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This dissertation investigates deep learning-based signal processing techniques for

wireless communication system about two research topics: modulation classification in

orthogonal frequency division multiplexing (OFDM) signals for intelligent spectrum sens-

ing, and remote adversarial attacks on Wi-Fi-based human activity recognition (HAR)

systems for privacy.

Deep learning-based modulation classification of OFDM signals following Wi-Fi 6

and 5G downlink specifications for spectrum sensing is studied. Since intelligent spec-

trum sensing often targets diverse wireless technologies, protocol-specific preambles or
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channel allocation might not be available. To reliably estimate modulation under this

constraint, this dissertation proposes algorithm to estimate essential OFDM parameters

and extract a feature characterizing modulation to make it suitable to be an input to

deep learning-based classifier. The OFDM parameters, symbol duration and cyclic prefix

length, are estimated utilizing the cyclic autocorrelation properties of OFDM waveforms.

Based on these estimates, a feature characterizing modulation of OFDM signals is de-

signed to mitigate synchronization errors arising from unknown symbol boundaries. The

extracted features are represented as two-dimensional histograms of amplitude and phase,

which serve as inputs to a convolutional neural network (CNN)-based classifier. The

classifier’s performance, evaluated using synthetic and real-world measured over-the-air

(OTA) datasets, achieves a minimum accuracy of 97% accuracy with OTA data when

SNR is above the required SNR for reliable data transmission.

Remote adversarial attacks on neural network-based HAR classifier that utilize

Wi-Fi channel state information (CSI) has been investigated. The capability of Wi-Fi

routers to perform human activity recognition through CSI raises privacy concerns. To

address this issue, this dissertation proposes a novel remote adversarial attack deploy-

ing geneative adversarial imitation learning (GAIL). The proposed method degrades the

accuracy of HAR classifiers deployed at Wi-Fi routers by manipulating the channel es-

timation signals transmitted from user devices. Unlike gradient-based attacks, which

require complete knowledge of the target model’s inputs or future CSI, the GAIL-based

algorithm generates effective perturbation signals without explicit knowledge of future

CSI or details of the target HAR models. Comprehensive experimental evaluations per-

formed across seven distinct environments and six target HAR models–including both

deep learning and non-deep learning classifiers–demonstrate the versatility of the pro-

posed adversarial method. The GAIL-based approach reduces HAR classifier accuracy to

approximately 50%, requiring only a minimal increase (0.5 dB) in average perturbation

amplitude compared to gradient-based methods based on impractical assumptions.
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Chapter 1

Introduction

Next-generation wireless communication systems aim to achieve higher through-

put and to fulfill diverse visions including incorporating intelligence for cognitive radio

as well as joint sensing and communications [1, 2, 3]. Cognitive radios are envisioned

to intelligently manage resources, optimize network performance, and detect anomalies

autonomously [2]. Achieving these objectives requires reliable and accurate identification

of signal types to enable more efficient spectrum utilization and improved coexistence

among heterogeneous wireless technologies [4].

Due to the ubiquity of wireless signals, wireless-based sensing has become an exten-

sively studied research area [5]. Typical applications include Wi-Fi-based localization [6],

radar-based gesture recognition [7], and human activity recognition [8]. Additionally, the

integration of deep learning into these applications has significantly enhanced their per-

formance and accuracy [9]. However, this rapid technological advancement raises growing

concerns about privacy leakage, especially given the pervasive nature of wireless signals

in daily life [10]. Consequently, as wireless sensing technologies continue to advance, it

is increasingly important to address and thoroughly investigate associated security and

privacy issues.

The objective of this dissertation is to present two deep learning applications using

modern wireless communication signals:
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1. Among various signal characteristics, modulation information provides essential in-

formation about wireless signal transmission, including channel conditions between

a transmitter (Tx) and a receiver (Rx). The identification of modulation schemes

employed in state-of-the-art orthogonal frequency division multiplexing (OFDM)

signals for data communication is studied. As the proposed system is intended to

contribute to intelligent spectrum sensing, it operates without prior knowledge of

wireless communication protocols. Instead, the system relies solely on fundamental

OFDM structures—OFDM symbols and their cyclic prefixes (CP)—to extract fea-

tures characterizing modulation. Key OFDM parameters, subcarrier spacing and

cyclic prefix length, are estimated to provide the preliminary information to support

this processing step using OFDM signal’s cyclostationarity.

2. To address privacy leakage concern about Wi-Fi sensing, remote adversarial attack

against Wi-Fi-based human activity recognition (HAR) is studied here. Wi-Fi users

may have legitimate concerns about being monitored by Wi-Fi routers, which are

generally outside their control. To mitigate this issue, the proposed attack aims

to degrade the performance of deep learning-based classifier at a Wi-Fi router by

manipulating channel estimation signals transmitted by a user device.

1.1 Basic Concepts

1.1.1 OFDM

The procedure by which OFDM signals are generated is illustrated in Fig. 1.1

and Fig. 1.2. The parameters in Fig. 1.1 are from non-high throughput (non-HT) format

20 MHz bandwidth OFDM-based Wi-Fi, which is supported by Wi-Fi 2 (IEEE 802.11a) to

Wi-Fi 6 (IEEE 802.11ax) [11]. Fig. 1.1 describes how time samples carry the information.

IFFT is taken over 64 symbols. These consist of 24+24=48 data symbols, 2+2=4 symbols

on pilot subcarriers, and 64-27·2=12 inactive symbols on null subcarriers. Pilot subcarriers

2



Figure 1.1. Conversion of frequency domain symbols to signal samples in time domain to
generate OFDM signals

Figure 1.2. Insertion of CP and sampling sequences to generate OFDM signals.
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are used to estimate residual CFO and sampling rate offset (SRO) [12]. Null subcarriers

serve as a guard band to avoid DC leakage and interference to adjacent channels. Symbols

in OFDM are included in the frequency domain, therefore identifying modulation features

from time samples is not straightforward.

The CP is appended to the time sequence generated with IFFT, see Fig. 1.2. In

OFDM systems, the last NCP time samples are copied just before the IFFT sequence.

This avoids inter-symbol and inter-carrier interference and simplifies frequency domain

calculation, as CP makes channel output a circular convolution between a transmitted

sequence and a channel response.

Carrier frequency offset (CFO) occurs when the local oscillator in the Rx does

not synchronize with the carrier in the received signal. This phenomenon has two main

causes: frequency mismatch between the Tx and the Rx oscillators and time-variance of

the communication channel, e.g. due to Doppler effects in the signal propagation scenario.

In the presence of CFO, the signal demodulated from the carrier frequency, y[n] is related

with x[n] as
y[n] =

(
x[n]e j2π fcnTs

)
e− j(2π( fc+∆ fc)nTs)

= x[n]e− j(2π∆ fcnTs),

(1.1)

where Ts, fc, and ∆ fc denote sampling period, Tx carrier frequency and deviation of Rx

carrier frequency from fc. With constant ∆ fc, CFO causes a phase drift which varies

linearly over time. In protocol-compliant transmission of OFDM signals, ∆ fc is estimated

using preambles and pilot subcarriers. The CFO effect is compensated by converting

the received sequence by complex numbers whose phases are opposite of those caused by

CFO.

