASC is zero for a symmetric
W(0) and the averaging reduces the imaginary part [15,38], thus justifying the use of
only the real part.
The diminishing number of raypaths with increasing distance of separation and
lack of raypaths along certain azimuths (especially at greater distances) are important

to the interpretation of the observed ASC (section 2.8).
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2.3 Data and Signal Processing

2.3.1 Pre-processing

Data recorded on broadband seismic stations in southern California [Figure 2.3
(a)] were collected for the entire year of 2007 at a sampling rate of 1 Hz. We use
only the vertical component data in the 0.05-0.2 Hz frequency range. After removing
instrument glitches in the raw data, the data were divided into snapshots of 1800 s each
(30 minutes), windowed with a Blackman—Harris window and Fourier transformed
with a 2048 point fast Fourier transform.

Earthquakes and other teleseismic events tend to skew the results in noise pro-
cessing due to their disproportionate power compared to the background noise field.
We remove outliers in the data by computing the median of the snapshot power across
a 24 hour sliding window for each frequency, and discarding snapshots that have pow-
ers that are more than 1.5 median absolute deviations away from the median [39]. This
approach has similarities to time domain techniques that use the ratio of the peak am-
plitude to the root mean square amplitude as a rejection criterion [40]. In the frequency

domain, a different threshold can be used at each frequency.

2.3.2 The Normalized Cross-Spectral Density Matrix

The spatial covariance matrix (SCM) or the cross-spectral density matrix from
M observations of the N dimensional snapshot vector X, = [xm1, -+, Xmn] T where N

is the number of stations, is defined as

=~ 1
H
Y= M ilxmxm. (2.7)

In general, due to site amplification factors or differences in sensor characteristics, the
powers at different sensors are not identical. The normalized cross-spectral density
matrix (CSDM) is:

—

T =2y, (2.8)

where y = diag(] , and the site amplifications are removed as sources

S 1 ])
VEi© Ve

of uncertainty:.
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We compute the CSDM for each month, using the snapshots that satisfy the
criteria in section 2.3.1. With the normalization in (2.8), the ijth element of the CSDM
gives an M-sample estimate of the coherence between the ith and jth station pair as in

(2.2).

2.3.3 High Resolution Capon Beamforming

For a given frequency f, azimuth 6, and slowness s, the plane wave look vector
v(6,s) is given by:
1
v(0,s) = — 2" fpos (2.9)
VN

where the projection vector

po=[r1-up,...,IN" ug]T, (2.10)

r; is the position vector of the ith station (with the origin at the mean latitude and
longitude), and ug is the unit vector along 6.

The weight vector w(0,s) for the Capon beamformer [41] (or the minimum
variance distortionless response beamformer) is constrained to have unit gain in the
look direction, while at the same time minimizing the output power, thus leading to
the optimal weights
-1
Y v(6,s)

— (2.11)
vH(0,9% v(6,5)

Wmvdr ( 9’ S) =

If /Z\,_l is not invertible (for noise processing, M > N, and 3 often is invertible due to
uncorrelated noise), then the matrix can be made full rank by loading the diagonal to
constrain the white noise gain [42]. In comparison, the weights for the conventional
beamformer are given by Weony(6,s) = v(6,s). The beamformer outputs then are given
by

By = wf)fW(.) (2.12)

2.4 Factors Influencing the Coherence

Factors independent of the noise field or the environment such as limitations

imposed by the array geometry and artifacts from data processing can affect the esti-
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mate of the coherence. Understanding these issues is beneficial in the interpretation

of the coherence estimates in Section 2.6.

2.4.1 Diminishing Raypaths With Distance

Figure 2.1 (a) shows a smoothed 2D histogram of the station pairs density along
distance and azimuth range for the entire SCSN. The SE-NW bias of the inter-station
azimuths (arising due to the layout of the stations along the Bight) is evident from
the higher density of station pairs between 80-140°. The distribution is symmetric, so
only 0-180° is shown. The distribution becomes thin beyond about 350 km, occupying
progressively fewer azimuths.

It is useful to have a simple rule of thumb for selecting the range in which the
ASC is well estimated. This can be derived intuitively for random regional arrays such
as the SCSN. Assuming the stations are normally distributed in range in all directions
around the mean latitude and longitude (around 34° N, 117° W for the SCSN), then the
number of raypaths with distance is Rayleigh distributed. The raypath distribution for
the SCSN (solid) is shown in Figure 2.1 (b) and it resembles a Rayleigh distribution with
its mode at about 160 km (the deviation is explained by the higher station density in
the Los Angeles basin thus having more shorter paths).

From the histograms in Figure 2.1 (a) and (b), it is clear that the ASC generally is
better estimated between about 20-380 km (over 10 raypaths/km) and bins outside this
range generally provide noisy estimates. Using the ASC estimates outside this range

to estimate the true SCF or attenuation might result in biased results.

2.4.2 Uneven Azimuthal Distribution of Raypaths

Figure 2.1 (c)—(f) shows the distribution of the inter-station azimuths (every 15°)
at different distance bins (sector plots), and the individual station pairs that belong to
the bin. While in principle, equation (2.6) amounts to an azimuthal average across
all station pairs, in practice, this average is biased because of the layout of the array
(e.g. a NW-SE bias in the SCSN). The potential bias arising from increased number

of station pairs along certain azimuths [see the increased density of stations between
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90-135° azimuth in Figure 2.1 (a) and also excess paths along 250° in (c) and (e) and
along 280-315° in (d)] can be reduced by implementing an azimuthal binning.

We bin the station pairs in 9, into Ay wide azimuth bins, compute the mean
in each range bin and then azimuthally average the means, in order to ensure a more

equal weighting from all azimuths. The ASC then is given by
= 1 = iy
I, = %<Zl: Mr(h‘j, i) (l,J)> Ve Ay (2.13)

where Ay, = {(i,)) | 0; < §l-j < 0141, (i,j) € Dy} is the set of station pairs that are in the
nth distance bin and Ith azimuth bin 0}, and # denotes cardinality of the set (empty sets
are not considered). The ASC I’ is estimated by substituting f( rijs Cyp) = f; in (2.13).
Equations (2.6) and (2.13) are identical when each azimuth has the same number
of inter-station pairs. However, a drawback of (2.13) is that it ignores the variances at
different azimuths [as does (2.6)], since the noise distribution and the anisotropy in the
region are unknown. In other words, it weights azimuth bins with just a single path
(poorly estimated) the same as bins with a large number of raypaths (well estimate)

[e.g., see azimuthal distribution of raypaths for 300-301 km in Figure 2.1 (e)].

2.4.3 Interference Due to Frequency Averaging

It is common in signal processing to average neighboring frequency bins to get
a robust estimate of the frequency content in the bin centered at f;, at the expense
of an increased bandwidth. Since each frequency bin is associated with a different
wavenumber (k = 27fs), such an averaging will introduce attenuation-like effects in
the coherence due to wavenumber interference.

For example, consider isotropic surface noise with a white power spectrum in a
lossless medium. Using a sampling frequency of 1 Hz and an FFT length of 2048 points,
the bin width is Af = 0.48 mHz. Thus, averaging 10 bins centered at f, ~ 0.14 Hz gives
an effective bandwidth of ~ 4.8 mHz. As a result of this averaging, the SCF then is an
average of the SCF at each individual bin.

Figure 2.2 (a) shows the individual SCFs for different frequency bins that were
averaged. At greater separation distances, the coherences are sufficiently out of phase

from one another to introduce intereference effects. As seen in Figure 2.2 (b), the result
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Figure 2.2: (a) Variation in SCF for a 2D isotropic noise field in a lossless medium
within a 4.8 mHz bandwidth centered at 0.14 Hz (10 frequency bins; only every other
bin is shown for clarity) (b) Resulting SCF due to frequency averaging (solid), showing
apparent attenuation relative to the true SCF at 0.14 Hz (dashed).

of such an average introduces an apparent attenuation (solid) that was not originally
present in the true SCF (dashed).

Fitting an e~*" model to the apparent attenuation gives & ~ 1.9 x 107> km™,
which is similar to previously published values for the attenuation coefficient [43] (val-
ues for a from apparent attenuation vary from 1.3 x 107> km™! at 0.05 Hz to 2.5 x 1073
km™! at 0.2 Hz for the scenario above). Thus it is important to minimize frequency
averaging, and if performed, the possibility of apparent attenuation must be taken into

consideration.
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2.5 The Ambient Seismic Noise Field

Capon and conventional beamformer output is shown at different frequencies
and months in Figure 2.3 (the beamforming is performed by discretizing the 0-s space
every 1° from 0-360° in the azimuth and every 0.0025 s/km from 0.15-0.4 s/km slow-
ness). The frequencies and months were chosen to highlight different aspects of the

seismic noise field, namely:

1. SF and DF microseism noise that propagates as fundamental mode Rayleigh wave
(Ro) and appear predominantly from the west [Figure 2.3 (b)-(d), between 0.3-
0.33 s/km slowness] [44].

2. First mode Rayleigh wave (R;), usually seen between 0.12-0.2 Hz [Figure 2.3 (c)

at about 0.23 s/km slowness; also see section 2.5.1]

3. Body waves from distant storms and R, (and often R;) at the lower end of the DF
microseism band [Figure 2.3 (d) at < 0.1 s/km slowness] [28]. Also, weak body

wave signals in the SF microseism band [Figure 2.3 (b)]

4. Dominant body waves from storms at the higher end of the DF microseism band

[Figure 2.3 (i); see also [29]]

These waves are present at predictable times and frequencies, showing that the seismic
noise field is composed of much more than just R,. This forms the basis for further

discussion in sections 2.6 and 2.7.

2.5.1 Fundamental and Higher Mode Rayleigh Waves

Excitation of Rayleigh waves in a layered, anisotropic medium generates higher
modes in addition to the fundamental, with the frequency-phase speed relationship
given by the dispersion equation. Barring a few exceptions [24-26, 45], most stud-
ies using seismic noise only retrieve the dominant fundamental mode Rayleigh wave.
We observe consistent and significant contributions from both the R, and R; of the
Rayleigh waves in the DF microseism frequency band (0.12-0.2 Hz) in addition to P

wave microseisms (section 2.5.2).
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Figure 2.4 shows the Capon beamformer output for all months in 2007 between
0.15-0.4 s/km slowness. The R; wave is consistently observed at 0.24 s/km slowness,
alongside the R, at 0.32 s/km. The generating regions of R; are confined to a smaller
azimuthal region to the west of the array than R,. They are observed at other azimuths
when accompanied by powerful storms such as those in the Labrador Sea and N At-
lantic Ocean in the winter months [see 30°-60° in Figure 2.3 (a) and (b)], or hurricanes
in the Gulf of Mexico and the Atlantic Ocean [see 60-120° in Figure 2.3 (h)]. R; espe-
cially is illuminated strongly at certain specific azimuths [see azimuths 270° and 315°
in (a)-(f), and 250° in (c), (d), (f), (k)].

The phase slownesses of the two modes are estimated and compared against
the simulated dispersion curves [46]. A velocity and density profile is obtained at each
of the station locations [47] (sampled every 1 km in depth till 60 km) and averaged
to obtain a mean velocity model for Southern California [see Figure 2.5 (b) for the
resulting model].

The dominant mode in the slownesses of interest is Ry, and its phase slowness
(averaged over the region of study) can be obtained from the beamformer output by
averaging across all azimuths and searching for the maximum in a restricted slowness

space (here, 0.2-0.4 s/km) as [48]
sR0) = argmax (B(6,5))y, 0.2 < s < 0.4, f€ [0.05,0.2] (2.14)

The R, phase slownesses [medians shown by circles in Figure 2.5 (c)] are very consis-
tent across different months.
Since R; is present only in the 0.12-0.2 Hz band, it can be estimated as in (2.14)

but by further restricting the slowness space to exclude the fundamental mode:
sR) = argmax (B(6,5))g, 0.2 < $ < Smaxs f€ [0.12,0.2] (2.15)
N

where sy is either a sufficiently large value (here, 0.27 s/km) or a frequency depen-
dent value such as spax = f/3 + 3/14 (based on the simulated dispersion curve). Both
approaches give identical results (squares in Figure 2.5).

The estimated slownesses for both modes agree very well with the predictions.
The dispersion of the fundamental and higher modes can be used to estimate the shear

wave velocity with depth for the region.
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Figure 2.5: Density (a) and compressional and shear velocity (b) profiles for South-
ern California obtained by averaging the respective quantities at all station locations.
(c) Average slowness estimates for R, (), R; (m) and their corresponding theoretical
curves obtained using the model in (b).
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2.5.2 Body Waves from Distant Storms

Propagating energy at low slownesses (below 0.1 s/km), corresponding to body
waves, have been known to originate from deep water storms [24, 27, 29]. The body
wave energy is strongest above 0.16 Hz [28], but it is seen throughout the DF micro-
seism band [29], and there even have been observations of P waves in the SF microseism
band [49], and also is seen in Figure 2.3 (b) below 0.1 s/km.

The body wave arrivals seen in Figure 2.3 (d) and (e) are backprojected assuming
a grid of sources and travel time tables [50] corresponding to an assumed propagation
path (P, PP, etc.) [29]. The high energy regions in the backprojected maps in Figure 2.6
(P, PP and PKPbc) correspond well with the respective hindcasts. Specifically, note
the absence of strong P waves from an 8.0 Mw earthquake in Peru (15 August 2007)
in Figure 2.6 (b) and (c) which was removed in the outlier rejection (section 2.3.1),
indicating that the energy observed is mostly from storms in the Southern Ocean.

In February, the body waves in the 0.17-0.2 Hz band primarily are from storms
in the NW Pacific [Figure 2.6 (d)—-(f)] and the P waves from the Atlantic storms seen
in the hindcasts are observed at lower frequencies (0.16-0.18 Hz). The storms from the

Southern Ocean are observed throughout the frequency band of interest.

2.6 Model for the SCF

As in section 2.5 shows, the ambient seismic noise field in southern Californa
contains (in the microseism band) R, and R; Rayleigh waves (at DF microseism fre-
quencies), and body waves from distant storms. It stands to reason that the estimated
ASC will be influenced by these waves, possibly in undesirable ways, and thus must
be taken into consideration.

The ASC T is obtained as in (2.13) with A; = 1 km and Ay = 15°. To avoid
insufficient averaging in each bin, we compute the ASC only for those distance bins
that have at least 10 station pairs (i.e., #9, > 10). For the entire SCSN, this covers the
distance bins between approximately 20-380 km and changes depending on the num-
ber of stations actually used (see section 2.4). In this section, we explore the spectral

(spatial) contents of the observed ASC and show how the phase cancellation effects
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0.13 Hz, August 2007 0.2 Hz, February 2007

Hindcast

P, PKPhc

Figure 2.6: Mean ocean wave height for August 2007 (a) and body wave backprojec-
tions for the P, PP and PKPbc phases at 0.13 Hz (b) and (c). (d)—(f) same as in (a)—(c), at
0.2 Hz in February. The body wave signals primarily are from storms in the N Pacific
and NW Atlantic.
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from multiple waves modifies the ASC to be different from the simple order Bessel

model.

2.6.1 Spectral Decomposition of the ASC Using the Hankel

Transform

Hankel transforms (HT) or Fourier-Bessel transforms are integral transforms

where the kernel is a Bessel function. The HT of order zero H, of a function h(x), x > 0
is given by .

Hoy(k) = fo h(x)x]J,(kx) dx (2.16)

and the inverse transform is

h(x) = fo Ho (k) k], (kx) dk (2.17)

where k = 2nfsis the spatial frequency (or wavenumber). Since the ASC from Rayleigh
waves is approximately azimuthally isotropic due to the averaging in (2.13), the HT is
a natural choice to decompose the ASC. The HT is related to the f~k transform or 2D
Fourier transforms that often are used in seismology, and efficient numerical algo-
rithms exist [51] to compute the discrete HT from the observed data.

Figure 2.7 shows the HT (circles) for the ASC at different frequencies and
months and the HT for the theoretical isotropic noise SCF (using the estimated slow-
ness for R in section 2.5.1) also is overlaid (see circles in Figure 2.8 for the respective
ASCs). The spectrum of the ASC at 0.07 Hz [Figure 2.7 (a)] closely resembles that of
the theoretical SCF, whereas the ASCs in the DF microseism band show the presence
of R; and body waves in addition to R, [Figure 2.7 (b)-(d)]. R; generally is weaker
at the lower end of the DF band [Figure 2.7 (c)] than the upper end [Figure 2.7 (d)].
The peak at about 0.2 s/km slowness in Figure 2.7 (b) possibly is due to a second mode
Rayleigh wave [see at azimuths 30° and 210° in Figure 2.4 (j)]. Body waves are seen at
slownesses below 0.1 s/km [see “P/PP” and “PKP” in Figure 2.7 (b)-(d)].

The presence of multiple propagation paths at each frequency (even without
considering the effects of scattering), suggests that the underlying SCF might be better

modeled as a superposition of 2D surface (including higher modes) and 3D body waves
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Figure 2.7: HT of the ASC (gray line, circles) showing the contributions from different
waves to the spatial spectrum. The HT of Ry is also shown (black) for comparison. R;
is seen in the DF microseism band (b)-(d), weaker at the lower end of the band (c) and
stronger at the upper end (d). P and PP phases between 0.04-0.1 s/km (b)-(d) and PKP
phase between 0.02-0.04 s/km (d).

of different slownesses, rather than only the fundamental mode Rayleigh wave. In

other words, the model SCF I 4 (7) is

Timodet() = ) qmJy@7fs™1) + | gpsinc(2nfs?r) (2.18)

meR pEP

where the q( indicates the relative contribution of the component to the SCF, R de-
notes the different Rayleigh wave modes (here, R, and R;) and # denotes the different

body wave phases.

2.6.2 Multipath Effects on the ASC

Using the estimates 5§%0) in (2.14) and ) in (2.15), we estimate the ¢’s and

s(P)’s in (2.18) from the ASC by the following minimization:

argmin I - Z qmJ, [Znﬁ(m)dn] - Z g sinc [271'fs(p)dn]

qRo.R19P1. Py SP1.P2) m=Ry.R1 p=P1,P 1
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where s*) is constrained to be between 0 and 0.1 s/km, and the ¢; norm is used to
reduce the impact of outliers in the data. The best fit SCF Ftrue then is obtained by
substituting the estimated quantities in (2.18). We only search for at most two body
wave phases (any of P, PP or PKP) since there are usually around 1-2 distinct peaks
(with a large spread) in the DF microseism band. The number of # components can
be increased appropriately based on the number of peaks below 0.1 s/km in the corre-
sponding HT.

The best fit SCF thus obtained are shown in Figure 2.8 (thick solid lines; circles
with thin lines are the observed ASC) for the same frequencies and months consid-
ered in Figure 2.7. The multi-component SCF model in (2.18) captures closely the weak
“beating” effects in the ASC [clearly seen in Figure 2.8 (c)] arising due to the interfer-
ence between the different wavenumbers corresponding to different propgation paths
(Ro and R; have the same raypath but propagate at different wavespeeds). While for
most purposes a simple R, only model might suffice, the results here show that even
modest contributions from additional wavenumbers can cause phase cancellation ef-
fects, which could influence the estimation of the attenuation.

The contribution from the body waves is shown by the dashed lines which cap-
tures the long wavelength fluctuations of the ASC [Figure 2.8 (c)]. The impact of P-
wave microseisms is more pronounced on the ASC at higher frequencies, especially
in the Winter months (Dec—Feb), when the body waves primarily originate from large
storms in the west Pacific and north Atlantic. The resulting ASC [Figure 2.8 (d)] is more
sinc-like, than a Bessel (from the estimated gs, 67% of the SCF is due to body waves).

2.6.3 Composition of the SCF

The composition of the multi-component SCF also varies with season and fre-
quency. From the estimated ¢’s, we compute the percentages of R;, R, and # (com-
bined) and the relationship between the them is studied via a simplex plot (or ternary
plot) in Figure 2.9. The plot represents the contributions as observed by the SCSN ar-
ray using (2.18) for noise in the S Californa region, and will be different for a different

array and region. For any point in the simplex plot, the corresponding contribution
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Figure 2.8: Observed ASC (circles, thin gray lines) for different months and frequen-
cies, and the best-fit SCF (solid, black) obtained from (2.19). The fit was computed only
between 20-380 km (shaded region) due to insufficient raypaths at shorter and longer
distances (see section 2.4). The contribution of the P waves to the SCF is shown by
dashed lines. In (d), the SCF primarily is due to P waves, and the fast decay of the
coherence could be misinterpreted as being due to attenuation.
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Figure 2.9: Simplex plot showing the relative contributions of Ry, R; and P waves to
the SCF in the SF microseism band (a) and DF microseism band (b). The values for
each component (vertex) at a given point is read from the scale on the corresponding
side. In the SF band (a), R; is not observed and the SCF is dominated by R, with small
contributions from P waves. Between 0.12-0.2 Hz [DF band, (b)], the SCF is composed
of the Ry, Ry and Pwaves (P, PP and PKPbc phases are seen with smaller contributions
from other phases). Lower frequencies (smaller circles) have a larger R, component
in the SCF compared to the higher frequencies. During the winter months (Dec-Feb),
the higher frequencies (larger circles) have a larger P component than R;.

from the three components (vertices) is read from the scale on the corresponding side
(using guidelines directly opposite the vertex).

In the SF microseism band, R; is not observed and the SCF is dominated by R,
[see cluster at the R, vertex in Figure 2.9 (a)] throughout the year. Modest contribu-
tions from body waves are occassionally observed [such as the signals under 0.1 s/km
slowness in Figure 2.3 (b)] and these are likely due to P waves generated when distant
storms make landfall [29].

In comparison, the contributions are more spread out in the DF band [Figure 2.9
(b)]. At the lower end of the frequency band (smaller circles), the SCF still is predom-
inantly due to Rayleigh waves but shows increasing R; contribution with frequency
(larger circles towards the R; vertex). At the higher end, much of the contribution to
the SCF comes from body waves (see larger circles towards the # vertex). Still, at most
months and frequencies, at least 75% of the SCF is due to R, (most circles fall within

the bottom 25% of the triangle, corresponding to > 75% R,).
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The colors of the circles also show a seasonal dependence in the relative con-
tributions. During the northern hemisphere Winter (red, blue and purple shades cor-
responding to Dec-Mar), contribution from body waves is higher at the higher fre-
quencies (large circles close to #) compared to the rest of the year (green and yellow
shades). More generally at most frequencies the blue/red shade circles are closer to
than Ry. At no time or frequency does R; exceed R, which just reflects the fact that

R, is the dominant mode.

2.7 Discussion

As discussed in Section 2.4 several extrinsic factors influence the coherence
estimate, and the presence of multiple seismic waves (Section 2.5) significantly alters
the shape of the SCF (Section 2.6). Although we have minimized the influence of these
factors in the processing and explicitly accounted for multiple seismic waves in this
article, interpreting the ASC and information derived from it (such as attenuation) also

depends on the inhomogenity of the medium.

2.7.1 Effect of Velocity Inhomogenity

Although it is well accepted that azimuthal averaging helps improve the distri-
bution of noise sources (brings it closer to isotropic), its role in mitigating the focusing
and defocusing effects of velocity inhomogenity is not fully understood. The station
pairs at a particular distance bin also span regions with different velocities. For in-
stance, in the 200-201 km bin [map in Figure 2.1 (d)], nearly half the station pairs fall
in the Los Angeles basin area which has higher attenuation and lower velocity than
the rest but the estimate of the coherence for that bin includes contributions from both
regions [similarly for the 300-301 km bin in Figure 2.1 (e)]. As the distance increases,
the number of available station-pairs decreases as well as being predominantly in low
attenuation, high velocity regions (even rays crossing through the Los Angeles basin
spend only a fraction of the total distance in the basin).

By averaging over a wide region, it is likely that the ASC contains local inter-

ference effects (i.e., at certain distance bins) from multiple wavenumbers arising from
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inhomogenities. This is evident in Figure 2.8 (a), where the ASC estimates beyond 350
km are progressively shifted slightly to the right (in addition to being noisy, as ex-
plained in section 2.4) of the best-fit SCM (which fits the 20-300 km range very well).
A shift to the right corresponds to a higher velocity and is due to most of the paths
being in a higher velocity region. In regions with high velocity variation, averaging
the coherence across different phase slownesses might introduce phase cancellations,

which can have the same effect as attenuation (see section 2.6.2).

2.7.2 Challenges in Estimating the Attenuation Coefficient

Theoretical results do not consider the case when the SCF is composed of contri-
butions from different seismic waves (distinct wavenumbers at each frequency). Each
wave possibly decays with a different attenuation factor and have different geomet-
ric spreading losses, depending on its propagation path. In addition, as shown in sec-
tion 2.6.2, the interference and phase cancellations from interacting wavenumbers also
could have attenuation-like effects. These uncertainties, combined with the effect of
scattering which has hitherto been ignored, make estimating attenuation from coher-
ence challenging.

For the ASCs obtained in section 2.6 from (2.13), Figure 2.10 shows the loga-
rithm of the envelopes of the ASC (circles, thin gray lines; computed using the Hilbert
transform and smoothed over half a R, wavelength) and of the best-fit SCFs (solid).
While the ASC shows some signs of attenuation [e.g., see Figure 2.10 (c) beyond 250
km], the exact relationship governing the attenuation is not immediately apparent.
For instance, the estimated true SCF has comparable amplitudes similar to the ASC at
different, well-separated ranges [compare the ASC (circles) and estimated SCF (solid)
at 30-80, 150-220, 310-350 km in Figure 2.10 (b) and 30-70, 120-220 km in (c)], and
generally a higher amplitude at ranges in between these [sometimes lower, e.g. at 230
and 450 km in Figure 2.10 (b)].

This could be due to the effects of focusing and defocusing, which was assumed
to be negligible due to the distance and azimuth averaging of the ASC, and due to the
interference between the different waves (similar patterns in the ASC are also observed

in Figure 6 of [15]). However, it is clear that by not accounting for the multiple waves,



38

_O.J T T T I T T T
October, 0.07 Hz @ ||t October, 0.15 Hz (b)
3 i
=i
&-10
5]
=
)
&)
=
- 15¢
)
3
_2. 1 1 1 1 1 1
_O.J T T T
August, 0.13 Hz (©)
0
Q
=i
Q-
Y
5]
=
)
&)
=
o
)
3
_2 1 1 1

) 100 200 300 400
Distance (km)

Figure 2.10: Log of the envelope of the observed ASC (circles, thin gray lines), of the
best-fit SCF (solid) and of the best fit SCF using an exponentially decaying R, as in [15]
(dot-dashed).

one might miss the overall trend of the coherence and interpret increases in coherence
at farther distances to be just noise. As a result, a simple exponential decay model (dot-
dashed, computed using an SCF with only R)) tends to over estimate the attenuation.
Retrieving meaningful estimates of the attenuation coefficient from the ASC would

require careful disentangling of the effects of medium anisotropy.

2.8 Conclusions

Our analysis of seismic noise using the Southern California Seismic Network
(SCSN) shows a clear presence of fundamental and first mode surface Rayleigh waves
and body waves in the microseism band (0.05-0.2 Hz). The higher mode Rayleigh
waves are persistent and seen throughout the year primarily from the west. The disper-
sion curves are estimated for both the modes and they closely resemble the predicted
dispersion using velocity models for southern California. These curves will be useful
in studying subsurface layering, especially in inversions for shear wave velocities.

Additional factors such as the array geometry and velocity anisotropy affect
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the coherence estimates. For random regional arrays such as the SCSN, the number
of raypaths with distance is approximately Rayleigh distributed, which gives a rule
of thumb for the distances at which there are sufficient raypaths. Within this range,
the coherence from data generally is well estimated (approximately 20-380 km for the
SCSN) and is noisy elsewhere.

By modeling the underlying spatial coherence function (SCF) as a linear com-
bination of the above wave types (with the ratios estimated from data), we show that
it describes the observed coherence better than a simple zeroth order Bessel function
model which corresponds to only the fundamental mode. The interactions between
the wave types in the SCF leads to beating and phase cancellation effects which could
be interpreted as being due to attenuation or the focusing and defocusing effects of

velocity anisotropy.
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ASYMPTOTIC EIGENVALUE DENSITY OF

NOISE COVARIANCE MATRICES

The asymptotic eigenvalues are derived for the true noise covariance matrix
(CM) and the noise sample covariance matrix (SCM) for a line array with equidistant
sensors in an isotropic noise field. In this case, the CM in the frequency domain is
a symmetric Toeplitz sinc matrix which has at most two distinct eigenvalues in the
asymptotic limit of an infinite number of sensors. Interestingly, for line arrays with
inter-element spacing less than half a wavelength, the CM turns out to be rank defi-
cient. The asymptotic eigenvalue density of the SCM is derived using random matrix
theory (RMT) for all ratios of the inter-element spacing to the wavelength. When the
CM has two distinct eigenvalues, the eigenvalue density of the SCM separates into two
distinct lobes as the number of snapshots is increased. These lobes are centered at the
two distinct eigenvalues of the CM. The asymptotic results agree well with analytic

solutions and simulations for arrays with a small number of sensors.

3.1 Introduction

Over the past decade, it has been shown that cross-correlations of a diffuse

field between a pair of receivers yields the Green’s function between them [1,2]. Since

44
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ambient noise is ubiquitous, the immense potential of this technique to image remote
areas of the ocean and the interior of the earth using arrays of sensors and naturally
occurring noise has made it a rich area of current research in seismology [3, 4] and
ocean acoustics [5, 6], and structural engineering [7] among others. The use of many
receivers and the random nature of the ambient noise field provides a good setting for
the application of random matrix theory (RMT) [8,9]. Here, we study the eigenvalues
of noise covariance matrices from an array of sensors.
In array processing problems, the noise field often is assumed to be isotropic,
i.e., it consists of random waves propagating towards the array from all directions. The
spatial coherence function I' of the noise recorded on two sensors in a 3-D isotropic
noise field is [10]
' = sinc(2p) (3.1)

where sinc(x) = sin(zx)/(7x) and S is the ratio of the spacing between the sensors
to the wavelength under consideration (f = fAx/c, where fis the frequency, Ax is the
spacing between the sensors, and c is the speed of wave propagation in the medium).
For a linear array of N equidistant sensors, the elements of the covariance matrix X

(CM) of the noise field (normalized to unit power on each sensor) are given by

%, = sinc (28li — jl) . (3.2)

which is a symmetric Toeplitz matrix. Thus, the spatial correlations are only dependent
on f and the separation |i — j|.

With real noise data, the sample covariance matrix (SCM) Y is estimated from
M ii.d. observations of the array snapshot vector (i.e., the Fourier coefficients of the

observation vector at a particular frequency) m={1,...,M} as

m’

— 1 M
¥= o le Ul (33)

The eigenvalues of the SCM deviate from the true CM and the density of these eigen-

values,
_ 1
OEEDILCEPS (3.4

n=1
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where A, are the eigenvalues of >, are typically studied using random matrix theory
(RMT), in the asymptotic limit as the array dimension and the observation dimension
both grow large proportionately, i.e., N,M — oo, N/M = v, the ratio of the number of
array elements to the number of snapshots. RMT also has applications in a wide variety
of fields such as signal detection [11], communication via antennas [12], information
theory and wireless networks [13], elastodynamics [14] and wave propagation and
scattering in random media [15-17].

Prior work involving RMT and eigenvalue densities relevant to this article in-
clude [18,19]. While [18] deals with estimating the true eigenvalues of the CM from
the observed SCM for a few distinct sources, we focus on the asymptotic eigenvalue
density of the SCM for a noise only model (i.e., no sources). Knowledge of these den-
sities could be used in monitoring environments, i.e., a change in the density could be
interpreted as a change in the environmental conditions. The results also could be used
in conjunction with [19] to identify eigenvalues corresponding to strong interferers in
the environment (e.g., ships in ocean acoustics and earthquakes in seismology). In
Section 3.3.2, it is shown that the SCM for isotropic noise fields is rank deficient even
when the number of snapshots is more than the number of array elements (i.e., v < 1).
This result is certainly important to consider in applications which require the inverse
of the SCM, such as adaptive beamforming.

The rest of the paper is organized as follows. A statistical model for the SCM
is chosen in Section 3.1.1, followed by a recap of known results for an uncorrelated
noise SCM. Section 3.1.3 discusses preliminary details that aid in the derivation of the
eigenvalues in Section 3.2. In Section 3.3, the asymptotic eigenvalue density of the
SCM is derived using Stieltjes transforms and studied in detail for all values of . The
asymptotic results are compared with analytical results for finite N in Section 3.4 and
using simulations for practical values of N in Section 3.5, followed by conclusions in

Section 3.6.

3.1.1 Statistical Model for the SCM

The noise snapshot vector is modeled as a stationary, zero-mean, complex

Gaussian stochastic process with covariance %, i.e., ¥, ~ CN(0,%). Realizations of
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the noise SCM then can be generated from the true CM X as [18]

> = A%zl/zx (zl/zx)H, (3.5)
where X is an N X M random matrix belonging to the Gaussian unitary ensemble
(GUE)! whose entries are zero-mean complex Gaussian random variables drawn from
CN(0,1), and > isa non-negative definite square root of the true CM, .

Here we restrict our focus to v < 1, i.e., there are at least as many snapshots
as the number of array elements, because the stationarity of the environment over
reasonable intervals allows for sufficient averaging (i.e., snapshot starved scenarios

are not considered).

3.1.2 Uncorrelated Noise at f = 1/2

At f = 1/2 (half-wavelength spacing) the off-diagonal terms in (3.2) are zero
and X = L In other words, the noise is spatially uncorrelated from sensor to sensor.

The eigenvalue density of the SCM in this case, in the limit NNM — oo and
N/M = v, is given by the Marcenko-Pastur (MP) density [20],

L-N)(A-L
R R (56
0 otherwise

where I = (1—+/v)?and [, = (1++/v)? are the upper and lower limits of the “spread-
ing” of the eigenvalues of the SCM around the true eigenvalue which is 1.

This holds true for multiples of the half wavelength spacing i.e., f = q/2, g € N
and for all other values of f, the noise is correlated and the densities of the SCM will

deviate from the simple MP density.

3.1.3 Preliminaries

Symmetric sinc Toeplitz matrices (henceforth referred to as sinc matrices)
also arise in solutions to certain differential equations [21], covariance matrix ta-

pering [22, 23], etc. In general, the eigenvalues of an infinite dimensional Toeplitz

IThe distribution of the elements in a GUE random matrix is invariant to transformations by a unitary
matrix
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matrix constructed from absolutely summable sequences with an absolutely summable
Fourier series (called Wiener class Toeplitz matrices) are related to the Fourier series
of the sequence [24,25]. Although the underlying sinc sequence in ¥ is not absolutely
summable, this result still holds, as shown in Section 3.2.

The relation between the Fourier transform of the sinc function and the eigen-
values of the sinc matrix has been shown previously [26, 27]. The eigenvalues of the
finite dimensional sinc matrix also were studied in detail in the context of discrete pro-
late spheroidal wave functions [21,27] for f < 1/2 and for block Toeplitz sinc matrices
in the context of asynchronous CDMA systems [28]. In Section 3.2, we consider the
asymptotic eigenvalues of the true CM ¥ for all § € (0,00), as the array dimension
N — oco.

A key to understanding the asymptotic behavior of the eigenvalues is the be-
havior of the Fourier transform of the sampled sinc function when it is oversampled
or undersampled (see Fig. 3.1). Consider the infinite sequence sinc(2fn) where n € Z,
i.e., a sampling interval of Ax corresponding to the inter-element spacing of the line
array. The Fourier transform of the continuous sinc function is a rectangular func-
tion of bandwidth 2/ (highest frequency f). In order to avoid aliasing in the Fourier
transform of the sampled sinc, we need 28 < 1, or f < 1/2. At the Nyquist sampling
B = 1/2 (and at multiples of 1/2), the sinc is sampled at only its peak and zeros, and
corresponds to a unit sample. As a result, the Fourier transform is 1 [see Fig. 3.1(c,d)].
When f < 1/2, it is oversampled and the Fourier transform is zero outside the band-
width of the sinc [see Fig. 3.1(a,b)]. When S > 1/2, the sinc function is undersampled
and this introduces aliasing in the Fourier space [see Fig. 3.1(e,f)]. These behaviors of

the Fourier transform are reflected in the eigenvalues of the CM.

3.1.4 Notations

Throughout this paper, matrices are represented by bold, uppercase symbols
and vectors by bold, lowercase symbols. With the exception of v, quantities pertain-

ing to the SCM are denoted with a carat,”. In order to compare infinite dimensional
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matrices, a normalized rank is defined as

R() = lim rank(+)
N—oo N

(3.7)

For convenience, N is implicitly assumed even in Section 3.2.1, although the

same can be done for odd N (asymptotic result remains unchanged).