1.1.2 Neural Network-based Classifiers

Convolutional Neural Networks (CNNs) have emerged as powerful tools for classi-

fication tasks due to their ability to effectively capture spatial and hierarchical features
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from input data [9]. A CNN-based classifier illustrated in Fig. 1.3, which is used Chapter 3,

comprises multiple convolutional and pooling layers followed by fully-connected (FC) lay-

ers [13]. The convolutional layers apply spatial filters, known as kernels, to detect local

patterns and produce feature maps. For example, the first convolutional layer depicted

employs a 2×2 kernel to produce two output channels, each highlighting characteristics

of the input data.

The architecture processes an input representation X characterized as a two di-

mensional histogram capturing amplitude and phase information. The outputs of the

convolutional layers are flattened into a single feature vector z, which is then processed
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by fully connected (FC) layers activated by Rectified Linear Units (ReLU). Finally, a

softmax activation function is applied to produce the output probability vector. The

input-output relationship of the CNN-based classifier fC is expressed as:

y = fC(X ;θ), (1.2)

where y denotes the predicted probability vector corresponding to the class labels, and

θ represents the set of trainable parameters (weights and biases) within the CNN model.

The output vector y has dimensions equal to the number of target classes, with each

element indicating the predicted probability that the input representation X belongs to

the corresponding class.

Subsequent max-pooling layers reduce the spatial dimensionality, enhancing com-

putational efficiency and robustness against spatial shifts. The network extracts higher-

level features through consecutive convolutional layers, each with an increasing number of

channels, as demonstrated in Fig. 1.3. Non-linear activation functions, such as Rectified

Linear Units (ReLU), introduce non-linearity into the network. After feature extraction,

the multi-dimensional feature maps are flattened into a vector, taken as the inputs of

the following FC layers. These FC layers integrate learned features to perform the final

classification task. The FC layer typically outputs logits corresponding to each class, and

the final softmax layer converts these logits into normalized probabilities, predicting the

class label with the highest probability.

Figure 1.4 illustrates a Long Short-Term Memory (LSTM)-based neural network

architecture. LSTMs are a specialized type of Recurrent Neural Network (RNN) de-

signed to effectively model sequential data by capturing temporal dependencies and mit-

igating the vanishing gradient problem encountered by standard RNNs [14]. As shown,

the architecture comprises multiple LSTM cells arranged sequentially, processing inputs

X = {x0,x1, . . . ,xM−1} at each timestep. Each cell generates hidden state representations

6



h0,h1, . . . ,hM−1, which are concatenated into a combined representation vector h. This

vector subsequently passes through an FC layer activated by a ReLU, followed by a soft-

max function to produce the final output. The input and output of the LSTM-classifier,

fC can be represented as:

y = fC(X ;h0), (1.3)

where y denotes the predicted probability vector corresponding to the class labels, and h0

denotes the initial hidden state of the LSTM. The output vector y has dimensions equal

to the number of target classes, and each element of y indicates the probability that the

input sequence X belongs to the corresponding class.

One notable capability of LSTM networks is their ability to handle input sequences

of variable length. Due to the recurrent nature of the LSTM structure, input sequences are

processed iteratively, with each timestep updating and maintaining an internal memory

state. This mechanism allows the LSTM to naturally accommodate sequences of varying

lengths without the need for modifications to the architecture. The capability makes

LSTMs advantageous in applications involving variable-length sequences, including lan-

guage modeling, speech recognition, and time-series classification and prediction [9, 14],

enabling the model to dynamically adjust its computations based on the given input

sequence length.

1.2 Dissertation Overview

Chapter 2 [15] investigates deep learning-based modulation classification of practi-

cal OFDM signals without symbol-level synchronization. The proposed system identifies

modulation schemes without information on boundary of OFDM symbols. A preprocess-

ing algorithm has been developed to enhance deep learning-based classification perfor-

mance under these constrained conditions.

Chapter 3 [16] investigates OFDM parameter estimation and modulation classifi-
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cation for Wi-Fi 6 and 5G signals. Specifically, two essential parameters shaping OFDM

signals, subcarrier spacing and CP length, are estimated. The parameter estimates are

deployed to preprocess OFDM signals. Physical (PHY) layer signals corresponding to

modern communication standards, notably 5G and Wi-Fi 6, implemented utilizing MAT-

LAB toolboxes, are used for evaluation.

Chapter 4 [17] investigates the reliability and practicality of our algorithm of

OFDM parameter estimation and modulation classification through experimental demon-

strations employing software defined radio (SDR). Its capability to reliably identify mod-

ulation schemes in practical OFDM signals is highlighted.

Chapter 5 [18] investigates real-time adversarial attack to deep learning-based Wi-

Fi human activity recognition. The proposed system addresses the privacy leakage issue

of human activity recognition (HAR) systems utilizing Wi-Fi signals by proposing an at-

tack scheme. Specifically, it investigates methods to degrade HAR performance through

the manipulation of pilot signals transmitted by user devices. To overcome the limitation

of gradient-based attacks, which requires prior knowledge of future channel state infor-

mation, we propose a generative adversarial imitation learning (GAIL)-based algorithm.

This algorithm effectively mimics gradient-based attack, successfully compromising the

accuracy of HAR models and highlighting vulnerabilities of Wi-Fi-based sensing systems.

Chapter 6 examines the versatility of the proposed GAIL-based attack through

comprehensive evaluation across various target models. The research studies beyond sce-

narios with unknown target model weights and structures to the cases where the sampling

rate or duration of the target classifier is unknown. Furthermore, the chapter evaluates

how GAIL-based attacks can effectively degrade non-deep learning models as well, demon-

strating the broad applicability of this approach.
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Chapter 2

Deep Learning-based OFDM Modulation
Classification without Symbol-level Synchro-
nization

2.1 Introduction

Deep learning (DL) has drawn lots of interest in wireless communications including

spectrum sensing [1], channel coding [2], and channel prediction [3]. Complex scenario-by-

scenario analysis in wireless communication studies become unnecessary by deploying DL.

Recognizing modulation is crucial in spectrum sensing to perceive transmission types.

By recognizing modulation with DL, a spectrum sensing detector can obtain essential

transmission information without complex signal processing [4].