3.2 Asymptotic Eigenvalues of the Noise CM

3.2.1 Derivation of the Eigenvalues

Let f, = sinc(2fn), n € Z be an even sequence that is absolutely square

summable, with a Fourier transform

oK) = Z fre " (3.8)

n=—oo

where « is the spatial frequency.

Proposition 3.1 (Asymptotic eigenvalues of the sinc matrix ¥). Defining Ay and uy as

N/2-1

/lk: Z fne—127rnk/N (39)

n=—N/2
and

U= —
VN

where k € {—=N/2,...,N/2 — 1} is the equivalent of a discrete Fourier transform spatial

. ey

1 T
[1, ¢ 2TkIN e—zan(N—l)/N] (3.10)

frequency bin, then as N — oo, A; and uy, are the eigenvalues and eigenvectors of .
Proof. If Ay and uy are the eigenvalues and eigenvectors of 3, then the equation

Sug = Agug (3.11)
must hold as N — co. Writing ¥ as

[ ﬁ) fl fN—l-

f—.l ﬁ) fN.—z, (312)

fner fonee 0 fo
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the jth element (j = 1,...,N) of the vector Zuy is

[Zuk Z f o 2mk(n+j-1)/N

\/_n 1-j

N-j

Z Lt (3.13)

n 1-j

where aji, = fe” K H-D/N is introduced as a shorthand notation. Similarly, the jth

element of the vector Ajuy is

1 N/2-1
[Akuil; = — Z Ajien (3.14)
\/Nn:—N/Z
Subtracting (3.13) from (3.14):
N—j
) Z Qjkn + Z Xjkn J< Nj2
=—N N,
[Zuk - /lkuk]j = W\] —Nr;z—l /2 N72—1/2 (3.15)
Z Ajkn — Z Ajkn Jj> N/2
n=1-j n=N—j+1

Using the triangle inequality and reverting to the original notation, (3.15) results in

-J N-j
DURE+ DL IRE j N2
|2 - Aeuy] j|2 < % oV N (3.16)
DR DL RPNy
n=1-j n=N-j+1

Taking the norm of the entire vector, and combining the terms in the first and

last components, the terms in the second and penultimate components and so forth,

we get
1 N/2 —j N-j
k — AUkl =/ n n
|Zu lul|2<N >+ > 1l
j=1 \ n=—N+j j
9 N/2 N-j N/Z N-j
SNZ |fa Z Z sinc?(28n)
=1 n=j J—l n=j
N/2 oo
1 1
< — 3.17
2*N 4 Z n? (317)
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Since the functions 1/x* (and 1/x) are strictly convex on (0, c0), the RHS of (3.17) can
be simplified as:

N/2 N/2 N2

1
;;”2 Z1f1/2"2 21‘1/2
Niz+1/z g
<f 4 :1n(5) (3.18)
1/24-¢ y—l/2 2¢

From (3.17) and (3.18), 4 ¢ > 0 independent of N, such that ln(g)/(ZﬁzN) goes

to zero independent of k as N — oo. Hence,
[[Zup — Agug|l, > 0as N— oo ¥V k (3.19)

or A and ug are the eigenvalues and eigenvectors of X respectively. m]

When N — oo, from (3.9) and (3.8), Ax = ¢(k/N) i.e., (k) sampled uniformly at
Npoints in [-1/2,1/2). As illustrated in Fig. 3.1, ¢(k) only takes on one or two distinct

values. Thus, the eigenvalue density p(A) of X can be written succinctly as

P(d) = §16(A = Ay) + £,6(A = Ay), (3.20)

where A ; are the two distinct eigenvalues and ¢, , are their multiplicity ratios defined

as follows:

1. For f < 1/2 (oversampling)

¢(k) = — rect ( ) (3.21)
/5 2p
where rect(x) = 1V |x| < 1/2 and 0 elsewhere. Hence, the two distinct values of
Aj are
1
A= ﬁf and A, =0 (3.22)

and the multiplicity ratios are related to the bandwidth as

& =2fand &, =1-2p. (3.23)
In this case, ¥ is rank deficient due to the zero eigenvalues.

2. For f = 1/2 (Nyquist sampling) and multiples thereof, A; = Ay, =1land ¥ = L.
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3. For f > 1/2 (undersampling) and not a multiple of 1/2, aliasing is introduced
due to the folding of the eigenvalue spectrum onto itself [see Fig. 3.2(b)]. As a
result, both A; and A, are non-zero when f > 1/2 and 8 # q/2, q € N, resulting
in ¥ being full rank. A, , then can be written as

A= qzzl and A, = %,
with g such that g < 28 < g+ 1. The term g/(2f) accounts for the folding of the

(3.24)

spectrum. Similarly, the multiplicity ratios are given by

£, =2B—qand &, = q+1-2p. (3.25)

3.2.2 Physical Interpretation and Effects of Finite Arrays

For f < 1/2, the eigenvectors (3.10) of the non-zero eigenvalues correspond to

waves from specific angles 0, impinging on the array
0 i (’C) (3.26)
x = arcsin | — | . .
B

Thus 0 = 0 corresponds to a wave impinging at broadside and 0.3 = +7/2 corresponds
to the array end-fire direction (see Fig. 3.2). The zero eigenvalues A, for f < 1/2 corre-
spond to the invisible space [29, §3.3.2], as it does not correspond to any propagating
wave [see Fig. 3.2(b)].

For finite N the transition between A; and A, becomes more gradual due to
truncation effects similar to the effect observed for finite Fourier transforms and this is
discussed in Section 3.5. Approximations for the eigenvalues in the transition region

for finite N are described in [21], scaled down by a factor of 2.

3.3 Asymptotic Eigenvalue Density of the Noise SCM
Using Random Matrix Theory

For the statistical assumptions made in (3.5), the eigenvalue density p(A) of
> converges to a probability density function that is related to the true eigenvalue

spectral density p(4) of X [30].
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The behavior of the eigenvalues of the SCM in the asymptotic limit, is charac-
terized by the Stieltjes transform of its distribution [31]. In this section, we present the
relevant results from RMT in Section 3.3.1, followed by the derivation for the densities

for all § in Sections 3.3.2-3.3.4.

3.3.1 Background

For the density p(4) : R — R, its Stieltjes transform s = $(z) is a complex

valued function defined as

5(z) = _OO ;15(——/11 d, ze Ct = {ze€ C|Im[z] > 0} (3.27)

Equation (3.27) can be inverted explicitly to retrieve the density as [13]
B = lim %Im 3+ 16)] (3.28)
Since for all f € (0,00), X is bounded in spectral norm and the observations
follow Gaussian statistics in (3.5), the Stieltjes transform $ of the asymptotic eigenvalue
density p(A) is a solution to [30]:

i

) A(1—v—vz8) =2

§= (3.29)

As v — 0, s — s, which is the Stieltjes transform of p(7), the eigenvalue density of %
in (3.20), and is given by :
_ i

s= ;2 = (3.30)

Considering (3.29) for z - A € R\{0} and simplifying, s then is the root of a

polynomial with real coefficients (whose degree is 2 or 3, depending on the number

of distinct non-zero eigenvalues of ¥). Since the array element spacing, frequency of

interest and the ratio of number of array elements to the number of snapshots are

known, (3.29) can be solved in terms of § (or equivalently, A; and ¢;) and v.
Since p(A) has not been defined at A = 0, we define it as follows, using the fact

that the area under the density is 1:

B0y =1- f BhydA (331)

A>0
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Figure 3.3: (a) Asymptotic eigenvalue density for v = 1/4 and f = 1/4 (dashed, A; = 2)
and f = 1/2 (solid, M-P density, A; = 1). Only the contribution from the non-zero
eigenvalue is shown for f = 1/4. The extent of spreading is marked by symbols and
the non-zero eigenvalue A; in each case is marked by an arrow. (b) Change in the
spreading of the densities in (a) for different v.

Noting that covariance matrices are non-negative definite (i.e., eigenvalues are non-
negative) and that the normalized ranks R(X) and R(E) are equal in the asymptotic

limit, it follows that
& p<1/2,

0 otherwise.

p(0) =p(0) = (3.32)

3.3.2 Density for Spatially Oversampled Case (f < 1/2)

In this section, the eigenvalue density is first derived from the MP density using
linear algebra and then again using Stieltjes transforms in order to illustrate concepts

essential in Section 3.3.4.
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Using the eigendecomposition ¥ = UAU" in (3.5) gives
— 1 H
% = —UAYAX’ (AV2X) U, (3.33)
M

where X’ is also an N X M random matrix with elements ~ CN(0,1) (since X is GUE).
From (3.22), the eigenvalues of X and A are A; with multiplicity ratio £; and zero with
multiplicity ratio &,. Due to the zero eigenvalue, only the upper &, portion of X’ con-
tributes to the matrix multiplication in the asymptotic limit or equivalently, the array
elements to snapshot ratio decreases to v = v¢;. Hence the distribution of the non-zero
eigenvalue of ¥ also follows the MP density in (3.6), albeit with v instead of v.

So, the eigenvalue density of > can be written as

g YD) ) <y

2mvA

£,6(1) otherwise

P(A) = (3.34)

Here, 1. are modified forms of L in (3.6), to account for v and the scaling by A, given
by

le=A (1% \/3)2 = % (3.35)

The first term in (3.34) accounts for the density due to the spreading of the non-zero
eigenvalue A; [see Fig. 3.3(a)] and the second term in (3.34) is the density due to the
zero eigenvalue. The density at A = 0 remains unchanged from that of the true CM as
in (3.32). Note that although the first term is similar in form to the M-P density in (3.6),
the spreading A, is different and is given by (3.39).

Equation (3.34) also can be arrived at using the Stieltjes transform in Section

3.3.1. Using A; and ¢, from (3.22) and (3.23), (3.29) simplifies to
VA% F A2 —2(B—-1)v—1]5+2B1-v+A) +v-1=0, (3.36)

To obtain the density p from (3.28), (3.36) is solved for s, keeping only the solution

where Im[§] > 0 since p(1) > 0, resulting in
Im[5] = V-D/(2vA*) for D<0 (3.37)
where the discriminant D is factored as

D

2[4 (v = M2 = 4B(v + 1) + 1]
4B (A = AL)(A = Ay), (3.38)
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with
(1++2Bv)*

25 (VAL £ VV)?, (3.39)

which is identical to (3.35). Hence, the real roots of the discriminant D provide the

Ai:

bounds for the density. Im[5] can then be written as

LVA-AH(A=A-) 1

2vA

<A</1+,

A

Im[§] = (3.40)

0 otherwise

and from (3.28) and (3.32), (3.34) can be obtained.

Typically, in array processing applications, zero eigenvalues are encountered
only when the SCM is snapshot starved (v > 1). However, from (3.34), the SCM always
will be degenerate for f < 1/2.

3.3.3 Density for Spatially Nyquist Sampled Case (f = 1/2)

The density in this case and for all f = ¢/2, g € N is given by the M-P density as
discussed in Section 3.1.2. Equation (3.34) is a generalized form of M-P and indeed (3.6)
follows from (3.34) for A; = 1 and &, = 0. From Fig. 3.3(b), it is clear that the spreading
of the eigenvalues is wider in the oversampled case (dashed) than the Nyquist sampled

case (solid), even though the noise power on each sensor is the same.

3.3.4 Density for Spatially Undersampled Case (§ > 1/2)

Eigenvalue densities for SCMs, where the true CM has two non-zero eigen-
values (with multiplicities), have been studied in the context of detecting signals in

uncorrelated noise [32]. Proceeding as in the previous section, (3.29) simplifies to

SAEA AV + FAV[AA] + Ay) + 2A, Ay (v — 1)]
+5[22 4+ WAy + Ardy) + AA + A (v — 1)
FAA (v = D]+ A+ (A, + AGE) (v-1) =0, (3.41)

The above cubic has one real root and the other two roots, if complex, exist as conjugate

pairs. Normalizing (3.41) to the form §* + a»5* + a;5+ ag = 0, the desired solution for
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Im|[§] is given by
(1+i3)R (1-iv3)Q
+ R )

Im[§] = Im (3.42)
where R = \[P+V-Dand Q = (a3 — 3a1)/9, with the discriminant D = Q° — P
and P = (-2a, + 9aia, — 27ay)/54. Finally, to obtain the density from (3.28), Im([3] is
replaced with |Im[§]| to include the positive contribution from the conjugate solution
(see Fig. 3.4).

As in the previous section the real roots of the discriminant D (considering it as
a polynomial in 1) give the bounds where p(1) > 0. The spreading of the eigenvalue

density [Fig. 3.5(a)] can be understood from a physical viewpoint as follows.
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When the SCM X, is formed from a relatively smaller number of snapshots, i.e.,
M ~ Nor v ~ 1, there is a larger uncertainty as to what the true eigenvalues are
(small sample size). This results in the eigenvalues of the SCM spreading across the
two true eigenvalues and resulting in a single spread out region [dashed line in Fig. 3.4
and Fig. 3.5(a)].

When the number of snapshots is much larger than the number of array ele-
ments i.e., v < 1, the uncertainty in the sample eigenvalues reduces and there are two
intervals where p(A) > 0, localized around each of the true eigenvalues [dot-dashed
line in Fig. 3.4 and Fig. 3.5(a)]. Having two distinct intervals is equivalent to the dis-
criminant having four real roots.

The presence of two lobes in the eigenvalue density of the SCM has implications
in signal detection. For example, if one were unaware of this phenomenon, one might
conclude erroneously that the lobe associated with the larger eigenvalue is due to a
signal, when in reality, it is only noise. Therefore, it is of interest to determine at what
value of v the density splits in two so as to take into account when processing data.

In Fig. 3.5(a), the curve splits into two distinct lobes at v ~ 0.115. The v where
this occurs, v; is a double root and can be obtained by setting the discriminant of the

discriminant of the cubic to zero (see Appendix), and is found as
A= A,)?
Vs = (1/; 2) 3 (3.43)
|(a36)" + (a3e,)"]

The resulting curve for vg for f € (1/2,1) is shown in Fig. 3.5(b). At all values of v

below this curve, the density will have two lobes.

3.4 Eigenvalue Density of the SCM for Finite N

Matrices of the type XX, where X is a GUE random matrix, are known as
Wishart matrices [33] and the joint probability densities of their eigenvalues have been
known for a while [34-37]. These densities are generally expressed as hypergeometric
functions of the matrices themselves and are complicated and difficult to work with

for both numerical and analytical analysis [37]. In recent work, the form of these
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expressions were simplified by rederiving in terms of the product of two determinants
(38,39].

The results from [39] are applied to the isotropic noise SCM and the correspond-
ing densities for different f are given in (3.44) and (3.45) in Appendix 3.B. In Fig. 3.6 the
analytical densities for N = 20 (solid line) and the asymptotic density (dashed line) are
shown for different values of . The simpler asymptotic solution holds well for mod-
est values of N, although it does not capture the effect of the transition eigenvalues
[Fig. 3.6 in panel (a) around 0.5 and panel (d) around 0.8]. The number of local peaks in
the solid line is the same as the number of distinct eigenvalues of the finite SCM, and
correspond to the expectation of the means of the individual eigenvalues.

Evaluation of (3.44) and (3.45) are computationally intensive even for modest N.
The computational complexity increases drastically with N [roughly O(N*)], and the
large exponents of both large and small numbers in the expressions make it unsuitable
for numerical work without significant effort due to the limitations of floating point
arithmetic. This is not immediately apparent from [39], as only the N = 3 case is
considered there. In comparison, the asymptotic result captures most of the features

of the eigenvalue density, and can be easily calculated from (3.34) or (3.42).

3.5 Simulations

A Monte—-Carlo simulation is performed to compare the theoretical asymptotic
results with the empirical eigenvalue density obtained for a finite N. In Fig. 3.7 and
Fig. 3.8, realizations of the SCM are obtained as in (3.5) and the empirical densities
of the eigenvalues are averaged over 1000 realizations in order to obtain statistically
stable distributions. The asymptotic solution (solid lines) are obtained from (3.34) for
B =1/4,(3.6) for f = 1/2 and (3.28) with (3.42) for f = 3/4.

Fig. 3.7 shows the resulting empirical densities when v = 1/4 and different
pB for N = 100 [Fig. 3.7(a-c)] and N = 20 [Fig. 3.7(d-f)] respectively. In Fig. 3.7(a),
nearly half the area is due to the peak at A = 0 [exactly half in the asymptotic limit, as
p(0) = & = 1/2 from (3.32)]. The asymptotic solutions describe the empirical densities
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Figure 3.7: Asymptotic eigenvalue density (solid line) and the empirical eigenvalue
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number of snapshots) and spacing to wavelength ratios f of (a) 1/4 (b) 1/2 and (c) 3/4.
(d,e,f): Same as in (a,b,c) except with N = 20. The dotted lines show the locations of
the distinct non-zero true eigenvalues. In (a) and (d), the y-axis is only shown between
0-0.5 so as to display the density due to the non-zero eigenvalue prominently.
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quite well, except for tails at large A as opposed to a sharp edge in the asymptotic case,
which become more prominent as N decreases [e.g., Fig. 3.7(b) vs Fig. 3.7(e)].

Another clear consequence of finite N, is the contribution from transition eigen-
values, seen between 0.1-0.8 in Fig. 3.7(a,d) for f = 1/4. While their effect is not seen
in Fig. 3.7(c,f) at v = 1/4 for f = 3/4, it becomes apparent when the number of snap-
shots is increased to v = 1/40 in Fig. 3.8(c,f). Here, the densities localize around the
two asymptotic eigenvalues (A; = 4/3 and A, = 2/3) and the contributions from the
transition eigenvalues [centered around n/N = &, = 0.5 in Fig. 3.8(a,d), where £, is
from (3.25)] fill up the region in between them. Even at v = vy = 0.115, when the den-
sity splits in the asymptotic case, the empirical density does not split entirely because
of the transition eigenvalues, resulting in a non-zero contribution in Fig. 3.8(b,e).

Both of the above effects (tails and contributions from transition eigenvalues)
are due to the finite dimension of the SCM and hence, they are not present in the
asymptotic result. These effects become more pronounced as N decreases, because
the transition eigenvalues form a larger percentage of the total number of eigenvalues
[6/20 in Fig. 3.8(d) vs. 6/100 in Fig. 3.8(a)]. The difference between the largest eigen-
value of the CM in Fig. 3.8(a,d) and the corresponding asymptotic value in (3.24) is
on the order of 107 for N = 20 and 107'® for N = 100, indicating that the analytic

solution is quite accurate.

3.6 Conclusions

In this article, the asymptotic eigenvalue densities have been derived for
noise covariance matrices (CM) for line arrays with uniformly spaced elements in an
isotropic noise field. The CM has at most two distinct eigenvalues for all values of
B, the ratio of inter-element spacing to wavelength. From independent observations
of the noise field, a sample noise covariance matrix (SCM) is formed using more
snapshots than the number of array elements and its eigenvalues are analyzed using
random matrix theory (RMT).

When the sensors are spaced less than half a wavelength apart, the SCM is

always singular, no matter how many snapshots are used. For spacings of more than
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half a wavelength apart, the SCM is full rank if sufficient snapshots are used, but the
eigenvalue density can split into two distinct densities.

Analytical results for finite Wishart matrices and simulations with finite SCMs
confirm the asymptotic results derived using RMT. The results hold well even for arrays

with as low as 20 sensors.
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3.A Outline of Approach to Solve for v;

The derivation of (3.43) is tedious and the intermediate equations are lengthy

and hence, omitted. An outline of the approach is provided here with hints.

1. Starting with (3.41), calculate the discriminant of the polynomial in s. The result
is a polynomial of degree 8 in A that can be factored into a product of A* and a

quartic in A.

2. Noting that A > 0, only the quartic needs to be considered. Calculating the
discriminant of the quartic results in a polynomial of degree 23 in v, which can

be factored into a product of v'* and a polynomial of degree 9 in v.

3. Again, discarding the v!* term, the remaining degree 9 polynomial can be sim-

plified into a cube of a cubic in v. Finally, v; is the real root of
v (At +A)°
-3¢ (A1 = Ap) ? (A%‘ff - 7A§A%§1§2 + A§§§)
+3v(A; = Ay (A%§1 + Aggz) — (A= Ap)° =0,
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which upon simplifying, gives (3.43).

3.B Eigenvalue Density of the SCM for Finite N

Let X and Yy denote the isotropic noise CM and SCM when N is finite and
01,...,0n be the eigenvalues of 2. The following expressions are adapted from [39],

using the notation followed in this text where necessary.

3.B.1 Density When = ¢g/2, g€ N

Using (38) in [39], the density for finite N when 8 = ¢/2, q € N (i.e,, X is the

identity matrix) is

N N
pN(A) ZZ n+n M/l)nJrn -2+M-N

n=1n'=

MA det(Q(n, n')) (3.44)

where
M
LM =)L (N =)
Q;i(n,n') =NV (N-1) [yij(n, n)+ M- N]!

i+j—2 ifi<nandj<n’
llij(n’n,): i+j ifi>nandj>n'
i+j—1 otherwise

3.B.2 Density for All Other j

Using (41) in [39], the density for all other f for finite Nis

N N
By =K ) > (=)™ (MM

n=1n'=1

x e MMow det(QY (n,n')) (3.45)
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where
N
. det(ZN) M
K =K —1)!
1;[(1 ! det(v)
Vi =(=a))'™’
Q;-j(fl, n/) :N—l/(N—l)(O_r(j,n/))M—N—l—r(i,n)
X (M—= N+ r(i,n) —1)!
. i i<j
(i) =4 o
i+1 i>j
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EFFECT OF MEDIUM ATTENUATION ON
THE ASYMPTOTIC EIGENVALUES OF

NOISE COVARIANCE MATRICES

Covariance matrices of noise models are used in signal and array processing to
study the effect of various noise fields and array configurations on signals and their
detectability. Here, the asymptotic eigenvalues of noise covariance matrices in 2D
and 3D attenuating media are derived. The asymptotic eigenvalues are given by a
continuous function, which is the Fourier transform of the infinite sequence formed
by sampling the spatial coherence function. The presence of attenuation decreases the
value of the large eigenvalues and raises the value of the smaller eigenvalues (compared
to the attenuation free case). The eigenvalue density of the sample covariance matrix
also shows variation in shape depending on the attenuation, which potentially could

be used to retrieve medium attenuation properties from observations of noise.

4.1 Introduction

Covariance matrices (CMs) play a central role in several applications such as

direction of arrival estimation [1, 2], signal detection from limited data [3-5], channel

73
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estimation in wireless communications [6,7] and ambient noise processing [8-10]. Es-
timating the CM or its eigenvalues from finite observations [11,12] also plays an impor-
tant role in these applications. The presence of structure in the CM (e.g., a Hermitian
Toeplitz matrix [13]) makes it possible to gain analytical insights into the asymptotic
behavior of the eigenvalues.

Here, we are concerned with the spatial CMs from measurements of noise on a
uniform line array (ULA). We derive the asymptotic eigenvalues for CMs in 2D and 3D
media with attenuation, and demonstrate that the attenuation has a significant effect
on the eigenvalues of the CM. We futher demonstrate using a random matrix theory
based approximation [14], that the eigenvalue density of the sample covariance matrix
(SCM) is also affected by the attenuation, which is of interest in the development of

signal processing algorithms based on the physics of propagation in a given medium.

4.2 Background

4.2.1 The Spatial Coherence Function

Consider two sensors Ax apart, and the signals recorded on them, i, (f) and
¥, (f) atfrequency f. The respective power spectral densities are P11 (f) = (¢, (f) er (N
and Py (f) = (¥,(f) 1//42r (f)) where " denotes the complex conjugate and (-) the ensemble
average. The spatial coherence function (SCF) between these two sensors is defined as

the normalized cross-spectral density (henceforth, the dependence on fis dropped),

P12
VP11P22

The functional forms of I' are well known for uncorrelated and uniformly dis-

I = (4.1)

tributed sources in the medium. In 2D and 3D media without attenuation, the respec-

tive SCFs are [15]

I°(B) =J,(27B) (4.2)
T3P (B) = sinc(2f) (4.3)

where sinc(z) = %, B = fACx > 0 is the spacing to wavelength ratio, c is the phase
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speed and the subscript 0 indicates no attenuation. The SCFs in (4.2) and (4.3) are not

dependent on the individual sensor locations, but only on their separation distance.
The effect of medium attenuation (assumed homogeneous) is introduced using

a term that exponentially decays with the distance of separation between the sensors

(which manifests in ) [16—19] and the SCF is

T5() = e Ty (p) (4.4)

where 9 is the loss tangent.

4.2.2 The Spatial Covariance Matrix

For a ULA of N sensors with a uniform spacing Ax, the SCF of the noise field
between the ith and the jth sensors is I's(B|i—j|) where f now is redefined as the spacing
to wavelength ratio for adjacent sensors. The normalized CM X (or the normalized
cross-spectral density matrix) of the frequency domain observations at frequency fis
then related to I' as

Zs(i.)) = Ts(Bli— ). (4.5)
I's(Bli — jl), with constant  can be considered to be sampled from the continuous
function I'5(p|x]) at integer values of x. I's(f|x|) is used in Section 4.3 to derive the
asymptotic eigenvalues of X .

The spatial CM is an important quantity in analyzing noise data, as the time
domain cross-correlation between any two pairs of sensors can be obtained simply by
taking the inverse Fourier transform of the corresponding element (as a function of
frequency). The framework also allows one to use eigenanalysis techniques such as
principal components analysis and RMT.

The CM in (4.5) is a Hermitian Toeplitz matrix with real and non-negative
eigenvalues. The asymptotic eigenvalues of X5 as N — oo are related to the Fourier
transform of the underlying infinite sequence I's(f|n|), n € Z in the Toeplitz matrix
(sampled from I'5(p|x|) with a sampling interval of 1), if the sequence is absolutely
summable [13]. The property of absolute summability of I'5(f|n|) guarantees the exis-
tence of its Fourier transform ¢ (k) and the absolute convergence of the error between

the samples of ¢ (k) and the eigenvalues of X5 as N — co.
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4.3 Asymptotic Eigenvalues of the CM

For a general CM with a corresponding I s, which may not be absolutely summ-
able, the matrix based approach in [8] may be used to show a weaker convergence of

the error term. The Fourier transform of I'5 is

05() = > Ts(Bln)e>™" (4.6)

n=—oo

where k € [—%, %) is the normalized spatial frequency (cycles/sample). () is a con-
tinuous function describing the asymptotic eigenvalues of X;. Using the continuous

Fourier transform (CFT) G,(y) of the SCF,

Gs(y) = f F(S(ﬁlxl)e_’z”)’x dx, (4.7)
where y is the ordinary spatial frequency, (4.6) is written as
p5() = Y Gylx—n). (4.8)

Since I's is real and even, Q(S and ¢4 are also real and even. For the attenuation free
case, [2P and T3P are bandlimited functions, hence only the n = 0 term contributes in
(4.8) for p < % (i.e., no spatial aliasing).

In the following section, we obtain the asymptotic eigenvalues of the CM in
attenuating media for the 2D and 3D noise fields i.e., when the SCF is given by (4.4) and

also establish the convergence of empirical results for 2D media without attenuation.

4.3.1 2D Medium With Attenuation

The infinite sequence F%D (B|n|) from (4.4), is absolutely summable because of

the presence of an attenuation term. Noting that |J (x)| < 1, we have Y5 > 0:

DI @I = Y 1e N g @rpm))

n=—oo n=—o0o

0 276
Z perpon _ € T
- e2npé _ 1

IA

n=—oo
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Figure 4.1: (a) SCF F%D (p) for § = 0 (solid), 0.1 (dashed) and 1 (dot-dashed). (b) Approx-
imate eigenvalues from sampling the Fourier transform qost(K) of the SCF at N = 30
equispaced samples in [—%, %) for f = i and (c) numerical eigenvalues of the spatial
CM X5 for N = 30 sensors for the same values of 6 and . (d)-(f) Same as in (a)—(c) for

3D media.

The CFT of the SCFI'3" is evaluated by using the integral representation of the Bessel

function:

ggD(y) _ l foo e—127ryxe—27r/35|x| fﬂ elZ;rﬂxcos(@) do dx
- 0

TJ o
1 i do
:‘R[Fﬁ ﬁ5+1y—lﬁcos(9)]
= 1?& ! (4.9)
T

VB + 1) +

(the second step follows from the fact that the imaginary part of the integrand is odd,
and the last step is obtained using the substitution u = tan 6/2). (pfSD(K) is then obtained
using (4.8) and (4.9).

When § = 0 (i.e., no attenuation), Q;D in (4.9) reduces to the CFT of 2 in (4.2)
and (p(z)D(K) for p < % [only the n = 0 term contributes in (4.8)] is [10]

rect (i)
2D K) _ Zﬂ

P =
7yl — K2

(4.10)
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where rect(x) =1V |x] < % and 0 otherwise. The convergence of I'5° (| n|) is shown in

the appendix.

4.3.2 3D Medium With Attenuation

Just as in Section 4.3.1, FgD (BIn|) from (4.4) can also be shown to be absolutely
summable. Its CFT is evaluated by convolving the Fourier transforms of each of the

terms in the expression as:

GP(y)=F [e_‘z”ﬁ(s'xl] * F [sinc(2fx)]
{1 Bs 1 Y
5l [ |

where F denotes the CFT. Then, it follows that

Y
s o rect (ﬁ)
GP(y) = — f ay

27t Joo 8 + (y = 1')?
= ig [tan_1 (%5'8) — tan~! (%3)] (4.11)

Finally, (p?SD(K) is obtained using (4.8) and (4.11).
When § = 0 (i.e., no attenuation), F?;D in (4.11) reduces to the CFT of I’ in (4.3)
and (pgD(K) for f < % [only the n = 0 term contributes in (4.8)] is [8]

050 (k) = Ziﬂrect (zi) (4.12)

4.4 Discussion

4.4.1 Effect of Attenuation on the Bandwidth and the Eigenval-

ues

The presence of attenuation (§ # 0) makes the SCF an infinite bandwidth func-
tion (bandwidth here refers to the support in the Fourier domain). Hence in general,
simplified expressions for (k) cannot be obtained as a function of §, and must be

computed using the sum (4.8). The effect of the attenuation term on the SCF is shown
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in Fig. 4.1 (a) for I%D for § = 0 (no attenuation), 0.1, and 1 [Fig. 4.1 (d) for I%D]. The
corresponding eigenvalues of X5 for N = 30 sensors, with ff = i [Fig. 4.1(c), (f)] are
approximated well by N equispaced samples [Fig. 4.1(b), (e)] from ¢4(x).

The broadening of the support (or bandwidth) due to an increase in attenuation
visibly lowers the larger eigenvalues of the CM and raises the smaller eigenvalues [for
example, in Fig 4.1 (c), A2 = 4 for § = 0 (no attenuation) and ~ 2.4 for § = 0.1]. In
addition, the transition region (near index 15) between the large eigenvalues and the
small eigenvalues, which is sharp for no attenuation (6 = 0), spreads out as § increases.
The broadening of the transition region is more apparent in the 3D case [Fig. 4.1 (e), (f)].
As aresult, the smaller eigenvalues which were zero in the attenuation free case [8,10],
no longer are, and this increases the rank of the CM. For § = 1, i.e. high attenuation,

the eigenvalues are all close to 1 and become exactly 1 when § — co.

4.4.2 Eigenvalue Density of the Sample Covariance Matrix

In practice, the CM is often unknown and one uses the SCM estimated from M
observations of the data. The SCM 55 is modeled as

1
- ol
Y5 = Mzaxx 52

(4.13)
where X is an N X M random matrix whose entries are drawn from CN(0,1), and 2(%3
is a non-negative definite square root of the true CM, X;.

Obtaining the SCM eigenvalue density from ¢4(x) by naively using Stieltjes
transforms is non-trivial due to the eigenvalue structure in ¢(x). Using a compu-
tationally efficient approach [14] using the polynomial method [20], it is possible to
approximate the eigenvalue density of the SCM in the attenuated case (if some of the
eigenvalues are zero, only the non-zero eigenvalues used and scaled appropriately).

The N equispaced samples from ¢4(x) for k € [-1 > 2) {A1,..., AN} (sorted

largest first) are divided into three sets:

ASSE = (414 > An(1 4+ V)P
AT = (AN + V) < A < N1+ VW)
ARY = (114 < An(1 + VW) (4.14)
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where v = N/M. AgiSt denotes the set of large eigenvalues that are “well separated”
from the rest and each have a distinct contribution to the density. Sets Agﬁd and Al(sow
denote eigenvalues with similar spreading behavior and can each be replaced by a sin-
gle representative eigenvalue weighted appropriately [21]. Accordingly, the Stieltjes

transform of the SCM eigenvalue density can then be written as

/1,)(—2+ Z )Lmld)(—z Z

mld /1 Alow

s(z) =

/IN -z
A eAdlst X

where y =1 - v—vz5(z) and Apig = %N(l + v+ (1++/v)?). Thus, all the eigenvalues
in Ag‘id and A?W are replaced by Ap;q and Ay respectively.

Forming the polynomial in s and solving for its roots (solved numerically, as
the degree of the polynomial is almost always greater than 4), the SCM density can be
obtained as

p(A) = lim lIm[ (A + 18)] (4.15)

e—0tT T

where 5%(z) is the appropriate root of the polynomial that has a non-negative imaginary
component (since the density is always non-negative).

Fig. 4.1 shows the approximate eigenvalue density for the SCM when N = 30
and M = 120 (ie., v = }1) for different § and the representative eigenvalues used in
the Stieltjes transforms. The distributions are varied in their shapes, depending on the
attenuation and approaches the Marcenko—Pastur density for large attenuation (6 = 1).
This variation in shape is less pronounced when the number of observations decreases
(i.e., v = 1 for the M > N scenario) because the spreading of the eigenvalues is much

higher, reducing the clustering phenomenon.

4.5 Conclusions

The asymptotic eigenvalues of noise covariance matrices in diffuse noise fields
with attenuation were derived for 2D and 3D media. The presence of attenuation de-
creases the value of the large eigenvalues when compared to the attenuation free case,
and also raises the smaller eigenvalues due to the broadening of the bandwidth of

the spatial coherence function. The shape of the eigenvalue density of the finite SCM
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in (4.14).
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varies with attenuation and this potentially could be used to retrieve medium attenu-

ation properties.
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4.A Convergence of the Error for the Bessel Sequence

The Bessel sequence, J (27n), n € Zis not absolutely summable and hence the
convergence of the error term is not absolute, as in Sections 4.3.1 and 4.3.2. Conver-
gence can be demonstrated by computing the error vector Xu;—A;u;, where A; and u; are
the ith eigenvalue and eigenvector, as in Section ILA in [8]. Following the derivation

until Eq. (15) in [8] and taking the £9-norm instead of the £*-norm, we get

z

2

1Zu; - All] <— |Jo (27 pn)|?
2

n

JI

. ~.
MNIZ lMt\ﬂZ

2 (o]
<= |Jo(2mpm)]4
M Jj=1 nzz—loo °
=N'"2 37 | (2npn)l? (4.16)

Jo(27pn) can be shown to have a finite £9-norm for q > 2 using the Hausdorff-

Young inequality [22]:

Theorem 4.1 (Hausdorff-Young inequality). If fis a function defined on a locally com-
pact Abelian group G with measure y, and ¥ [f] its Fourier transform defined on the Pon-
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tryagin dual group G with measure ji, then for1 < p < 2,
G G,
IF AN < 1A (4.17)

such that1/p+1/q = 1, where || - ||}()G’”) denotes the norm on the Lebesgue space LF(G, p).

Here, the function fis ¢2°(k) defined on the unit circle (G, mapped one-to-

one to k € [—%, %)) with the Lebesgue measure (y), 7 [f] is the sequence J,(277fn) (the
Fourier coefficients) defined on the set of integers (G) with a counting measure (j1).

Applying Theorem 4.1 and using (4.8) for f < % gives:

£ 1
N ! 2 2 (F dk
[Z IJO(Zﬂ,Bn)Iq] sfl ) de= = | —F—

el 7 J, ([32 ~ K2)

_rgrg(l P
=n Pp PB(2,1 2) (4.18)

where B(x,y) is the Beta function (using the substitution x = ). The RHS of (4.18)
is bounded for p < 2 but not for p = 2, since B(x,y) — oo as y — 0). Hence, due to Par-
seval’s theorem, J (27n) cannot exist in £ 2 (i.e., it is not absolutely square summable)
and has a finite {9-norm only if ¢ > 2 (using % + %1 =1).