Orthogonal frequency division multiplexing (OFDM) is widely used in wireless com-

munication protocols like Wi-Fi and 5G. In OFDM signals, message bits are modulated

to digital symbols with modulation such as QPSK and the symbols are carried in data

subcarriers. To recognize transmission type precisely, the modulation of OFDM signals

should be determined. However, the modulation classifier for single-carrier signals [5, 6]

cannot be directly applied to OFDM signals due to the OFDM structure. Each trans-

mitted OFDM time sample contains partial information about multiple symbols stacked

in the frequency domain. Due to this property, received time-domain IQ samples do not

11



NULL

24 data+
2 pilots

NULL

24 data+
2 pilots

IFFT

Freq. domain sequence: 𝑋[𝑘]
where 𝑘 = 0: 63

𝑋 0

𝑋 1
⠇

𝑋 26
𝑋 27

⠇
𝑋 −27 + 64
𝑋 −26 + 64

⠇
𝑋 −1 + 64

𝑥[0] 𝑥[1] ⋯ 𝑥[62] 𝑥[63]

Time domain sequence: 𝑥[𝑛]
where 𝑛 = 0: 63

Figure 2.1. Conversion of frequency domain symbols to signal samples in time domain to
generate OFDM signals.

explicitly feature modulation of OFDM signals. Therefore, additional processing is re-

quired than taking raw time IQ samples as an input for proper modulation classification

of OFDM signals.

Different from generic OFDM transmission, spectrum sensing detectors should es-

timate modulation without detecting preamble. In a Wi-Fi system, preamble makes a

receiver (Rx) synchronize with a transmitter (Tx) as well as notifies modulation being

used [7]. Thus, for spectrum sensing, OFDM modulation classification needs to be ad-

dressed without the assumption of symbol-level synchronization.

In this paper, we propose a novel preprocessing algorithm to build a modulation

feature robust to synchronization error, which can be caused by the Rx not knowing ex-

actly when an OFDM symbol starts. Though there have been many efforts to classify

modulation of OFDM signals [8], this is the first work to classify modulation of OFDM

signals without symbol-level synchronization using DL. We verify that a CNN-based clas-

sifier which takes the proposed feature as an input outperforms existing work assuming

symbol-level synchronization between a Tx and an Rx. The evaluation has been done

with two datasets including hardware-generated data.
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Figure 2.2. Insertion of CP and sampling sequences to generate OFDM signals.

The procedure by which OFDM signals are generated is illustrated in Fig. 2.1

and Fig. 2.2. The parameters in Fig. 2.1 and Fig. 2.2 are from non-high throughput

(non-HT) mode OFDM-based Wi-Fi. Fig. 2.1 describes how time samples carry the

information. IFFT is taken over 64 symbols, which consist of 48 data symbols, 4 symbols

on pilot subcarriers, and 12 inactive symbols on null subcarriers. Pilot subcarriers are

used to estimate residual CFO and sampling rate offset (SRO) [9]. Symbols in OFDM are

included in the frequency domain, therefore identifying modulation features from time

samples is not straightforward. The CP is appended to the time sequence generated with

IFFT, see Fig. 2.2. In OFDM systems, the last NCP time samples are copied just before

the IFFT sequence to prevent Rx from inter-symbol interference.

2.2 Proposed Algorithm

Figure 2.2 illustrates the scenario where we sample the sequences. Sequences of

length N, the number of subcarriers, are sampled, so they might be contained in a single

OFDM symbol (sampled sequence #1) or spans two OFDM symbols (sampled sequence

#2). The term OFDM symbol denotes a sequence composed of an IFFT sequence and a

CP, and a symbol means a complex number used to carry bits.

The motivating observation for our proposed algorithm is that if a sampled time-

domain sequence is contained in a single OFDM symbol, the FFT of that sequence gives



the original symbols with phase drift scaling linearly with subcarrier index k

Y i
∆ts [k]≜ F

(
yi[n−∆ts]

)
=

N−1

∑
n=0

yi[n−∆ts]e− j2πnk/N

= Y i[k]e− j2π∆tsk/N ,

(2.1)

where Y i[k] denotes the received symbol in subcarrier k of the ith OFDM symbol, yi[n] the

received time-domain IFFT sequence of the ith OFDM symbol, and ∆ts the real-valued

time difference measured in time sample unit between an IFFT sequence and a sampled

sequence. Input of yi[n] ranges over n ∈ [−NCP,N − 1] and yi[n] where n ∈ [−NCP,−1]

corresponds to CP. Equation (2.1) shows that synchronization error ∆ts causes phase drift

proportional to ∆ts and k. To deploy this property in building a feature characterizing

modulation, two objectives should be addressed: sampling a sequence contained in a single

OFDM symbol and removing the phase drift caused by synchronization error.

2.2.1 Modulation feature extraction

Due to CP, the sequences are repeated at both ends of the symbols in every OFDM

symbol. Since both the length of and the distance between repeated sequences are known1,

the position of CP can be found using the autocorrelation,

Ryy(n,N) = 1
NCP

∑NCP−1
i=0 y[n+ i]y∗[n+ i+N], (2.2)

which has peaks when n is the first index of CP. To find a peak, we find a sample whose

amplitude is larger than both adjacent samples and the minimum distance between two

adjacent peaks is set to 90% of OFDM symbol duration, 72-time sample indices. In

the sampled sequence, from the remainders of acquired peak-indices divided by OFDM

symbol duration, 80, we determine the mode among those remainders as the first index
1It is assumed that the OFDM parameters are known to the classifier. We leave the estimation of

those parameters for future work.



of OFDM symbol, denoted as p.

Due to noise and varying amplitudes of time samples, the estimated CP position

might not be accurate. However, our objective is not to find the exact first time sample of

the OFDM symbol, but the sequence contained in a single OFDM symbol. Therefore, by

sampling the sequence {y[p+NCP/2], y[p+NCP/2+1], . . . , y[p+NCP/2+N−1]}, we can sam-

ple sequences contained in a single OFDM symbol even though there is a minor error in

finding first index of an OFDM symbol.

We have shown that Y i
∆ts [k] is Y i[k] with phase drift and the amplitude of Y i

∆ts [k] is

the same with that of Y i[k]. To remove e− j2π∆tsk/N term in (2.1), phase differences between

the same subcarrier symbols in two consecutive symbol duration are deployed as

∆∠Y i
∆ts [k]≜∠Y i+1

∆ts [k]−∠Y i
∆ts [k]

= ∠
{

Y i+1[k]e− j2π∆tsk/N
}
−∠

{
Y i[k]e− j2π∆tsk/N

}
= ∠Y i+1[k]−∠Y i[k].

(2.3)

Equation (2.3) shows that the phase differences between the same subcarrier symbols

from sampled sequences are the same as the differences from the received IFFT sequences.

Despite the unknown exact ∆ts value, sequences with the same ∆ts can be sampled by

setting an interval between starting index of two sample sequences as one OFDM symbol.

|Y∆ts [k]|e
j∆∠Y i

∆ts [k] is used as a feature specifying modulation type. In addition, the null

subcarrier symbols are removed by detaching symbols with Nnull smallest amplitudes.

Both cases have been evaluated: with and without null subcarrier symbols.

2.2.2 CFO correction

To estimate CFO without symbol-level synchronization, we need to use pilot sub-

carriers as in residual CFO estimation [9] because the preamble is not accessible. To

estimate pilot subcarrier indices without a preamble, we use the property that the iden-



tical symbols are repeatedly transmitted in pilot subcarriers. The CFO-induced phase

difference of pilot subcarrier symbols for adjacent OFDM symbols, ∆∠Y i
∆ts [k] is

Y i
∆ts [k] = ∑N−1

n=0 yi[n]e− j2πk(n+∆ts)/N

= ∑N−1
n=0

(
xi[n]e− j(2π∆ fc(n+(i−1)(N+NCP))Ts)

)
e− j2πk(n+∆ts)/N

= X i[k+∆ fc(N +NCP)Ts]e− j(2π(∆ fc(i−1)(N+NCP)Ts+k∆ts/N)

≈ X i[k]e− j2π(∆ fc(i−1)(N+NCP)Ts+k∆ts/N)

⇒ ∆∠Y i
∆ts [kp] =−2π∆ fc(N +NCP)Ts ,

(2.4)

where kp denotes the subcarrier index of pilot subcarriers.

For a Wi-Fi link operating at fc = 5GHz and a frequency tolerance of 1 ppm

for commercial-off-the-shelf temperature-compensated crystal oscillators (TXCO) [10] on

both sides of the link, the worst-case CFO is ∆ fc = 2 fc ·10−6 = 10 kHz. The CFO-induced

angular error on ∆∠Y i
∆ts [kp] due to CFO at ±10 kHz is upper bounded by 104 ·80/(20 ·106) ·

360◦ ≈ 14.4◦. Using those values, X i[k+∆ fc(N +NCP)Ts] is approximated to X i[k] since

the worst case ∆ fc(N+NCP)Ts is 0.04, which is much smaller than one, the minimum unit

of k. This only works for pilot subcarrier symbols since data subcarrier symbols change

randomly with the data bits.

Using the pilot subcarriers’ property, CFO is estimated with pilot subcarriers:

∆∠Y i
∆ts [k] =−2π∆ fc(N +NCP)Ts

⇒ ∆ fc =−∆∠Y i
∆ts [k]/(2π(N +NCP)Ts)

(2.5)

We consider CFO as the average of ∆ fc from (2.5) evaluated at null subcarriers. To correct

CFO effect, we multiply time samples y[n] by the term, e2π∆ fcnTs where n = {0,1,2, · · ·},

which is negative of the phase caused by CFO.



Figure 2.3. CNN-based modulation classifier structure.

Table 2.1. DL parameters

Batch size 32 Loss Cross-entropy
Learning rate 5 ·10−5 Epochs 200

2.2.3 Convolutional neural network

Fig. 2.3 and Table 2.1 describe the overall structure of the DL model for the

classifier, which is based on CNN. We use four convolutional layers followed by three

fully-connected (FC) layers with ReLU as an activation function. Kernel size and stride

of each max pooling layer are adaptively chosen by the output shape of each layer. Input

is normalized so that the average amplitude of each input subcarrier sample is 1.

2.3 Evaluation

2.3.1 Evaluation Environments

Simulated and over-the-air (OTA) data are employed in our evaluation with pa-

rameters in Table 2.2 corresponding to Non-HT mode 20 MHz bandwidth Wi-Fi. OTA

data are generated with two N310 USRP in OTA transmission settings, see in Fig. 2.4.

Table 2.2. Data generation parameters

Bandwidth 20 MHz
Carrier frequency 2.4 GHz

SNR [2, 20] dB in steps of 2 dB
{N,NCP} {64, 16}

Input shape
Proposed feature: 2 · (64/52) ·20

Time IQ: 2 ·1600
STFT feature: 2 ·5 ·512



Figure 2.4. The evaluation environment map.
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Figure 2.5. Accuracy for choosing the first index of CP with acceptable error ε .

The distance between Tx and Rx is 8.84 m. For simulated data, AWGN is utilized as a

channel.

One classifier input requires 1600+80+80 samples. The first additional 80 samples

are needed since the starting index of an OFDM symbol is unknown. We sample 1680

samples starting from index is ∈ [0, N−1], deploying the procedure in Sec. 2.2. One more

OFDM symbol corresponding to the next 80 samples is needed since phase differences

between OFDM symbols are used as our features.
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Figure 2.6. Test accuracy vs. test data SNR with simulated data.

For comparison schemes, using raw time IQ samples and complex STFT features

as inputs are evaluated. For a fair comparison, the same number of OFDM symbols is

used for both inputs. Time IQ samples use 1600 time samples so that the input dimension

is 2 ·1600 (a channel for both real and imaginary). For STFT features, FFT size = 512

and frame overlapping = 50% are deployed as FFT parameters.

Fig. 2.6 shows the classification accuracy performance with simulated data. In

every SNR, the proposed feature outperforms the time IQ and STFT feature regardless of

symbol-level synchronization. Since the number of modulation classes is four, 25% accu-

racy achieved with time IQ and STFT without symbol-level synchronization corresponds

to that of the uninformed random classifier. Removing the null subcarriers increases clas-

sification performance in every case. At 20 dB SNR, it is increased from 89% to 99%

by deleting null subcarriers. Both accuracies are higher at 20 dB SNR than the 87% and

79% achieved by [11, 12], both assume symbol-level synchronization and test on simulated

data.



(a) (b)

(c) (d)

Figure 2.7. Confusion matrices for classification results with OTA data: (a) 20 dB SNR
with null subcarrier, (b) 2 dB SNR with null subcarrier, (c) 20 dB SNR after removing
null subcarrier, and (d) 2 dB SNR after removing null subcarrier.

Fig. 2.5 illustrates the accuracy of correctly choosing the first index with the

method in Sec. 2.2 with error, ε . The accuracy means that the estimated first sam-

ple is at most ε time samples away from the ground-truth. In Fig. 2.5, accuracy to find

the exact first time sample of an OFDM symbol is below 60% at 20 dB SNR, but accu-

racy accepting at most NCP/2 = 8 time samples error is 95% at 2 dB SNR. The sampling

method in Sec. 2.2 lets a sequence contained in a single OFDM symbol reliably sampled

even at low SNR.

The proposed algorithm outperforms the case where time IQ samples or STFT

features are used on OTA data as well as removing the null subcarrier improves the

performance. In particular, at 2 dB SNR and 20 dB SNR, test accuracy is improved from



53 to 59% and 85 to 99%, respectively. Comparing Fig. 2.7a and Fig. 2.7c, removing null

subcarrier makes the features of 16QAM and 64QAM more distinct at high SNR.

2.4 Related Work

Many have built DL-based modulation classifier for OFDM signals [11, 12, 13,

14, 15, 16, 17, 18] and all of [11, 12, 13, 14, 15, 16, 17, 18] have achieved at least 75%

classification accuracy at 20 dB SNR. However, none of the studies [11, 12, 13, 14, 15, 16,

17, 18] has done the evaluation with hardware-generated data.

The algorithm in [13] deploys correlation both within a symbol and among different

symbols, thus the classifier knows the exact first indices of OFDM symbols; i.e., symbol-

level synchronization. Modulation classifiers has been implemented based on CNN [11,

14, 15] or long short term memory network (LSTM) [12] all with over 80% classification

accuracy at 20 dB SNR. Their input comprises time samples for two OFDM symbols after

removing CP, which requires the classifier synchronized at the symbol-level. Modulation

classifiers in [17, 18] take signals after removing cyclic prefix (CP) and using FFT as

an input. Therefore, it is assumed that the classifier is synchronized at the symbol-level.