Thus, the error term in (4.16) is less than O(Nl_iq) for ¢ > 2 and approaches
0 independent of i. This argument is valid for all values of f (accounting for spatial

aliasing).
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EIGENVALUES OF THE SAMPLE
COVARIANCE MATRIX FOR A TOWED

ARRAY

It is well-known that observations of the spatial sample covariance matrix
(SCM, also called the cross-spectral matrix) reveal that the ordered noise eigenvalues
of the SCM decay steadily, but common models predict equal noise eigenvalues. Ran-
dom Matrix Theory (RMT) is used to derive and discuss properties of the eigenvalue
spectrum of the data SCM for linear arrays, with an application to ocean acoustic
data. Noise on the array is considered either incoherent or propagating acoustic noise
that is coherent across the array. Using conventional 3D or 2D isotropic noise models
with full or snapshot-deficient observations, realizations of the SCM eigenvalues are
explained using random matrix theory. Deep-water towed-array data are analyzed
and it is shown that the eigenvalues of the SCM compare well with theory. It is
demonstrated how RMT can be applied to study eigenvalue spectrum estimation
as dependent on array properties (element spacing to wavelength ratio) and data
sampling (snapshots). Apart from explaining the observed noise eigenvalue spectrum,
the improved model of the eigenvalue spectrum has important applications in array

signal processing.
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5.1 Introduction

Often the ocean acoustic data sample covariance matrix (SCM, or cross-spectral
matrix) is assumed to consist of a few large signal-plus-noise eigenvalues followed by
a set of equal-value noise-only eigenvalues representing uncorrelated noise. However,
it is well-known that the SCM from real data observations is characterized by steadily
decaying noise-only eigenvalues.

In array processing, a common rule of thumb is that the SCM is “well-estimated”
when the number of snapshots is 2—3 times the array dimension [1-3]. This depends on
the type of noise and application under consideration. Often, the number of snapshots
available for forming the SCM is less than this, especially for large arrays [4-10].

Using random matrix theory (RMT) [11,12] to model the statistical properties of
the SCM [13-19], the eigenvalue distributions are more informative than using the ex-
pectation alone. A random matrix is a matrix-valued random variable, i.e. the elements
are stochastic variables. RMT can be used to study the distribution of eigenvalues un-
der asymptotic assumptions. Using RMT, it can be shown that the eigenvalues have
well-defined statistical properties. For acoustics, RMT has found applications in, e.g.,
elastodynamics [20] and wave propagation and scattering in random media [21-24].

Using tools from RMT, we study the asymptotic behavior of the SCM eigen-
values under the assumption that both the sample size (snapshots) and number of
sensors tends to infinity while their ratio is constant. This is in contrast to taking
the mean of the SCM where sample size (snapshots) tends to infinity while number
of sensors is constant. Initially, RMT was developed assuming uncorrelated obser-
vations, with the distribution of the SCM eigenvalues given by the Marcenko—Pastur
(MP) density [25]. More relevant for ocean acoustic applications, both the coherent
and the incoherent noise components in the observations can be modeled in the SCM
via a complex Wishart distribution.

This paper discusses the SCM eigenvalue decay structure focusing on the co-
herent noise component using simulations and real data and thus motivates further
studies using RMT. Using RMT, it might be possible to model the convergence of the

SCM and design improved eigenvalue based array-processing algorithms.
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5.2 Noise Covariance Matrix

The sample covariance matrix (SCM) is defined as

LM

5 H

E= Z XX, (5.1)
m=1

where x,,, m = {1,...,M} is the N-element complex-valued observation vector at a

particular frequency fand M the number of snapshots. We are interested in the eigen-
decomposition of the SCM with ordered eigenvalues A; > ... > Ay, the eigenvalue
spectrum.

Using a linear model

K
X = Z Sisk + ne + n;, (5.2)
k=1

where n; ~ CN (O,crizl) represents incoherent noise, i.e., sensor self-noise and n. ~
CN (0,023.) represents coherent propagating noise between sensors with the diagonal
elements of > normalized to 1. There are K < N discrete sources from direction s
with complex amplitude S.

Assuming sg, n¢, and n; are uncorrelated, the covariance matrix (CM) is

K
> = E(xxt) = Z ISkl ?sist! + 025 + o7l (5.3)
k=1
It is well known that the estimate Eq. (5.1) converges to Eq. (5.3) for M — oo in a
mean square sense. From this model it often is assumed that the first K eigenvalues
contain signal-plus-noise and the remaining N— K eigenvalues are just due to noise. In
particular for incoherent noise only, i.e. 62 = 0, all non-signal eigenvalues are equal-
valued:

A= o j=K+1,---,N. (5.4)

In the remainder it is assumed K = 0.
We have discussed Eq. (5.2) in terms of propagating coherent noise and non-
propagating sensor noise. The incoherent noise is uncorrelated between the sensors,

but for certain array spacings the coherent noise also becomes uncorrelated.
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The noise snapshot vector n. + n; in Eq. (5.2) is modeled as a stationary, zero-
mean, complex Gaussian stochastic process with covariance ¥ = O'EZC + O'izl, ie., Xy, ~
CN(0,Y). Based on this model, the SCM ¥ in Eq. (5.1) is complex Wishart distributed
with M degrees of freedom and covariance X i.e., MS ~ Wn(0%3: + oL M).

5.2.1 Statistical Description of Eigenvalues

The classical equal-valued eigenvalues for the incoherent noise Eq. (5.4) is de-
rived based on the assumption that the system parameter (array size) N is constant
and the number of snapshots M — oco. A full statistical description is obtained taking
v = N/M constant and then let M — oo (i.e., Nincreases with M). This can be analyzed
using RMT for incoherent or coherent [19] noise. For v = 0 the results correspond to
the classical ensemble average.

The statistics of the SCM eigenvalues can be characterized by several distribu-

tions, such as,
1. The joint distribution of the eigenvalues [26].

2. The distribution of the largest eigenvalue A;. For Wishart matrices, this is de-
scribed by the Tracy-Widom density (when scaled and centered appropriately)
[27].

3. The distribution of the jth largest eigenvalue. [28]

4. The empirical distribution of the eigenvalues, e.g. the Marc¢enko-Pastur (MP)

distribution in Section 5.2.2.1.

For characterizing the noise, we are concerned with the last item above.
The empirical cumulative distribution function (CDF) of the SCM eigenvalues
is defined as:
#{A < A

where # represents the cardinality of the set, i.e. the number of eigenvalues less than

A.
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To give the empirical CDF a probabilistic interpretation, we define the random
variable A which takes realizations from the finite set of eigenvalues {A4,. .., An} with
uniform probability. Specifically, we define P{A = A;} = % forallj=1,...,Nand

P{A < A} = Z P{A = A} = F(A). (5.6)
J <A
Thus, the distribution of a uniformly selected eigenvalue is identical to the CDF.

The eigenvalue density of the SCM is defined as
N
1 _dF(A)
p(d) = N]Z S(A=2) = —=. (5.7)

In the following, we examine p(A) for coherent and incoherent noise.

5.2.2 Incoherent Noise

Array processing is typically performed under the assumption of uncorrelated
noise between the sensors. Important early results in RMT are based on uncorrelated

observations.

5.2.2.1 Marcenko-Pastur (MP) Density

For noise that appears uncorrelated between the sensors, the snapshots are dis-
tributed as n; ~ CN (0, O'izl). For M — oo and v = N/M, 0 < v < 1 constant (i.e.,
number of elements Nincreases with M), the eigenvalues of the SCM fi are distributed
as given by the Mar¢enko-Pastur (MP) density [25]

(-AH(A-=L) L<A<l,

pyp(d) = 2rvio (5.8)
0 otherwise

where I_ = 02(1 — v/v)? and [} = 0%(1 + v/v)? are the upper and lower limits of the
“spreading” of the eigenvalues of the SCM around the true eigenvalue o?.

Figure 5.1(a) shows the MP density, Eq. (5.8), for aiz = 1land v = 1, 1/4, and
1/25. The largest eigenvalue is about ;. or 4, 9/4, and 36/25 times criz, illustrating how
the density becomes narrower as v decreases (M increases). For v — 0 the MP density

approaches a delta function at o7, in agreement with Eq. (5.4) for K = 0. The classical

result for the expectation Eq. (5.3) corresponds to v — 0.
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5.2.2.2 Simulation of Incoherent Noise Eigenvalues

The MP density Eq. (5.8) is only valid asymptotically, but this density works
well for finite array size N and snapshots M as demonstrated in Fig. 5.1(b) and 5.1(c),
see also Sect. 5.2.3.5 for the snapshot-deficient case. For finite N and M, realizations of
the SCM can be generated from its distribution M ~ (WN(aiZI, M). The simulations use
a constant array size N = 64 and computes the SCM eigenvalues for M = N, 4N, 25N (or
v =1,1/4,1/25). Fig. 5.1(b) shows how the observed eigenvalues of the SCM are related
to the MP density and Fig. 5.1(c) shows the conventional ordered display illustrating
the decay of eigenvalues with eigenvalue index.

Clearly, as M increases the eigenvalues approach the constant value given in
Eq. (5.4). For real arrays the observation time is finite and often M ~ N as the number

of snapshots is limited by requiring a stationary environment.

5.2.3 Coherent Noise

Environmental noise sources are coherent between pairs of sensors due to prop-
agation effects in the ocean. This is in contrast to sensor noise which is incoherent and
typically much lower in power than the environmental noise. Note that environmental
noise may appear uncorrelated at specific element spacings (Sect. 5.2.2). For the 3D

isotropic noise model this occurs at half-wavelength spacing.

5.2.3.1 3D Isotropic Noise Eigenvalues

For a linear array of N equidistant sensors and assuming a 3D isotropic noise
field, the elements of the coherent noise covariance matrix (CM) 023D of the noise

field are proportional to [19, 29] (omitting o?),
[22P] = sinc (2B1i - jl) , (5.9)

where sinc(x) = sin(zx)/(7x) and f is the ratio of the spacing between the sensors
to the wavelength under consideration (f = fAx/c, where fis the frequency, Ax is
the spacing between the sensors, and c is the phase speed of wave propagation in the
medium). Eq. (5.9) is a symmetric Toeplitz matrix. Thus, the spatial correlations are

only dependent on f and the separation |i — j|.
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Figure 5.1: (a) Eigenvalue probability density of the incoherent noise SCM correspond-
ing to a Marcenko-Pastur (MP) density Eq. (5.8) for O'iz =1land v=N/M=1,1/4,1/25.
(b) and (c) Eigenvalues of the SCM for an array with N = 64 and number of snapshots
M, v = N/M = 1, 1/4, 1/25. In (c) the axes are changed relative to (b) and the eigenvalue
is in dB.
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Asymptotically, the eigenvalues of a symmetric Toeplitz matrix are sampled
from the Fourier transform of the sequence of elements that form the rows of the matrix
[30]. Thus, asymptotically (N — o0), the eigenvalues of > in Eq. (5.9) are proportional

to the Fourier transform of the sinc function ¢(x), which is the rectangle function:

(k) = ﬁ rect( Kﬂ) (5.10)

where k € [-1/2,1/2) is the spatial frequency. Hence, the eigenvalues have at most
two distinct values and for f < 1/2 just one non-zero value [19,31], with multiplicity
ratio 2f (the multiplicity ratio is the identical number of eigenvalues relative to the
array dimension).

For large but finite N, an approximate formula for the eigenvalues of >2P can
be obtained by sampling Eq. (5.10) at N points as in Eq. (5.11) and the 1/2 is introduced
to obtain symmetry of the sampled eigenvalues.

AP = 7 for # =2 (5.11)
0 otherwise,
whereje 1,...,N.

For f < 1/2, > is rank deficient due to the zero eigenvalues of multiplicity
ratio (1 — 2f). For f = 1/2 (half-wavelength element spacing), >2° = I and thus
A?D =1,j=1,...,Nand ZED is full rank.

Using the CM eigenvalues, the density for the eigenvalues of the SCM can be
derived [19]. Since the CM has just one distinct non-zero eigenvalue, Eq. (5.11), the
density is inferred from the MP density as follows. 1) The zero CM eigenvalues remain
zero in the SCM. 2) As the multiplicity ratio of the non-zero eigenvalue is 23 as opposed
to 1 for the MP density, the equivalent array element to snapshot ratio becomes v =
2fv. 3) Since the probability of obtaining a non-zero eigenvalue is 2/, the density of
the non-zero eigenvalues is scaled by 2. 4) Further, we need to scale the spread of the

eigenvalues with o257 /3 This gives the coherent MP density

P (A) = (/b;nj/lj =A<< At
MP (1 _28)5())  otherwise,

(5.12)
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Figure 5.2: CM eigenvalues based on (a) 3D and (b) 2D isotropic noise for f = 1/4 and

N = 64. The approximate eigenvalues [e, (a) Eq. (5.11) and (b) Eq. (5.16)] as well as the
eigenvalues for a finite array (s) are shown.

Ai:%(liﬁ)zzaﬁ (\/;i\/;] . (5.13)

The first term in Eq. (5.12) accounts for the density due to the spreading of the non-zero

with

eigenvalues and the second term in Eq. (5.12) is the density due to the zero eigenvalues.

5.2.3.2 2D Isotropic Noise Eigenvalues

For a 2D isotropic noise field [32], the coherent noise CM is proportional to

[22P)y =To (27pli— 1), (5.14)
where ], is the zeroth order Bessel function. Since ZED also is Toeplitz symmetric, its

eigenvalues are samples from the Fourier transform of J,(27fx):

rect(ﬁ)
1 — (k/27)?

where k € [—,7) is the spatial frequency. Thus, similar to the 3D case, for finite N

o(x) = F [Jo(2mpx)] =

(5.15)

an approximate formula for the eigenvalues is obtained by sampling Eq. (5.15) and for
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B < 1/2, the (unsorted) eigenvalues are given by

- 1 for J—(N+1)/2 < ﬂ
)L}ZD N ek | N | (5.16)
0 otherwise,
where j € 1,...,N. These eigenvalues come in pairs due to the symmetry around N/2.

Similar to the 3D case for f < 1/2, 2P is rank deficient due to the zero eigen-
values of multiplicity ratio (1 — 2f) (asymptotically, N — oo) as shown in Eq.(5.16).
The first zero of the Bessel function, J,(27fx), for x = 1 occurs at f = 0.38, but suc-

cessive zeros do not occur at multiples of 0.38 and hence their spacing is not periodic

1
% Bx

the zeros occur periodically for large arguments). Hence for a 2-sensor array [32], the

(although the asymptotic expansion J,(275x) ~ cos(2mfx — m/4) suggests that
noise on the array is uncorrelated at f = 0.38, but for larger uniformly spaced arrays,
the 2D isotropic noise SCM will never be uncorrelated, even at f = 0.5.

The CM eigenvalue spectrum for 3D and 2D isotropic noise is shown in Fig. 5.2
for N = 64 and f = 1/4. The CM eigenvalues are computed using classical eigenvalue
methods on 2. [, Egs. (5.9) and (5.14)] and the asymptotic formulas [e, Egs. (5.11) and
(5.16)], see Fig. 5.2. For the 2D case [Fig. 5.2(b)], the large eigenvalues come in pairs
and eigenvalues 1-2 are beyond the limits of the plot. For finite N, there are a number of
eigenvalues near the normalized eigenvalue index 2/ (these are not in pairs), defining
the edge of the visible region. The visible region of the array is where the eigenvectors
correspond to element-to-element phase shifts of physically propagating waves in the
medium.

The SCM eigenvalue density for 2D isotropic noise is not available analytically

and is obtained from simulation as demonstrated in Sect. 5.2.3.3.

5.2.3.3 Simulation of Coherent Noise Eigenvalues

The SCM eigenvalue densities are estimated numerically using Monte Carlo
simulation and shown here for 3D and 2D isotropic noise for N = 64 and f = 1/4.

The SCMs are generated as ME, ~ Wn(Z., M) and their ordered eigenvalues
are shown in Fig. 5.3(a) and 5.3(c) for a single realization. The difference in structure

between the SCM eigenvalues for 3D [Fig. 5.3(a)] and 2D [Fig. 5.3(c)] isotropic noise is
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Figure 5.3: (a, c) SCM eigenvalues, and (b, d) SCM eigenvalue densities based on (a, b)
3D and (c, d) 2D isotropic noise for v = N/M = 1, 1/25. The simulation is performed
with N = 64, f = 1/4, the SCM eigenvalues are based on one realization and the
densities are obtained from 1000 Monte Carlo samples. In (b) the asymptotic densities
[solid, Eq. (5.12)] are shown. In (b) and (d) the probability mass of 1 -2 = 0.5at A = 0
is not shown.
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pronounced for v = 1/25, mirroring the shapes of their respective asymptotic formulas
for the CM eigenvalues [Eqgs. (5.11) and (5.16)] as shown in Fig. 5.2. However, for
v = 1 (dot-dashed) the spreading of the eigenvalues looks similar and it is difficult to
distinguish between the two noise fields.

The empirical eigenvalue densities are obtained from 1000 Monte Carlo samples
[Figs. 5.3(b) and 5.3(d)]. The 3D asymptotic distributions [Eq. (5.12)] for both v = 1 and
v = 1/25 match well the finite dimension simulated distributions [Fig. 5.3(b)].

For v = 1/25, the main density is quite sharply centered around 1/2f = 2 for
the 3D case as the underlying CM only has equal-valued eigenvalues of value 1/2f
for f < 1/2, whereas the 2D density is more distributed. The localized peaks in the
densities for both 3D (3 peaks) and 2D (2 peaks) observed for A < 1.5 correspond to
the “transition eigenvalues” which occur due to the finite dimension of 2., the density
for A < 0.05 is suppressed. The transition eigenvalues of a single realization > (o) in
Figs. 5.3(a) and 5.3(c) agree well with the peaks in the densities in Figs. 5.3(b) and 5.3(d).

For 2D isotropic noise and v = 1/25, there are several localized modes at larger
eigenvalues (1 > 2). These corresponds to the eigenvalue pairs 3-4 (A = 3.3), 5-6
(A = 2.5),and 7-8 (A = 2.2) of >2 in Fig. 5.2(c) (eigenvalues 1-2 have A > 5).

5.2.3.4 Simulation of Coherent Plus Incoherent Noise Eigenvalues

To demonstrate the decay of the eigenvalues, we are interested in realizations
of the noise SCM and their eigenvalues. Since the noise SCM is complex Wishart dis-
tributed ME, ~ Wn(o23+ O'iZI, M) we can generate realizations of the SCM from which
the eigenvalues are determined.