The work in [16] studies modulation classification under multipath channel, but only deals

with the single-carrier signals. The authors of [19] classify wireless signals, but recognizes

wireless protocols, not modulations.

There are papers on OFDM modulation classification without symbol-level syn-

chronization based on mathematical modeling [20, 21] without using DL. However, their

classifier structure depends on the modulation set, so the structure must be redesigned

when classifying signals with a modulation not in the set [20, 21]. Their algorithms [20, 21]

can identify OQPSK and MSK, but neither of their evaluations includes high-order QAM

like 64QAM, used in practical Wi-Fi.



2.5 Conclusion

OFDM modulation classification is addressed without symbol-level synchroniza-

tion. We propose a preprocessing for extracting features invariant to synchronization

error. Fine-grained preprocessing include the estimated CP position and CFO correction.

The proposed CNN-based classifier based on those features classifies the modulation of

OFDM in evaluations with simulated and hardware-generated data with maximum 99%

classification accuracy at 20 dB SNR. Best test accuracy is achieved by the proposed

CNN-based classifier with null subcarrier removal.
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Chapter 3

Blind Modulation Classification of Wi-Fi 6
and 5G signals for Spectrum Sensing

3.1 Introduction

The growth of wireless communication technologies has necessitated efficient us-

age of the radio spectrum, a challenge that is being addressed with cognitive radio. A

critical component of cognitive radio is intelligent spectrum sensing, which allows for

a more precise characterization of spectrum usage and aids in better decision-making

for spectrum allocation. Spectrum sensing encompasses signal detection [1], predicting

future spectrum [2], and identifying modulation schemes. In this study, we focus on

the classification of modulations of practical orthogonal frequency division multiplexing

(OFDM) signals. This also enables applications such as channel quality estimation be-

tween a transmitter (TX) and a receiver (RX) for a spectrum sensor and wireless network

troubleshooting.

OFDM has become essential in modern wireless communication systems, such as

Wi-Fi 6 and 5G. In these systems, message bits are converted to digital symbols using

modulation schemes such as quadrature phase shift keying (QPSK) and transmitted via

data subcarriers. In OFDM, the multiple symbols are stacked in subcarriers within the

frequency domain, so each OFDM time sample contains only a fraction of the information

on the multiple frequency domain symbols. As a result, the modulation classifiers designed
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for single-carrier signals [3] cannot be applied directly to OFDM signals. Therefore, a

precise modulation classification of Wi-Fi 6 and 5G signals requires additional processing

beyond using raw time-domain samples as inputs.

A spectrum sensor must handle OFDM signals with diverse configurations with-

out prior information, in contrast to user equipment connected to a wireless network. In

Wi-Fi 6 and 5G systems, information about the user data transmission, including the

modulation, is provided to the RX. However, since a spectrum sensor does not have prior

knowledge of the type of signals it detects, it cannot deploy a protocol-specific procedure

to obtain information about user data transmission. The parameters shaping OFDM sig-

nals, fast Fourier transform (FFT) size to generate inverse fast Fourier transform (IFFT)

sequence, and cyclic prefix (CP) length, might be different even among OFDM signals

with the same modulation scheme. Moreover, the carrier frequency configurations in 5G

become increasingly diverse and data transmission might occupy only a part of channel

bandwidth. As a result, estimation of these carrier frequency configurations is becoming

increasingly difficult using transmission bandwidth and center frequency alone. Thus, a

modulation classifier for spectrum sensing should estimate the modulation scheme using

only the observed user data transmission without knowledge of carrier frequency.

We present a system to classify the modulation of the signals in Wi-Fi 6 [4] and

5G [5] for a spectrum sensing system. Without knowledge of the transmitter (TX) carrier

frequency, Wi-Fi preamble, or 5G control information, our system deploys only the basic

OFDM structure, IFFT sequence, and CP. The system includes the estimation of OFDM

parameters: CP length and subcarrier spacing (SCS), which is directly related to the

FFT size of the IFFT sequence. We focus on identifying modulation schemes used in the

payload of Wi-Fi 6 signals and the physical downlink shared channel (PDSCH) of 5G

signals. Signals studied in this paper are single-input single-output (SISO). For 5G, they

are in the frequency range 1 (FR1), whose frequency band is below 7.125 GHz.

For IFFT sequence and CP length estimation, the cyclic autocorrelation function



(CAF) is deployed. The capability of CAF detecting repeated sequences as well as repe-

tition periods enables the estimation of those parameters. We observe that symbol-level

synchronization is not perfect if autocorrelation using CP is utilized only. Our prepro-

cessing removes the effect of the synchronization error by using phase differences between

phases of two adjacent OFDM symbols. The modulation classifier for Wi-Fi 6 and 5G

signals should recognize high-order modulations such as 256 quadrature amplitude modu-

lation (QAM) and 1024QAM since these state-of-the-art protocols include those schemes.

We change the feature format to a histogram representing the distribution of the features

so that the classifier can effectively capture high-order modulations characteristics. Re-

lated work on modulation classification: Many papers address modulation classification for

wireless communication signals [3, 6, 7, 8, 9, 10, 11, 12, 13]. The works in [6, 7, 8, 9, 10, 11]

study modulation classification of OFDM signals and achieve at least 78% accuracy at

20 dB SNR for an AWGN channel. It is assumed that the inputs start from the first

sample of OFDM symbol duration [6, 7, 8, 11], which is only possible by detecting Wi-Fi

preamble or 5G synchronization signals properly. To apply this idea to a spectrum sensor,

the sensor should follow protocol-specific procedures.

There are papers on OFDM modulation classification without the symbol-level

synchronization assumption [9, 10, 12, 13] and the algorithms [9, 10, 13] are evaluated

with hardware-generated data. However, their algorithms [9, 10, 13] are not evaluated

with high-order modulations such as 256QAM or 1024QAM, as used in Wi-Fi 6. Moreover,

since their classifier structures [9, 10] is designed to recognize a fixed set of modulations,

the overall structure needs redesign to identify a new modulation scheme. The work [12]

proposes the system to estimate SCS of OFDM signals and modulation of single-carrier

signals jointly. Nonetheless, it does not estimate the modulation of OFDM signals. The

neural network-based modulation classifier [3] studies how environmental change affects

classification performance for only the single-carrier signals, not OFDM signals.

Related work on sniffing OFDM signals: For spectrum sensing, modulation might



be identified by sniffing control data used to notify RX. The work [14, 15, 16, 17] tried

to overhear Long Term Evolution (LTE) signals. LTEye [14] and OWL [15] decodes

PHY DL control channel (PDCCH) data for LTE network monitoring. LTESniffer [17]

decode sniffed both user and control data using PDCCH decoder FALCON [16]. FALCON

overcomes the limitation of LTEye and OWL, which require more than 97% decoding

accuracy. In LTE, a starting symbol of PDCCH in a slot is always the first symbol in

a slot and it is different from 5G, where the PDCCH starting symbol in a slot can be

any symbol in a slot and its information is notified with radio resource control (RRC)

signals. Accordingly, it is not straightforward to generalize LTE PDCCH sniffer to 5G.