This is illustrated with simulations for an array with 64 elements with noise-
only data. The coherent noise is chosen a factor 200 larger than the incoherent noise,
o2/c? = 200. The simulations in Fig. 5.4 show the decay of the eigenvalues for all
SCMs. Asthe number of snapshots is increased (with array size fixed, v decreasing), the
smaller eigenvalues become larger and eventually for an infinite number of snapshots
the eigenvalues will approach a step function. The larger eigenvalues are dominated
by the coherent noise and the smaller eigenvalues by the incoherent noise.

The location of the jump depends on S, the ratio of array spacing to wavelength.
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Figure 5.4: Eigenvalues of the SCM for a N =64 element array with ¢%/0? = 200 for:
(@) p = 1/8,(b) B = 1/4, (c) B = 3/8, and (d) B = 1/2. The eigenvalues are shown
for an increasing number of snapshots M, where v = N/M = 1 (dash-dotted), v = 1/4
(dashed), v = 1/16 (solid). The eigenvalues are normalized with 012 and the vertical
dotted line indicates the edge of the visible region.

For f < 1/2 there is a sharp drop in the vicinity of the eigenvalues corresponding to
the edge of the visible region. For fewer snapshots this jump is smeared out. A smaller
ratio 02/0? reduces the jump. At § = 1/2 the coherent noise CM also is diagonal and
thus identical to the classical case of only incoherent noise discussed in Sect. 5.2.2.

It is interesting to compare the largest eigenvalues of the SCM for 2D and 3D
isotropic noise, see Fig. 5.5. For the same number of snapshots (v = 1/4), the largest
eigenvalues for the 2D case are 4 dB larger than for the 3D case. At f = 1/2, the 2D
noise CM is not diagonal (the Bessel function is not zero at f = 1/2) and eigenvalues

are not similar to the incoherent case, see Fig. 5.1.
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Figure 5.5: Eigenvalues of the 3D (solid) and 2D (dashed) noise SCM for a N =64
element array with 03/012 = 200,v = 1/4 for: (@) f = 1/4 and (b) f = 1/2. The
eigenvalues are normalized with 67 and the vertical dotted line indicates the edge of
the visible region.

5.2.3.5 Snapshot-deficient Case

If there are fewer snapshot samples than sensors (M < N, i.e,, v = N/M > 1)
the SCM has at most M eigenvalues and is said to be snapshot-deficient. This often is
the case for large towed arrays or arrays in dynamic environments where the number
of snapshots is limited.

For the snapshot-deficient incoherent-noise SCM, ie. M < N, we can apply
the MP density Eq. (5.8) with v = N/M and adding a point mass of 1 — 1/vat A =0
corresponding to the N — M zero eigenvalues. This can be derived as follows. All
snapshots are collected into an N X M observation matrix X = [X; ... xy|. This gives

the sample covariance matrices:

— ~ 1

1
y = —XX  and ¥ ==XUX, (5.17)
M N

where M X M matrix % is only used in the derivation of the density, it is not a phys-
ical quantity. Since X is complex Gaussian CN y(0,0?1y) then XH also is complex
Gaussian CN n(0, O’iZIM). Both Y and ¥ will be complex Wishart distributed, as MY ~
Wy(o?In, M) and N ~ Wu(o?In, N), respectively. Thus, the snapshot-deficient

incoherent-noise SCM is given by the MP density ¥ matrix as if there were N “snap-
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Figure 5.6: Eigenvalues of the snapshot-deficient SCM for a 64-element array for M =
32 (solid), i.e. v = 2, and crg/cri2 = 200 for: (a) f = 1/8 and (b) f = 1/4. For comparison,
M = 64 (dashed, v = 1) also is shown. The eigenvalues are normalized with oiz and the
vertical dotted line indicates the edge of the visible region.

shots” and M “elements”, provided a mass point of 1 — 1/v at A = 0 is included to
account for the zero eigenvalues.

For the snapshot-deficient 3D coherent-noise SCM, a simulation is used to ob-
tain the eigenvalues. The snapshot-deficient SCM is simulated as in Sec. 5.2.3.4, but
with just M = 32 snapshots, i.e., 32 non-zero eigenvalues, see Fig. 5.6. The eigenvalues
decay faster for the snapshot-deficient SCM than when using more snapshots (solid

versus dashed in Fig. 5.6). The snapshot-deficient case is further discussed in Sec. 5.3.

5.3 Experiment

The data is from a towed horizontal array during the long range acoustic com-
munications (LRAC) experiment [33] from 10:00-11:00 UTC on 16 September 2010 in
the NE Pacific in 5-km water depth. Other data periods yield similar results to those
shown here. The array was towed at 3.5 knots at a depth of 200 m. The data were
sampled at 2000 Hz using a nested array with each configuration having 64 chan-
nels [34]. The high frequency (HF) array had hydrophone spacing 0.375 m (design
frequency fj = 2000 Hz), the medium frequency (MF) array had channel spacing 0.75
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Figure 5.1: Towed array beam time series (dB) at one quarter wavelength element
spacing: (a) ULF at 125 Hz, (b) LF at 250 Hz, (c) MF at 500 Hz, and (d) HF at 1000 Hz.

m (f3 = 1000 Hz), the low frequency (LF) array 1.5 m (f3 = 500 Hz), and the ultra low
frequency (ULF) array 3 m (f3 = 250 Hz).

The SCMs were constructed using 4 s, 2! long Fourier transforms without over-
lap and M =64 (v = 1) or 864 (v = 1/13) snapshots, with 864 snapshots corresponding
to the whole hour. The beamformed time series, Fig. 5.1, is based on single snapshots
and performed at one quarter wavelength element spacing. The broad arrival at 60—
75° is from the towship (R/V Melville). Apparently, the two arrivals at —45° and —30°
come from distant transiting ships, although a log of ships in the area was not kept.
Overall, the beam time series shows little change with time.

Figure 5.2 shows the eigenvalues of the SCM at selected values of f for the four
arrays. Due to the low sampling frequency (2000 Hz), the HF array only can be used

up to f = 1/4 (1000 Hz). All eigenvalues are based on one hour observations, meaning
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that for M = 64 the eigenvalues are averaged over 13 SCM eigenvalues. The first few
eigenvalues for each SCM likely are due to the distant transiting ships and noise from
the towship, as seen in the beam time series (Fig. 5.1). The eigenvalues drop sharply
above 2(N— 1) 4 1 (vertical dotted line) as predicted by theory, and indicates that the
coherent noise is stronger than the incoherent noise. The eigenvalues of the SCM of
the LF and ULF arrays show a similar behavior as the MF and HF arrays though with
less strong transition between the two eigenvalue regimes.

Figure 5.2 shows that the eigenvalues depend on f. As f increases, all the
eigenvalue spectra become more extended and at f = 0.5 (half wavelength spacing)
the SCM ideally should become diagonal with eigenvalues that approximately are all
equal.

Comparing the four arrays at f = 1/8, first column in Fig. 5.2, shows that the
higher eigenvalue numbers (containing mostly incoherent noise) are relatively larger
at low frequencies. At half-wavelength spacing (f = 1/2, last column in Fig. 5.2), all
eigenvalues remain large for the three arrays, except when using a relatively small
number of snapshots (M = N).

The observed and modeled noise eigenvalues are compared in Fig. 5.3. It is
important to realize that there is towship radiated noise as well as broadband signatures
from several distant ships arriving at the array, especially at low frequencies, see Fig.
5.1. These “signals” are among the largest eigenvalues extracted from the data, see
Eq. (5.2). Therefore, we arbitrarily select to only match the noise from eigenvalue
10 and vary the ratio of coherent to incoherent noise o?/0?, see Fig. 5.3. For the HF
array, the match is quite good and the transition region is also well-determined. For
the LF array, the match is less good, likely because not all dominant noise sources are
modeled. Before these noise sources are understood, whether the noise field is 2D or
3D cannot be determined.

For large arrays, the SCM often is snapshot-deficient. The snapshot-deficient
eigenvalues for the towed array data (Fig. 5.4) compare well with the simulations in Fig.
5.6. How well the coherent noise eigenvalues are estimated depends on f relative to
the number of snapshots M. For small values of ff there might besufficient snapshots so

the coherent noise eigenvalues are relatively well estimated. An important question
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Figure 5.2: Eigenvalues of the towed array SCM for HF array (1st row, f = 1/8,1/4),
MF array (2nd row, f = 1/8,1/4,1/2), LF array (3rd row, § = 1/8,1/4,1/2), and ULF
array (4th row, f = 1/8,1/4,1/2). The eigenvalues are based on 64 (v = 1, dashed)
and 864 (v = 13, solid) snapshots. The eigenvalues are normalized with the largest
eigenvalue and the vertical dotted line indicates the edge of the visible region, f is the
element spacing to wavelength ratio.
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Figure 5.3: Comparison of observed and modeled eigenvalues. Eigenvalues of the
towed array SCM (solid) and modeled eigenvalues 3D (dashed) and 2D (dash-dotted) for
HF array (1st row, f = 1/8,1/4) and LF array (2nd row, f# = 1/8,1/4,1/2). The observed
eigenvalues are based on 864 (v = 13, solid) snapshots, the modeled eigenvalues use
a ratio 02/0? = 700 for HF array and ¢%/0? = 100 for LF array. The eigenvalues are
normalized with the largest eigenvalue and the vertical dotted line indicates the edge
of the visible region, f is element spacing to wavelength ratio.

is how eigenvalue based beamforming performs for this case, but this is beyond the
scope of this paper.

From all of the SCM eigenvalue spectra [Fig. 5.5(a) and 5.5(c)] we obtain his-
tograms of the eigenvalues [Fig. 5.5(b) and 5.5(d)] corresponding to the empirical eigen-
value density, Eq. (5.7). Each SCM is normalized by the largest eigenvalue so that in the
histograms the largest eigenvalues correspond to “signal” eigenvalues. The histograms
are multi-modal corresponding to coherent and incoherent noise, as can also be seen

from 2nd row in Fig. 5.2.

5.4 Conclusion

Eigenvalue spectra of the sample covariance matrix (SCM, also called the cross-
spectral matrix) have been examined for both synthetic and real data. The ordered
eigenvalues decay steadily as predicted using random matrix theory (RMT). Using tools
from RMT, we study the asymptotic behavior of the SCM eigenvalues under the as-

sumption that both the sample size and number of sensors tend to infinity while their
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Figure 5.4: Eigenvalues of the MF towed array snapshot-deficient SCM with M = 32
(v = 2) for several realizations (thin lines) for (a) f = 1/8 and (b) f = 1/4 (i.e., fre-
quencies 500 and 1000 Hz). Average of these eigenvalues (solid) and eigenvalues of the
SCM (dashed) with M = N = 64(v = 1) also are shown. The eigenvalues are normalized
with the largest eigenvalue and the vertical dotted line indicates the edge of the visible
region.

ratio is constant. This is in contrast to taking the mean of the SCM where sample size
tends to infinity while number of sensors is constant.

The noise observed by an equally-spaced line array has been modeled as the
sum of an incoherent component and a stronger coherent component corresponding
to propagating noise. The coherent component is modeled as 3D or 2D isotropic noise
corresponding to a sinc or a zeroth-order Bessel covariance matrix. Eigenvalues of
these were examined and both matrices were singular for element spacing to wave-
length ratios less than 1/2, causing a sharp drop in the eigenvalues which is related to
the edge of the visible region. Realizations of synthetic SCMs were drawn from the
complex Wishart distribution in numerical simulations from which both eigenvalue
spectra and densities were estimated.

Simulated and deep-water towed-array noise data SCMs clearly show the
strong jump in power level at the edge of the visible region. Apart from this jump,
the SCM eigenvalues decay steadily as predicted by theory. Snapshot deficient and

well-estimated SCMs were considered.
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Figure 5.5: (a, ¢): Eigenvalues of the MF towed array SCM with M = 64 (v = 1) for
13 realizations for (a, b) f = 1/8 (250 Hz) and (c, d) f = 1/4 (500 Hz). (b, d): The

normalized histograms of all of the eigenvalues.
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CROSS-CORRELATIONS OF DIFFUSE
NOISE IN AN OCEAN ENVIRONMENT
USING EIGENVALUE BASED STATISTICAL

INFERENCE

Cross-correlations of diffuse noise fields can be used to extract environmental
information. The influence of directional sources (usually ships), often results in a
bias of the travel time estimates obtained from the cross-correlations. Using an array
of sensors, insights from random matrix theory on the behavior of the eigenvalues
of the sample covariance matrix (SCM) in an isotropic noise field are used to isolate
the diffuse noise component from the directional sources. A sequential hypothesis
testing of the eigenvalues of the SCM reveals eigenvalues dominated by loud sources
that are statistical outliers for the assumed diffuse noise model. Travel times obtained
from cross-correlations using only the diffuse noise component (i.e., by discarding or
attenuating the outliers) converge to the predicted travel times based on the known
array sensor spacing and measured soundspeed at the site and are stable temporally

(i.e., unbiased estimates). Data from the Shallow Water 2006 experiment demonstrates

110
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the effectiveness of this approach and that the SNR builds up as the square root of time,
as predicted by theory.

6.1 Introduction

Over the past decade, there has been significant interest in retrieving infor-
mation from diffuse, multiply scattered and refracted waves in an environment. It
was demonstrated, both theoretically and experimentally [1-5], that temporal cross-
correlations of a diffuse noise field recorded on a pair of receivers yielded the Green’s
function between those two points. It also is possible to image remote areas of the
ocean [6-10] and the interior of the earth [11-13] using diffuse noise fields, as opposed
to using controlled active sources which are both expensive and limited in resolution.

The ocean noise field has two primary components—a rich and varied back-
ground diffuse noise field due to wind, breaking waves, biological activities, distant
shipping, and a highly directional (and often stronger) noise field due to ships and other
similar anthropogenic activities in the vicinity of the observing sensors. Depending on
whether one wishes to monitor the changes in the environment, or the movement of
the sources, the two components of the noise field either can be beneficial or a deter-
rent. A challenge in using ocean noise is separating these two components reliably.

For an N element linear hydrophone array, the sample covariance matrix (SCM)

is formed in the frequency domain from M snapshot vectors (i.e., the Fourier coeffi-

cients of the data observation vector at a frequency f), x,,(f), m=1,...,Mas

= 1 M o

R = 37 2, XD, (6.1)
and its eigendecomposition gives the eigenvalues A;(f) > --- > An(f) and eigenvec-
tors v1(f),...,Vn(f). The time domain cross-correlation of the data from the ith and

jth hydrophones across the entire bandwidth is obtained as:
Cy(®) = F " [Ry(P)] (6.2)

where t denotes the correlation time, and F ~! denotes an inverse Fourier transform

(henceforth, the dependence on fis dropped unless necessary).
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When the noise field is diffuse, the cross-correlation can be used as a proxy for
the Green’s function of the environment (which is unknown) shaped by the spectrum
of the noise field. Hence, the location of the peak of the cross-correlation gives the
travel time which typically corresponds to the direct path propagation between the
hydrophones.

It was shown experimentally [6] that in order to obtain stable travel times for
a ship dominated noise field, the cross-correlations must be averaged over ship tracks
which pass through the end-fire region of a pair of hydrophones. Performing the cross-
correlations over much shorter time periods introduces biased travel times, because the
directional nature of the noise field results in travel times that generally are less than
that for the direct path between the hydrophones [14,15]. This results in requiring long
observation times to obtain stable estimates of the travel times

In this article, the focus is on obtaining stable cross-correlations from an array
of sensors without interference from loud sources, by effectively discarding or atten-
uating the contributions from the directional noise field (Sec. 6.4). This is achieved by
drawing on insights from random matrix theory (RMT) on the behavior of the eigen-
values (Sec. 6.2) of the SCM, which then is used in a statistical hypothesis testing frame-
work (Sec. 6.3).

RMT, which has its roots in nuclear physics [16], is a mathematical tool that
allows one to study the eigenvalue densities of random matrices in the asymptotic limit
as the matrix size increases. It has diverse applications in a wide variety of fields such
as statistics [17,18], signal processing [19-25], ocean acoustics [23,26-29], information
theory and wireless communications [30, 31], elastodynamics [32], wave propagation
and scattering in random media [33-35].

Recently, the asymptotic eigenvalue densities of the SCM for a 3D isotropic
noise field were derived using RMT [23]. Here, we assume the diffuse background
noise field in an ocean environment to be isotropic and use these results to distinguish
the eigenvalues due to loud, directional sources (e.g. nearby ships) in the data from
those of the background noise using hypothesis testing. Prior related work include
model order estimation for signals in white noise using RMT combined with an in-

formation theoretic criterion [21] and eigenvalue based sequential hypothesis testing
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in white and colored noise [17,22]. The contribution of this article is in adapting the
sequential testing to diffuse ocean noise fields, especially when the SCM inherently is
rank deficient (see Sec. 6.2.2), and its application in noise processing.

The isotropic noise model primarily is chosen because the known analytical
results [23], readily can be related to features observed in data (see Sec. 6.4). In practice,
any reasonable physical noise model can be used (see Sec. 6.5 for a brief discussion) and
the advantage of using simple analytical noise models is that one can process the data
without having to know anything about the environment (e.g. water depth, seafloor

characteristics, etc.).

6.1.1 Notations and Definitions

1. The term eigenvalue density (probability density of the eigenvalues) is often used,

and is defined for any N X N Hermitian matrix A with eigenvalues {a,. . .,an}
as
1 & d
P = NZ 5(x = az) = —Pa(), (63)
where P4 (x) is the empirical cumulative distribution (ECD) of the eigenvalues,
defined as
PA(x) = y (6.4)

and # denotes the cardinality of the set.

2. As N — oo, the ECD of the eigenvalues, P, (x) converges almost surely to a well
defined distribution P(x) [36] and the corresponding density function, p(x) is

referred to as the asymptotic eigenvalue density.

3. The dimensions of any covariance matrix (CM) A, unless made explicit, are taken
to be N X N. A denotes limy_,,, An. Similarly, any SCM A, unless otherwise
stated, is taken to be such that MA ~ W(A,M), ie., MA is complex Wishart
distributed with M degrees of freedom and true CM A. Ao denotes limp 00 An,
with N/M = v.

4. The term loud source is used generically to mean discrete sources or interferers

in the environment, which in general are louder than the diffuse background



114

noise field and possibly could bias the cross-correlations because of their spatial

compactness (also see Sec. 6.3.1.1).