Eavesdropping PDCCH data of 5G signals [18] can deal with the signal with diverse 5G

configurations, but is vulnerable to configuration changes since it takes a few minutes to

learn a new PDCCH configuration. The authors of [19] study sniffing Wi-Fi probe request

packets, which is for mobile devices to broadcast the existence of themselves. They build

a hardware model for a sniffer and test with real Wi-Fi probe request packets. However,

the probe request packets are simpler than those for user data communication thus not

straightforward to deploy this system for our target signal.

To summarize, the main contributions of the paper are:

• OFDM parameter estimation for up-to-date protocols: We have applied the OFDM

parameter estimation method with CAF [20] to Wi-Fi 6 and 5G signals to estimate

SCS and CP length.

• Feature extraction without symbol-level synchronization: Only with estimated val-

ues of SCS and CP length, our system builds the features characterizing modulation

of OFDM signals. The proposed feature extraction algorithm is designed to be re-

silient to symbol-level synchronization errors caused by using CP only.

• Modulation classification without control information: For spectrum sensing, con-

trol information might not be accessible. We show that the proposed classification
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system robustly works with diverse configurations with the evaluation of hardware-

generated data without knowledge of the information.

3.2 System Objective

We aim to build a modulation classifier using in-phase and quadrature (IQ) samples

of SISO Wi-Fi 6 and FR1 5G DL signal for spectrum sensing. The system scenario is

described in Fig. 3.1. There is a Wi-Fi 6 or 5G TX transmitting its signal to an RX. The

spectrum sensor continuously senses the spectrum by generating IQ samples with sampling

rate fS and transfers those samples to a signal detection algorithm. Using IQ samples

captured by a receiver antenna, the signal detection algorithm detects the duration and

frequency band where the OFDM signal is located and extracts IQ samples corresponding

to the detected OFDM signal, described as the blue rectangle in Fig. 3.2. We assume the

accurate signal detection of Wi-Fi 6 or 5G signals and a single modulation scheme is used

for data communication in one detected OFDM signal.

The IQ samples from the spectrum sensor sampled with rate fS are resampled to



Table 3.1. Variable definitions

Variable Definition (unit)
fTX TX sampling rate (Hz)
fRX Sampling rate of a system input sequence (Hz)

∆ fSCS Subcarrier spacing (Hz)
TIFFT IFFT sequence duration (s)
NFFT FFT size used to generate IFFT sequence
TCP CP duration (s)

NCP
Number of time samples

in CP for one OFDM symbol

y[n]
Received time-domain sequence after

resampling to 20 MHz

y′[n]
5G time-domain sequence after

resampling to 30.72 MHz

yi[n]
Received time-domain IFFT sequence

for the ith OFDM symbol

Y i[k]
Received symbol in subcarrier k

for the ith OFDM symbol
(S ×S ) Number of bins of a classifier input

fRX, 20 MHz. We only consider Wi-Fi 6 signals with 20 MHz channel bandwidth and 5G

signals with a PDSCH bandwidth from 15 to 20 MHz. Thus, 20 MHz sampling rate can let

the resampled IQ sequence encompass the OFDM signal in our scenario. Extending the

analysis to different transmission bandwidth ranges is straightforward. These resampled

IQ samples, denoted by y[n], are taken as inputs of the feature extraction algorithm, as

elaborated in Sec. 3.3 in detail.

3.2.1 Wi-Fi 6 PHY layer

Wi-Fi 6 supports the high-efficiency (HE) transmission format as well as earlier

formats, such as non-high throughput (non-HT), high throughput (HT), and very high

throughput (VHT) formats. Table 3.2 summarizes the parameters that configure the pay-

load of the Wi-Fi frame for each Wi-Fi format. In HE format, the number of subcarriers

is increased because the subcarrier spacing (SCS, denoted as ∆ fSCS) is one-fourth of that



Table 3.2. Parameters for different formats of Wi-Fi

Non-HT format HT format
TIFFT 3.2 µs 3.2 µs
TCP 0.8 µs {0.4,0.8}µs

Modulations BPSK, QPSK,
16QAM, 64QAM

BPSK, QPSK,
16QAM, 64QAM

VHT format HE format
TIFFT 3.2 µs 12.8 µs
TCP {0.4,0.8}µs {0.8,1.6,3.2}µs

Modulations
BPSK, QPSK,

16QAM, 64QAM,
256QAM

BPSK, QPSK,
16QAM, 64QAM,

256QAM, 1024QAM

Resource ElementTime

Freq.

⋯

OFDM 
symbol

SubcarrierResource block

Figure 3.3. Example 5G resource grid.

of the previous transmission formats. Over time, the Wi-Fi standard has evolved and

several options for the CP duration are available.

3.2.2 5G DL PHY layer

The 5G downlink (DL) resource structure and its associated terminology is illus-

trated in Fig. 3.3. A resource element (RE) represents the smallest unit which carries

data, encompassing a single OFDM symbol in the time domain and a single subcarrier in

0 1 ⋯ 𝑁!"#!$%&-1 Slot

0 1 ⋯ 𝑁!$%&
!'()*,,-1 Subframe

CP IFFT sequence OFDM Symbol

Figure 3.4. 5G subframe structure.



Table 3.3. 5G frame structure parameters

{SCS (kHz), CP option} {60, Normal} {60, Extended}
TIFFT 16.17 µs 16.67 µs

{Short, long} TCP {1.17,1.69}µs {4.17,−}µs
NFFT when fTX = 30.72 MHz 512 512

{Short, long} NCP when fTX = 30.72 MHz {36, 52} 128
{SCS (kHz), CP option} {30, Normal} {15, Normal}

TIFFT 33.33 µs 66.67 µs
{Short, long} TCP {2.34,2.86}µs {4.69,5.21}µs

NFFT when fTX = 30.72 MHz 1024 2048
{Short, long} NCP when fTX = 30.72 MHz {72, 88} {144, 160}

the frequency domain. A resource block (RB) is the smallest radio resource that can be

allocated and refers to one OFDM symbol in the time domain and 12 subcarriers in the

frequency domain.

Figure 3.4 shows the 5G subframe structure in the time domain. An OFDM

symbol in 5G is comprised of both a CP and an inverse fast Fourier transform (IFFT)

sequence. The number of symbols within a single slot (Nslot
sym) varies in accordance with

the CP length. There are a normal and an extended CP option in the transmission

format. When a normal CP is used then Nslot
sym = 14, otherwise Nslot

sym = 12. The SCS, the

distance between two adjacent subcarries in OFDM systems, denoted by µ , determines

the number of slots within a single subframe, Nsubfr,µ
slot . There are five SCS options in 5G,

but we consider only three cases, namely 15, 30, 60 kHz, which are available in FR1.

These SCS values correspond to µ = 0,1,2, respectively, and the number of slots in a

subframe for each SCS is computed as Nsubfr,µ
slot = 2µ .

The structural parameters which define the 5G frame are listed in Table 4.3. The

length of an IFFT sequence, TIFFT, is:

TIFFT = NFFT/ fTX = 1/∆ fSCS. (3.1)



Table 3.4. Modulations used for 5G physical channels

Physical channel PDSCH PSS/SSS PDCCH CSI-RS

Modulation
QPSK, 16QAM,

64QAM, 256QAM,
1024QAM

BPSK QPSK QPSK

Physical channel PBCH PDSCH-PTRS PDSCH-DMRS
Modulation QPSK QPSK QPSK

There is a one-to-one correspondence between TIFFT and ∆ fSCS (3.1). Under the normal

CP option, CP is longer than that in other symbols, every 0.5 ms, or equivalently, 7 ·2µ

OFDM symbols in OFDM symbol unit, called long CP. There is no long CP in the

extended CP option, so TCP is uniform. The transmission rate of 5G signals is a power

of 2 times 15 kHz and 30.72 MHz is an example of 5G transmission rate. NFFT and NCP

values are arranged when fTX is 30.72 MHz, the value used in our evaluation.

In addition to PDSCH, there exist other physical (PHY) channels that but serve

specific functions although not carrying user data. For instance, PDCCH conveys down-

link control information (DCI), which contains information required to decode PDSCH

data such as modulation and coding scheme (MCS). Each of these channels utilizes pre-

defined single-type modulation, see Table 3.4.

Compared to Wi-Fi, which has a predefined configuration of data, pilot, and null

subcarriers, 5G resource configuration for PHY channels is flexible. Instead, the 5G system

has a network dedicated to exchanging information on how data packets are forwarded,

called the control plane, in addition to the network for data transmission, called the user

plane. An example of data transferred over the control plane is RRC signals. Information

on the starting OFDM symbol of PDCCH and channel state information-reference signal

(CSI-RS) is notified to an RX with RRC signals via control plane [5].
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Figure 3.5. Flow chart of proposed feature extraction algorithm.

3.3 Proposed Algorithm

High-level procedures to build features characterizing the modulations of Wi-Fi 6

and 5G signals are illustrated in Fig. 3.5 and explained in Sec. 3.3.1 and 3.3.2. The output

of this flowchart is taken as an input to the neural network model, described in Sec. 3.3.3.

3.3.1 OFDM parameter estimation

Prior to building the features which characterize modulation, it is necessary to esti-

mate two essential OFDM parameters of OFDM signals, SCS and CP length. To estimate

these parameters, we use CAF, a Fourier-series cofficient of autocorrelation function.

Ryy(α,τ) =
∞

∑
n=−∞

Ryy(n,τ)e− j2παn. (3.2)

CAF is used to extract a repeated pattern presented in wireless signals [20, 21, 22].

A variant of the CAF estimator presented in [20] is deployed here,

R̂yy(α, ℓ) =
1

N

N −1

∑
n=0

{
l−1

∑
i=0

y(n+ i)y∗(n+ i+ ℓ)

}
e− j2παn. (3.3)

One sample of our estimator is computed as the autocorrelation with delay ℓ. It differs

from the estimator in [20], where only two samples are used to compute one estimator

sample. This modification aims to make peaks more distinct. We set l = 8 corresponding



to the shortest CP length.

CP in OFDM symbols causes a sequence to be repeated at both ends of each

symbol. The distance between starting indices of the two repeated sequences located at

both ends of an OFDM symbol is TIFFT or NFFT( fRX/ fTX) = fRX/∆ fSCS, depending on

whether it is in time units or time sample units, respectively. This repetition makes the

CAF estimator at α = 0 have a peak at ℓ = fRX/∆ fSCS. TCP is also estimated with the

CAF estimator, R̂yy(α, fRX/∆ fSCS). Since ∑l−1
i=0 y(n+ i)y∗(n+ i+τ) in Eq. (3.3) has peaks

with the period of fRX · (TCP + 1/∆ fSCS), it is expected of R̂yy (α, fRX/∆ fSCS) to have a

large amplitude at α = 1/{ fRX · (TCP +1/∆ fSCS)}.

In our scenario, there are five candidates for ℓ values, ℓC = {64,256,333,667,1333},

each of which corresponds to an IFFT sequence length for a given SCS at fRX = 20 MHz.

IFFT sequence length is estimated as:

TIFFT = ℓ′/ fRX s.t. ℓ′ = argmax
ℓ∈ℓC

∣∣R̂yy(0, ℓ)
∣∣ (3.4)

When the estimated TIFFT corresponds to that of Wi-Fi 6 or 60 kHz SCS NR, where

multiple CP options are available, CP length is further estimated as:

TCP =
1

fRX

(
1
α ′
− ℓ′

)
s.t. α ′ = argmax

α∈αℓ′
C

∣∣R̂yy(α, ℓ′)
∣∣ (3.5)

where αℓ′
C denotes a set of possible values of α = 1/{ℓ′+( fRX ·TCP)}, given ℓ′.

3.3.2 Feature extraction

The motivation behind our proposed feature extraction lies in the observation that

when a sampled time-domain sequence is contained within a single OFDM symbol, the

Fast Fourier Transform (FFT) of that sequence yields the original symbols with a phase

drift that scales linearly with subcarrier index k and synchronization error ∆n, as shown



in

Y i
∆n[k]≜ F

(
yi[n−∆n]

)
=

NFFT−1

∑
n=0

yi[n−∆n]e− j2πnk/NFFT

= Y i[k]e− j2π∆nk/NFFT .

(3.6)

In order to build a feature characterizing modulation based on this property, two objectives

must be achieved: first, sampling a sequence that is fully contained within an OFDM

symbol, and second, removing the phase drift caused by synchronization errors.

Utilizing the knowledge of NCP and NFFT, the CP position is determined through

autocorrelation analysis,

Ryy(n,NFFT) =
1

NCP

NCP−1

∑
i=0

y[n+ i]y∗[n+ i+NFFT]. (3.7)

The position of CP is indicated by the peaks in |Ryy(n,N)|. To locate a peak, we search for

a sample whose amplitude is larger than both of its neighboring samples while ensuring

that the minimum distance between two adjacent peaks is 90% of the OFDM symbol

duration (i.e., 288-time sample indices for HE format with 3.2 µs CP), to avoid selecting

undesired local peaks. We compute their remainders divided by the sample number of the

OFDM symbol duration (NCP+NFFT) over multiple OFDM symbols. The median of those

remainders is determined as the first index of the OFDM symbol, denoted as p. Noise

and varying amplitudes of time samples can introduce small errors in the estimated CP

position. To reliably sample the sequences contained in a single OFDM symbol, we deploy

the sequence {y[p+NCP/2],y[p+NCP/2+1], · · · , y[p+NCP/2+N−1]}. This sequence is

entirely within a single OFDM symbol unless the estimation error of p is larger than

NCP/2.