6.2 Background

6.2.1 Statistical Model for the SCM

The mth snapshot vector, x,,, is modeled as
Xm = Sy + Ny, (6.5)

where s, ~ CN(0,S) is a circular complex normal distributed directional noise vector
from loud sources in the environment with a CM S and n,, ~ CN(0,X) is a Gaussian
diffuse noise vector with a CM X. From the independence of s, and n,,, the true CM
of x,,, then is

R=S+73, (6.6)

and the SCM in Eq. (6.1) is complex Wishart distributed with M degrees of freedom
and true CM R, i.e., MR ~ W(R,M).
For the purposes of this paper, to model the effect of a few loud sources, we

assume that the rank of S, say K, is small compared to the rank of X i.e.,
K = rank(S) < rank(X) (6.7)

and that the K non-zero eigenvalues of S are all larger than the eigenvalues of ¥ and
manifest in the K largest eigenvalues of the SCM. Note that the effect of a source will
be spread across multiple eigenvalues and eigenvectors if the source is moving and the
observation time is not short enough to consider it to be stationary [37] or if multiple
sources are present and their replica vectors are not orthogonal [38]. Hence, a direct
correspondence between a particular eigenvalue and a particular loud source might
not be possible.

The objective is to separate the components of the SCM R based on its eigen-
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values and eigenvectors as

K N
R= >l + > A
k=1 k=K+1

=R, + R, (6.8)
where Ry is the directional noise component and R, is the diffuse noise component. The
eigenvalues of ﬁs, namely ;11, e, A k (and the eigenvectors), also contain a diffuse noise
component in addition to the directional noise component and hence the separation of
R exactly into Sand T is not possible.

In the following section, we review the case when R = R, = X, and the true

noise CM X is due to a spatially isotropic noise field.

6.2.2 Relevant Results for Spatially Isotropic Noise Fields

An isotropic noise field consists of random waves propagating towards the ar-
ray from all directions. The spatial coherence function of the noise recorded on two

sensors in a 3D isotropic noise field is [39, 40]
I' = sinc(2p), (6.9)

where sinc(x) = sin(zx)/(7x) and f is the ratio of the spacing between the sensors
to the wavelength under consideration (8 = fd/c, where fis the frequency, d is the
spacing between the sensors, and c is the speed of wave propagation in the medium).
For a linear array of N equidistant sensors, the elements of the CM of the noise field

(normalized to unit power on each sensor) are given by

X = sinc (2fli = jl) , (6.10)
which is a symmetric Toeplitz matrix. Thus, the spatial correlations are only dependent
on f (or equivalently, on f) and the separation |i — j|.
6.2.2.1 Asymptotic Eigenvalues of the Isotropic Noise CM

It has been shown that the eigenvalues of an infinite dimensional Toeplitz ma-

trix constructed from sequences in ¢; (absolutely summable), with a Fourier series also
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in ¢; (called Wiener class Toeplitz matrices) are related to the said Fourier series [41].
Although the sinc sequence is not absolutely summable, the result still holds [23] and
the asymptotic eigenvalues of X, from Eq. (6.10) were derived for all f5.
In Ref. [23], it is shown that there are at most two distinct eigenvalues (with
multiplicities) for all j, given by
_at1
2p

with g € {0,1,...} such that g < 28 < ¢+ 1, and the respective multiplicity ratios are

Al and A2 = (611)

q
2p°
given by

(&, =2f—-qgand &, =q+1-2p. (6.12)

A key result here is the fact that the CM is rank deficient for § < 1/2, even when
M > Nbecause A, = 0. In other words, the rank deficiency is not due to insufficient

snapshots, but due to the nature of the noise field.

6.2.2.2 Asymptotic Eigenvalue Density of the Isotropic Noise SCM

The isotropic noise SCM 3 is modeled as

= 1
¥ = —»XXH, (6.13)
M
where X is an N X M random matrix whose entries are zero-mean complex Gaussian
random variables drawn from CN (0, 1) [Eq. (6.13) can be verified by taking an expecta-
tion]. The probability density of the eigenvalues of > were derived [23] using Stieltjes
transforms [36] for N/M = v < 1, i.e. the number of observations (snapshots) is larger
than the dimensions of ¥ (number of hydrophones).
When the ratio of spacing to wavelength < 1/2 or f is a multiple of 1/2 i.e.,
B =4q/2, q € N, the SCM eigenvalue density is given by
YD) 5 <ca< Ay
ps_(4) = v (6.14)
£,6(1) otherwise,
where 1. = (/A + v/v)? are the upper and lower limits of the “spreading” of the

eigenvalues of the SCM around the true eigenvalue which is A;. The density when
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is a multiple of 1/2 is known as the Marc¢enko—-Pastur density [42]. Regardless of the
value of v, Y is rank deficient for all B <1/2,as &, #0.
The eigenvalue density of the SCM and the extent of spreading of the eigenval-

ues for all other values of f§ can be found in Ref. [23].

6.3 Sequential Hypothesis Testing of the SCM Eigen-

values

Eigenvalue based sequential testing using RMT was introduced in Ref. [17] for
signals in white noise and extended to colored noise in Ref. [22]. If the noise only CM
is known exactly (or if a noise only SCM can be estimated) and if it can be inverted,
one could perform a “noise whitening” transformation [22] on the data to transform
the underlying noise CM to the identity matrix, following which the eigenvalues can
be tested using known results from RMT. However, this is not possible here, as the
isotropic noise CM and SCM are inherently rank deficient for f < 1/2 and hence not
invertible. In this section, we outline an approach based on Ref. [17] to distinguish
those eigenvalues of the data SCM R that are due to loud sources, from those due to
diffuse noise.

Since the number of large eigenvalues K, that are dominated by loud sources is
not known a priori, at each f(or equivalently ), we test sequentially the eigenvalues of
R,{1,...,An}ateach step k (starting with k = 1) against the following two hypotheses

Hy (null) and H; (alternate) at a significance level « per test,

Hy : The kth eigenvalue is due to diffuse noise (6.15)

H; : The kth eigenvalue is dominated by loud sources

until Hj no longer can be rejected. The termination criterion follows from the fact that
the eigenvalues dominated by loud sources are larger than the eigenvalues due to noise
only (by definition) and hence once H, cannot be rejected for some k, the subsequent

N — k eigenvalues must also be due to diffuse noise.
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6.3.1 Behavior of the Largest Eigenvalue of the SCM

6.3.1.1 In a Noise Only Scenario

If there were no loud sources (K = 0) in the environment and the diffuse noise
field is isotropic, the eigenvalues of R = ¥ in the asymptotic limit are distributed as
P5 (A). Since no eigenvalues exist [43] outside the support of the density py (4),
the largest eigenvalue of Ry, A;, converges almost surely to the upper bound of the
density [22], A+ as N — oo.

Typically, the distribution of the largest eigenvalue of complex Wishart matri-
ces is described using the Tracy-Widom (TW) distribution [44]. For the case when
R =1, the identity matrix, it was shown that the statistic [17,45]

M — mrw

M3 W, (6.16)

STW
for some scaling constant sty and centering constant mry, both dependent on Nand M.
While these constants can be computed explicitly in this case, it is not straightforward
for arbitrary SCMs [46].
WhenR=3 (diffuse noise only), the equivalent of Eq. (6.16) can be written as

~

A ~Ps, (6.17)

where P_ (A7) is the ECD of the largest eigenvalue of s P, 5(A) can be computed in a

11z
straightforward fashion from Monte Carlo simulations, as is done in Sec. 6.3.2.2.

6.3.1.2 In the Presence of Loud Sources

The presence of loud sources in the environment which are captured in the
K > 0 large eigenvalues of S [Sec. 6.2.1, under Eq. (6.6)] manifests in the K largest
eigenvalues of the SCM R that are now larger than what they would have been had
there been no sources. The eigenvalues of R that are dominated by loud sources are
distinguishable from the eigenvalues due to noise when they cross a certain threshold
[22,47] (which depends on the separation between the eigenvalues of S and %, their

distributions, and v). The exact value of the threshold is not relevant to this discussion
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and here, we assume that all the K < rank(X) largest eigenvalues are distinguishable
(although this is not always the case—see the last paragraph of Sec. 6.4.4.1).

The distribution of the K largest eigenvalues in this case is Gaussian [46,47] (i.e.,
different from the noise only case) and they can be identified in a statistical hypothesis
test [Eq. 6.15)]. For example, when K = 1, the null hypothesis that A; belongs to P5
[Eq. (6.15) with k = 1] will be rejected with a high probability, indicating that A, is an

eigenvalue dominated by loud sources.

6.3.2 Inferring the Noise Eigenvalues

More generally, at step k in the hypothesis test (see Sec. 6.3.2.2 for further de-
tails), A (which can be considered to be the largest eigenvalue of an N — k + 1 di-
mensional SCM) is checked to see if it belongs to P1|§N—k+1’ i.e., the ECD of the largest
eigenvalue for an N — k + 1 dimensional noise SCM.

The choice of PllfN—k-&-l to test ;lk instead of the more intuitive P le the
ECD of the kth eigenvalue of %, can be understood from the interlacing properties of
eigenvalues (see Appendix 6.A). As a result of Eq. (6.29), withr=k—-1,i=1, A= E,
and A’ = /Z\N—k—i—l, the corresponding ECD P 5 is stochastically smaller than PlIEN-kﬂ'

Hence, testing Ak usingP,e provides a conservative p-value for Hj (i.e., the actual

probability of observing an outlier when H, has not been rejected, is smaller) [17].

6.3.2.1 Test Statistic
To test ;lk, the test statistic
(6.18)

is used, following Ref. [17], with

A
R A 6.19
Tk N—k+1;; i (6.19)

Here N is the number of eigenvalues that are theoretically non zero and A is the the-
oretical mean of the N’ eigenvalues [see Eq. (6.20)]. Hence, o2 (k) is merely a normal-
ization factor such that the eigenvalues from data can be tested using distributions

obtained from simulations.
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Figure 6.1: Schematic illustrating the hypothesis test to identify eigenvalues domi-
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(k = {1,...,K} does not belong to the P, S distribution when tested at significance

a and 7-(0 is reJected (b) The largest eigenvalue from diffuse noise falls inside PlIZN-K+1

and hence H, cannot be rejected.
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When f < 1/2, the noise SCM 3 is rank deficient because &, > 0 and the corre-
sponding eigenvalues asymptotically are zero (Sec. 6.2.2.2). However in practice, they
are not exactly zero, likely due to sensor noise (self-noise due to system electronics
that is independent from element to element). It was observed empirically that in-
cluding these eigenvalues in the sequential testing often resulted in H, being rejected
with a greater likelihood i.e., eigenvalues that were due to the diffuse noise field were
identified incorrectly as being dominated by loud sources (also see Sec. 6.4.2.1).

To avoid this problem, an ad hoc correction is made by considering only the
largest N' = | £, N] eigenvalues (i.e., only those eigenvalues that theoretically are non-
zero) for the sequential testing and accordingly, A = A;. For all other values of j,

A =1and N = N. In short,

_ A EN <1/2
AN={"" LGN <) (6.20)
1,N otherwise.

6.3.2.2 Hypothesis Testing

Starting with k = 1, the null hypothesis H; in Eq. (6.15) is tested at a significance
level o and is rejected if

(k) > Pl_llfN_Hl(l - a). (6.21)

The test in Eq. (6.21) is repeated, incrementing k each time, until H, cannot be rejected.
From the resulting value of k, the number of eigenvalues K’ that effectively are identified
as the outliers that are dominated by loud sources, is given by K’ = k—1. The remaining
N - K’ eigenvalues then are considered to be due to diffuse noise. Note that the « here
is per test, and not the overall « for the procedure, which is expected to be higher (this
typically is controlled using methods such as the Bonferroni correction).

A pre-computed lookup table is generated for Pl_llfN-kJrl (1 - a) from 1000 Monte
Carlo trials for the given array configuration, for all k and f, assuming a sound speed

of ¢ = 1500 m/s. One could also perform a simple binary test using the asymptotic

upper bounds for the eigenvalue density and get equally good results [26].
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Table 6.1: Sequential hypothesis testing algorithm
Input

1. Frequency f; significance level «, eigenvalues of R( ), {21 f,... ,An( N}

2. Pre-computed lookup table of Pl_llfw-k+ (1-a)fork={1,...,N}atf

Testing

1. Assume sound speed, ¢ = 1500 m/s
2. p < d/cwhere d is inter-element spacing
3. Define 7(k), ’Ei and N as per Eqgs. (6.18)-(6.20).
4. k<1
5. While z(k) > P;I%N_kﬂ(l - )

Reject H, [see Eq. (6.15)]

Ifk+#N

ke—k+1
Else Break

6. Return K « k-1
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Figure 6.1: (a) Eigenvalues of the data SCM R (dB) for 20-100 Hz at a single time slice.
The solid line shows the threshold separating the directional noise (to the left) from
the diffuse noise. (b, c¢) Individual eigenvalues at 25 and 50 Hz due to loud sources (),
diffuse noise (o) and eigenvalues not considered [ X, only in (b)]. In each panel, the
eigenvalues are normalized by the maximum in that panel.

6.4 Experimental Results

6.4.1 Data Processing

Ocean acoustic data from a bottom mounted horizontal line array (Shark array
deployed by the Woods Hole Oceanographic Institution), at a water depth of 79 m
with an inter-element spacing of d = 15 m are used here. The data were recorded
from 13:00:00 to 15:14:24 UTC on September 1, 2006 (one day before tropical storm
Ernesto) as part of the Office of Naval Research sponsored Shallow Water 2006 (SW06)
experiment conducted off the coast of New Jersey [48]. Only the data from the first
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N = 30 hydrophones of the 32 element array are used because the 31st hydrophone
had inconsistencies in the data [9]. This dataset was chosen specifically from a time
interval where several ships were present in the environment, in order to highlight the
advantage of this approach where conventional methods do not yield good results.
The data from each hydrophone were bandpass filtered to 20-100 Hz and down-
sampled to a sampling frequency of f; = 244.1406 Hz (500,000 samples every 2048 s).
The filtered data were stored in blocks of 128 s each. Each block was further divided
into M = 125 segments of 1.024 s each and Fourier transformed with a 512 point FFT. At
each frequency f; the transformed data are written as a column vector x = [xg,- -+ , Xn] T

and the SCM for the block, Ris formed as in Eq. (6.1), with N = 30 and M = 125.

6.4.2 Eigen-structure of the Ocean Noise Field

6.4.2.1 Eigenvalues of the SCM R

The sequential hypothesis testing algorithm (Table. 6.1) with significance level
a = 0.05 is used to separate R into R; and R, for each data block at each frequency
bin. Visualizing the eigenvalues at a single time slice (128 s from 14:31:44) reveals
a rich variation across frequency [Fig. 6.1(a)] and the algorithm picks out the outlier
eigenvalues quite well at all frequencies (solid line).

The dark triangle to the lower right is the region with zero eigenvalues (the-
oretically) and corresponds to invisible space [49]. This also is observed in Fig. 6.1(b)
where the eigenvalues drop past the 16th eigenvalue, which closely corresponds to
£, N] as predicted by theory (6.12).

If the correction in Eq. (6.20) were not applied, it was observed in nearly all the
cases that for f < 1/2 H, was rejected up until about the [ £, N] + 1th eigenvalue. In
other words, only those eigenvalues that theoretically are zero [ X in Fig. 6.2(b)] were
being retained, which was incorrect. Hence, not considering these small eigenvalues
results in a better separation of the loud source dominated eigenvalues from the diffuse

noise eigenvalues, as can be verified visually in Fig. 6.2.
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Figure 6.2: Empirical eigenvalue density (histogram) of the eigenvalues of R,, (under
the solid lines) and R, (to the right) obtained from ocean acoustic data for f= (a) 25 Hz,
(b) 50 Hz and (c) 75 Hz. The solid lines correspond to the asymptotic eigenvalue density.
In (a), only the contribution from the largest | {; N] eigenvalues are shown. The dotted
line(s) show the location(s) of the non-zero eigenvalue(s) of the isotropic noise CM.
The densities for the eigenvalues of R, extend beyond the extent of the panels and is
truncated for clarity.
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Figure 6.3: Conventional beamformer output (dB) at 25 and 50 Hz using (a, d) R, (b, e)
R, and (c, f) R,. The beamformer output in each panel is normalized by the maximum

in that figure. “A” and “B” mark the tracks from loud sources.
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6.4.2.2 Empirical Eigenvalue Density

The histogram of the non-zero eigenvalues of R, from each 128 s realization
for the entire 136.5 min duration (normalized to unit mean at each time slice) is shown
in Fig. 6.2 (a—c) for f = 25,50 and 75 Hz respectively. Note that since the ensemble
of eigenvalues forming the histogram was obtained by discarding a different number
of loud source dominated eigenvalues at each realization [on average, 3-6 eigenvalues
are identified as loud source related for the frequencies shown here; see Fig. 6.1(a)],
the densities shown are not the true densities and Fig. 6.2 should only be interpreted
qualitatively.

Nevertheless, the eigenvalue densities from the data resemble the asymptotic
densities (thick solid line) in Section 6.2.2 remarkably well. The histograms of the direc-
tional source eigenvalues (from R, with the same normalization as for R,,) are displayed

to the right of the corresponding noise eigenvalue densities.

6.4.3 Beamformer Output

Conventional beamforming with Hamming spatial shading was performed for

each block for ﬁs and ﬁn at 25 and 50 Hz as:
By(8) = wH(O)R(yw(6), (6.22)

where w(0) is the shaded steering vector, with the phase of the nth element given by
wn(0) = exp 12nfnd/c sin(0)], n=1{0,1,...,N— 1}.

The dataset shows the presence of a few loud sources in the environment, with
two prominent ones being an almost stationary source at about —6° and a source
moving from —30° to —80° over the entire duration [“A” and “B” respectively in
Fig. 6.3(b, e)]. The biasing effect of these loud sources in the medium is demonstrated
in Sec. 6.4.4.1.

Beamforming on the diffuse noise component demonstrates the isotropic na-
ture of the noise field with nulls only at directions corresponding to the large eigen-
values that were removed [Fig. 6.3(c, f)]. The nature of the noise field when the large

eigenvalues are re-weighted instead of being removed is discussed in Section. 6.4.5.
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Figure 6.4: Noise cross-correlations (dB) using R. The dashed lines indicate the pre-
dicted travel times for the direct (inner) and the surface reflected (outer) paths. Panels
(a—d) show the evolution of the cross-correlation function with successive quadrupling
of averaging time, starting with 2 minutes in (a). Travel times marked “A” in (d) and
“B” in (c) correspond to the respective loud sources indicated in Fig. 6.3(b, e).
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Figure 6.5: Noise cross-correlations (dB) using R, The dashed lines indicate the pre-
dicted travel times for the direct (inner) and the surface reflected (outer) paths. Panels
(a—d) show the evolution of the cross-correlation function with successive quadrupling
of averaging time, starting with 2 minutes in (a). Travel time marked “A” in (d) and “B”
in (c) correspond to the respective loud sources indicated in Fig. 6.3(b, e). “C” marks
an arrival (which has a symmetric component) that could possibly correspond to a
propagation path through the bottom layer.
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6.4.4 Cross-correlations of Diffuse Noise

6.4.4.1 Convergence of the Cross-correlations

The SCM from each subsequent data block is added to the previous, and the

resulting averaged cross-correlation is obtained using Eq. (6.2) as
(Cij()yr=F ' [R(f1]. (6-23)

where T denotes the total averaging time. The array configuration (number of hy-
drophones N and inter-element spacing d), bandwidth and the choice of observation
time M influence the duration of a single block (here 128 s).

Fig. 6.4(d) shows the noise cross-correlations obtained by averaging 64 con-
secutive instances of R (128 s each) or a total of 136.5 mins [evolution of the cross-
correlation with successive quadrupling of averaging time in Fig. 6.4(a~d)]. The dashed
lines indicate the predicted travel times for the direct and surface reflected paths, pre-
dicted assuming a straight line propagation path, using sound speed measurements in
the vicinity of the site (CTD Knorr185-36). The travel times observed can be linked to
the location of the directional sources in Fig. 6.3(b, e). As the direction of the moving
source changes from —30° at the start to —80° at the end of the data window [“B” in
Fig. 6.3(b, e)], the corresponding travel time also changes accordingly [“B” in Fig. 6.4(c)].
Slowly moving sources build up correlation peaks steadily and dominate the observed
travel times [“A” in Fig. 6.4(d)]. These figures illustrate the effect of directional noise
sources in the medium, which results in several spurious arrivals that are visible at
correlation times less than the predicted times and reduce the reliability of the travel
time estimates.

In contrast, the noise cross-correlations obtained using En instead of R (as be-
fore, averages of 64 consecutive instances) in Eq. (6.2) have a two-sided (symmetric)
structure (Fig. 6.5). A two-sided cross-correlation is typical for a diffuse noise field, and
the negative time delays correspond to a propagation direction opposite to that of the
positive time delays. The observed travel times also correspond well to the predicted
travel times (see Fig. 6.6). A faster arrival with a symmetric component is observed
[“C” in Fig. 6.5(d)], which could possibly correspond to a propagation path through the

sediment layer.
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Figure 6.6: Averaged cross-correlations between sensors 1 and 16 (spaced 240 m apart)
obtained using (a) R and (b) R, withi increasing averaging time. The maximum in each
trace has been normalized to 1 for plotting purposes in order to highlight the peaks.
The result after averaging or 136.5 min (solid) is shown above the respective plots.
Dashed lines indicate the predicted travel times for the direct (inner) and the surface
reflected (outer) paths.

One also sees a weak arrival close to zero lag [“A” in Fig. 6.5(d)], which is due to
residual components from the loud source at —6° [“A” in Fig. 6.3(b, e)] that the eigen-
value processing failed to remove. A likely reason is that this source was not loud
enough to be detected by the algorithm (see discussion in Sec. 6.3.1.2). Yet, it built up

a correlation peak because it was moving slowly.

6.4.4.2 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) of the cross-correlation build up also is studied
as a function of averaging time for the data considered here. Here, SNR is defined
as the ratio of the maximum of the cross-correlation in a 0.025 s window around the

predicted travel time to the standard deviation of the fluctuations at large correlation
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Figure 6.7: (a, b) Noise cross correlations using the data SCM R and the diffuse noise
SCMR, respectively after 136.5 min of averaging. (c, d) Signal-to-noise ratio (SNR) for
the positive (solid) and negative (dot-dashed) time delay of the noise cross-correlation
function between sensors 1 and 16 [highlighted in (a) and (b)] with increasing averag-
ing time using R and R, respectively. The dashed line shows the square root of time
curve, which is the SNR build up predicted by theory.
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times [see trace at 240 m in Fig. 6.7(a,b), same trace also shown on top of Fig. 6.6.] [7].
This definition helps track the build up of the SNR at the predicted time, and avoids
skewing of the result due to the peak in the data being shifted due to directional sources.

When there are loud sources in the environment that are in motion, the location
of the correlation peaks vary with the direction of the source and hence the SNR does
not build up steadily and fluctuates with time [see Fig. 6.7(c)]. On the other hand, when
the loud sources are removed, the peaks build up along the travel times corresponding
to propagation along the end-fire direction and the SNR shows a steady increase, pro-

ceeding as the square-root of averaging time T as predicted by theory (dashed line) [7].

6.4.5 Cross-correlations From Re-weighted Eigenvalues

Although the cross-correlations obtained using R,, provide reliable results
(Sec. 6.4.4), it does not utilize the entire diffuse noise field because the separated
diffuse noise component has spatial voids in directions corresponding to the large
eigenvalues that were removed [Fig. 6.3(c, f)]. This is because the eigenvalues and
eigenvectors of R, also include contributions from the diffuse noise field (Sec. 6.2.1),
which cannot be separated. Since the biasing effect in cross-correlations is caused
by the non-zero eigenvalues of R,, it also is possible to mitigate their effect by
re-weighting the large eigenvalues instead of removing them entirely.

Consider a re-synthesized SCM R obtained as
%
R= Z Al £ R, (6.24)
k=1
where A are the re-weighted eigenvalues (A = 0in Sec. 6.4.4). There are several ways in

which the weights can be assigned, and two straightforward weightings are considered

here:

1. A; = Mean of the noise eigenvalues, i.e.

N

- 1 A

A= - E M, i=1,...,K (6.25)
N =K, &

2. A; = Largest noise eigenvalue, i.e.

)Ll' = j.K’_A'_l, i= 1,. - ,KI (626)
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Figure 6.8: Beamformer outputs (dB) at 25 Hz (a, b) and cross-correlations (dB) from
136.5 min of averaging (c, d) obtained by re-weighting the large eigenvalues using
Eq. (6.25) in (a, ¢) and Eq. (6.26) in (b, d).
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In both cases, the resulting noise field [Fig. 6.8(a, b)] does not exhibit the spa-
tial voids observed when using only R, [Fig. 6.3(c, f)]. The 136.5 min averaged cross-
correlations using R with the weights in Eq. (6.25) [Fig. 6.8(c)], are very similar to that
obtained using R, [Fig. 6.5(d)]. However, using the weights in Eq. (6.26) gives a cross-
correlation structure that has both, the arrivals at the predicted travel times, and a
spurious arrival [“A” in Fig. 6.8(d)] corresponding to the slowly moving source at —6°
[“A” in Fig. 6.3(b, e)]. This spurious arrival can easily be discarded by time-gating. The
surface-reflected arrival also is visible from 150 m in range onwards [“D” in Fig. 6.8(d)],
whereas it is only visible from 300 m onwards in Fig. 6.5(d) and Fig. 6.8(c). As seen from
the two examples, changing the weights can lead to different results and each approach

can be advantageous in different scenarios.

6.5 Impact of Alternative Ocean Diffuse Noise Models

Here we compare qualitatively the impact of using three alternative ocean noise
models for the hypothesis testing in addition to the 3D isotropic model (ISO) already
considered in this article — surface noise in a fluid half-space (Cron-Sherman model
[50]) with omnidirectional sources (CS0) and cosine directional sources (CS1), and sur-
face noise in a waveguide with a sediment layer (Kuperman-Ingenito model [51], KI).
The KI is a more complicated noise model that incorporates waveguide physics and
is representative of ocean noise in shallow water environments. It is used here pri-
marily to show the similarities between the simpler models (which don’t require any
knowledge of the environment) and a model based on the local environment.

The CMs for the noise models using the array configuration in Sec. 6.4.1 and a

medium sound speed of 1500 m/s are obtained using Eq. 6.10 for £°° and

250 =] (2npli- ) (6.27)
CS1 _ 2J1(2ﬂﬂ|l_1|)
T gl (6.28)

where ] and ], are the Bessel functions of the first kind and zeroth and first orders
respectively. The KI model, X!, is generated by a wavenumber integration approach

using OASES [52] assuming a 79 m deep stratified waveguide (using a sound speed
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profile from CTD measurements at the site) and a seabed with soundspeed [9] 1650
m/s and density 1.69 g/cm®.

Fig. 6.1 shows the eigenvalues of the CM for the different noise models for =
0.25 (a) and 8 = 0.5 (b). The eigenvalues of '°° are very close to that of XX (assumed
to be true), and those of »CS1 while similar in general structure to the KI, show more
deviation. The CS0 model least resembles the KI and shows a large deviation. The small
differences between the eigen-structure of XX and those of X°° and %! are further
reduced in their respective SCMs as observed by the similarity in the eigenvalue density
(obtained from 1000 Monte Carlo trials) of b to that of EISO [Fig. 6.1(c,d)]. This is
related to the general spreading of eigenvalues observed in SCMs. The similarity in
the density holds when the observations M ~ N and decrease as M — oo. In contrast,
the eigenvalue density of ECSO remains different from the rest in shape and the upper
edge of the density.

Intuitively, one would expect a density with a larger value of P"L ) (1 - a)
N-k+1

such as that for ECSO to reject Hj less often, i.e. rejecting it only in cases where the
loud source eigenvalue is very large (compared to the other models). This is indeed the
case, as seen from Fig. 6.2, where the thresholds separating the loud source subspace
and the diffuse noise subspace are shown for the different models. As expected from the
similarities in the density, the thresholds obtained using ISO (solid) are nearly identical
to that from KI (dot-dashed), differing by at most one or two. CS1 (dotted) also follows
the general pattern for the KI and 3D thresholds. CS0 (dashed), which showed the most
deviation, identifies only the very largest of the loud source eigenvalues.

The effect of a shifted threshold arising from a poorly chosen model is seen
clearly in the beamformer output in Fig. 6.3 using the CS0 model (results for KI and
CS1 are very similar to those of ISO shown earlier in Sec. 6.4 and hence are not shown
here). Several ship tracks are identifiable in the “diffuse noise” subspace that is obtained
using the CSO model [“A” and “B” in Fig. 6.3(b,d); compare with Fig. 6.3(c,f)] and the
resulting noise cross-correlations are still contaminated by spurious arrivals from loud
sources [Fig. 6.4(a)].

In summary, simple analytical noise models which do not require any addi-

tional knowledge of the environment, can be used as a reasonable approximation to
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Figure 6.1: Eigenvalues of the CM for the 3D isotropic noise model (ISO, solid), the
Cron-Sherman model for surface noise in a fluid half-space with omnidirectional
sources (CS0, dashed) and sources with cosine directionality (CS1, dotted), and the
Kuperman-Ingenito model for surface noise in a waveguide with a sediment layer
(KT using measured environment parameters, dot-dashed) with N = 30 hydrophones
and f = 0.25 (a) and f = 0.5 (b). (c,d) Empirical eigenvalue density of the SCMs
(v =30/125) corresponding to the CMs in (a,b) obtained from 1000 Monte Carlo trials.

more sophisticated models that incorporate waveguide physics and environmental in-

formation for the purposes of eigenvalue based statistical inference.

6.6 Conclusions

In this paper, we have demonstrated an eigenvalue based approach to separate
ocean noise into directional and diffuse components. By approximating the diffuse
noise recorded on a hydrophone array to be isotropic in nature, the eigenvalues of the

data sample covariance (SCM) are analyzed. Insights from random matrix theory are
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Figure 6.2: Threshold separating the directional noise (to the left) from the diffuse noise
is shown at a single time slice for the 3D isotropic noise model (ISO, solid), the Cron-
Sherman model for surface noise in a fluid half-space due to omnidirectional sources
(CS0, dashed) and cosine directional sources (CS1, dotted), and the Kuperman-Ingenito
model for surface noise in a waveguide with a sediment layer (KI, dot-dashed).

then used to explain the nature of the noise eigenvalues and a sequential hypothesis
testing is performed to identify, and isolate or attenuate the loud, directional sources.

The resulting cross-correlations were shown to converge quickly and remain
stable with increasing averaging time. The structure of the resulting cross-correlations
are two-sided (positive and negative time delays), which reduces the ambiguity in the
estimates of the travel time. The signal-to-noise ratio (SNR) of the cross-correlations
was also shown to increase as the square root of time, which is consistent with theo-
retical predictions.

Finally, the impact of the chosen noise model on the identification of loud
sources and cross-correlations were analyzed and it was shown that simple analyti-
cal noise models provide similar results as more sophisticated noise models that mimic

the environment.
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Figure 6.3: Conventional beamformer output (dB) at 25 and 50 Hz using (a,c) R, and
(b,d) R, obtained by using the Cron—-Sherman model for surface noise in a fluid half-
space due to omnidirectional sources (CS0) for the hypothesis testing. The beamformer

output in each panel is normalized by the maximum in that panel.
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Figure 6.4: Averaged cross-correlations between sensors 1 and 16 (spaced 240 m apart)
obtained using (a) R [same as Fig. 6.6 (a)] and (b) R, with the hypothesis test performed
using the Cron-Sherman model for surface noise in a fluid half-space due to omnidi-

rectional sources (CS0).
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6.A Interlacing of Eigenvalues

Let A be any N X N Hermitian matrix, with eigenvalues ¢y > a, > --- >
ay and A’ be the N — r X N — r Hermitian matrix obtained by removing r rows and
the corresponding r columns, with eigenvalues @] > d, > --- > a,_,. Then, the

eigenvalues of A and A’ interlace as,
ai > d; > apy, (6.29)

forie {1,...,N— r} Proof of Eq. (6.29) can be found in Ref. [53] (Theorem 4.3.15).
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CONCLUSIONS AND FUTURE WORK

This dissertation has focused on developing approaches to address the chal-
lenges faced in ambient noise processing as described in Section 1.1. The following

conclusions are drawn from this work:

1. Analysis of seismic noise using the Southern California Seismic Network (SCSN)
shows a clear presence of fundamental and first mode surface rayleigh waves and
body waves in the microseism band (0.05-0.2 hz). The higher mode Rayleigh
waves are persistent and seen year round primarily from the west and occasion-
ally from other azimuths when accompanied by large storms. The underlying
spatial coherence function (SCF) is modeled as a linear combination of the above
waves with the ratios estimated from data. The interactions between the different
wavenumbers in the SCF leads to beating and phase cancellation effects which
could be interpreted as being due to attenuation or the focusing and defocus-
ing effects of velocity anisotropy. This data driven model for the SCF describes
the observed coherence better than a simple zeroth order Bessel function model

which corresponds to only the fundamental mode.

2. Adopting a matrix based processing for uniform line arrays, the true spatial co-
variance matrix (CM) is modeled as a Toeplitz Hermitian matrix with the SCF

being the generating function for the matrix entries. Asymptotically, the CM
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has at most two distinct eigenvalues for all values of the inter-element spacing
to wavelength ratio. For less than half-wavelength spacing, the CM is rank defi-
cient and the zeros of the eigenvalue spectrum correspond to the invisible region

where propagating waves do not exist.

. Using concepts from random matrix theory (RMT), the asymptotic eigenvalue
density is derived for the sample covariance matrix (SCM) which is formed from
independent observations of the noise field. It is shown that for spacings of
less than half a wavelength, the SCM is always singular no matter how many
snapshots are used. This rank deficiency has implications in signal processing
algorithms that require the inverse of the SCM. For spacings of more than half
a wavelength apart, the SCM is full rank if sufficient snapshots are used but
the eigenvalue density can split into two distinct densities. If not taken into
consideration, this can be misinterpreted as being due to a discrete source rather
than just the noise field. The asymptotic results are shown to hold good even for

arrays with as low as 20 sensors.

. The presence of attenuation decreases the value of the large eigenvalues when
compared to the attenuation free case and also raises the smaller eigenvalues
due to the broadening of the bandwidth of the spatial coherence function. The
shape of the eigenvalue density of the finite SCM varies with attenuation and
this potentially could be used to retrieve medium attenuation properties. An
approximation to the asymptotic eigenvalue density can be obtained using the

polynomial method for random matrices.

. Using the insights from random matrix theory in Chapter 3, we explain the na-
ture of the noise eigenvalues observed in data. For a towed array in deep water,
the eigenvalues are shown to agree well with theory. A sequential hypothesis
testing framework is used to identify and isolate or attenuate the loud, direc-
tional sources in shallow water acoustic data. The resulting cross-correlations
were shown to converge quickly and remain stable with increasing averaging
time. The structure of the resulting cross-correlations are two-sided (positive

and negative time delays) which reduces the ambiguity in the estimates of the
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travel time. The signal-to-noise ratio (SNR) of the cross-correlations was also
shown to increase as the square root of time which is consistent with theoretical

predictions.

The publications that resulted from the work described in this dissertation are
among the earliest uses of random matrix theory in ocean acoustics and the first in
ambient noise processing. There are several possible directions of research that can be

taken:

1. The azimuthal averaging performed in estimating the spatial coherence reduces
the bias but potentially could increase the variance in the estimate for that dis-
tance bin. While conventional wisdom indicates that a lower azimuthal bias
(closer to isotropic) is preferable, it is hard to quantify by how much the vari-
ance changes. This also depends on the geometry of the array and the statistics
of the coherence which is unknown. A detailed analysis of the tradeoff involved

and incorporating the statistics of the coherence would improve the approach.

2. Analytical results for the eigenvalues also could be obtained for common array
configurations where the symmetry of the array can be exploited. Such results
will have applications not only in noise processing but also in other aspects of
array processing such as beamforming in Section 6.4.3 (truncating the eigenval-
ues of the CSDM) and spatial filtering (truncating the eigenvalues of the steering

matrix) [1]

3. The CSDMs considered in this dissertation were all obtained from azimuthally
uniform noise fields, which is a reasonable assumption for a horizontal line ar-
ray. This assumption does not hold for the vertical line array in shallow water
since the noise field has a vertical directionality due to the effects of the bottom.
Understanding the behavior of the eigenvalues with changing bottom parame-
ters would be beneficial in passive fathometer processing. This potentially is a
hard problem since the wave number integration technique to obtain the coher-
ence due to surface noise in a stratified ocean [2] is not convenient for analytical

manipulations as in Chapter 3. It would be interesting to see if simpler analytical
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models for the vertical coherence [3] can provide a good approximation to the

upperbounds for the eigenvalues due to vertical noise.
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