We demonstrate that Y i
∆n[k] exhibits a phase drift modeled by e− j2π∆nk/N , while

maintaining its amplitude Y i[k] (3.6). We remove this phase drift due to synchroniza-

tion errors by computing the phase differences between successive symbols in the same



subcarrier k as:
∆∠Y i

∆n[k]≜∠Y i+1
∆n [k]−∠Y i

∆n[k]

= ∠
{

Y i+1[k]e− j2π∆nk/N
}
−∠

{
Y i[k]e− j2π∆nk/N

}
= ∠Y i+1[k]−∠Y i[k].

(3.8)

Despite the lack of knowledge about ∆n, sequences with constant ∆n can be obtained by ad-

justing the interval between the starting indices of two sampled sequences to be one OFDM

symbol. The feature used to identify the modulation type is Y i
f [k]≜ |Y i

∆n[k]|e
j∆∠Y i

∆n[k]. The

null subcarrier symbols is eliminated by discarding symbols with the Nnull smallest ampli-

tudes.

In protocol-compliant reception, the Wi-Fi preamble and 5G PDSCH-phase track-

ing reference signal (PDSCH-DMRS) are deployed for CFO estimation. However, since

they are not accessible to a spectrum sensor, the CP in each OFDM symbol is used for

CFO estimation, i.e.,

∠
(

y(p+NFFT + i)
y(p+ i)

)
= 2π∆ fc/∆ fSCS, (3.9)

where y(p+ i) is in CP. We use i ∈ {⌊NCP/4⌋, · · · ,⌈3NCP/4⌉} so that the sequence y(p+ i)

are entirely within CP unless estimation error of p is larger than NCP/4. If the absolute

value of the CFO is larger than ∆ fSCS/2, CFO cannot be accurately estimated due to

aliasing. It is discussed in Sec. 3.3.2 in detail.

Additional procedures for 5G signal

To build a modulation feature for 5G, 5G characteristics distinct from those of

Wi-Fi, including a different transmission rate, long CP, and flexible usage of subcarriers,

should be considered. First, the transmission rate of 5G signals is not fRX = 20 MHz,

but is the form of a power of 2 times 15 kHz. Hence, if the signal is classified as 5G, we

resample the sequence to 30.72 MHz = 2048 · 15 kHz, the smallest sampling frequency

above 20 MHz. NFFT and NCP with 30.72 MHz sampling rate for each ∆ fSCS are arranged



in the last two rows in Table 3.3.

In the case of the normal CP option, there is a long CP every 0.5 ms, which is

slightly longer than that of other OFDM symbols. Long CP breaks the assumption of the

uniform OFDM symbol durations, which is required by the method to find the first indices

of OFDM symbols and to build Y i
f [k]. Specifically in building Y i

f [k], maintaining the fixed

interval does not guarantee the constant ∆n over multiple OFDM symbols. Therefore,

long CP also should be located when finding the first index of the OFDM symbol.

Algorithm 1: Finding first index of long CP
Data: (y′[n] of length (3 ms + 3 OFDM symbols)), µ
Result: firstIndexLongCP= q+ symLongCP · (NFFT +NCP)

1 m = 7 ·2µ , NFFT = 512 ·22−µ , NCP = 18 ·22−µ , i = 0;
2 while i≤ 5 do
3 y′i[n] = {y′[(30.72 ·106) · (0.5 ·10−3) · i], · · · , y′[(30.72 ·106) · (0.5 ·10−3) · (i+

1)+ 3 · (NFFT +NCP)]};
4 Find peaks {p′i0, · · · , p′i(m+1)} with y′i[n] using autocorrelation

|Ry′iy
′
i
(n,NFFT)| and peak locating function explained in Sec. 4.3.2;

5 pi j = mod(p′i j,NFFT +NCP), i = i+1;
6 end
7 ∆p j = Mean({p0( j+1)− p0( j−1), · · · , p5( j+1)− p5( j−1)});
8 {∆pk0 , · · · ,∆pkm−1}= sortDescending({∆p j});
9 symLongCP = argmaxkq

Var({p0kq , · · · , p5kq}) where q ∈ {0,1};

10 qi j =

{
pi j if j ≤ symLongCP
pi j−16 otherwise

q j = Median(Mean({q0 j, · · ·q5 j})) where

j ∈ {0,1, · · · ,m−1}−{symLongCP};

Algorithm 1 explains the detailed steps to estimate the first index of OFDM symbol

with long CP. y′i[n] in line 3 is a sequence cropped to be as long as (0.5 ms + 3 OFDM

symbols). In line 4, we find m+ 2 peaks from y′i[n] using autocorrelation |Ry′iy
′
i
(n,NFFT)|,

where m denotes the number of OFDM symbols in 0.5 ms given µ . The difference between

the remainders of two peaks separated by two OFDM symbols divided by OFDM symbol

duration, ∆p j, is computed as the average of pi( j+1)− pi( j−1) over i. We expect that ∆p j is

the largest when p j corresponds to long CP. For a more reliable estimation of a long CP,



we add one additional criterion. In line 8, we choose the two candidates k0 and k1 that give

∆pki the two largest values. We select kq where the samples {p0kq , · · · p5kq} has the larger

variance between two candidates of kq. This is because we expect that {p0 j, · · · , p5 j} has

the largest variance if pi j corresponds to long CP since long CP makes |Ry′iy
′
i
(n,NFFT)| a

plateau with certain width, not one sharp peak caused by non-long CP. Using estimated

firstIndexLongCP, we put an additional 16 samples delay at the OFDM symbol with long

CP while extracting the feature Y i
f [k] to maintain uniform ∆n. The number of 16 samples

comes from the difference between long CP and non-long CP with 30.72 MHz sampling

rate.

In contrast to Wi-Fi 6 signals, some subcarriers might not be used for transmission

in the midst of transmission. If no transmission is made in Y i[k] or Y i+1[k], their phases are

random, and ∆∠Y i
∆n[k] cannot be represented as the phase difference. Therefore, we set

the threshold for the amplitude, denoted as β , to check whether the PE is being used for

transmission. Only when the amplitudes of both subcarrier symbols in adjacent OFDM

symbols are higher than the threshold, this feature is used.

The discrepancy between the center frequency of TX and that of received IQ

samples of 5G signals might be much larger than for Wi-Fi. This is because payload in

Wi-Fi covers the entire channel bandwidth unless OFDMA is used. In contrast, PDSCH in

5G might use only the part of channel bandwidth so the center frequency of PDSCH might

be different from that used for transmission. Thus, the discrepancy is solely from hardware

imperfection in Wi-Fi. For a Wi-Fi link operating at fc = 5GHz and a frequency tolerance

of 1 ppm for commercial-off-the-shelf temperature-compensated crystal oscillators [23] on

both sides of the Wi-Fi link, the worst-case CFO is ∆ fc = 2 fc ·10−6 = 10 kHz. However, in

5G, CFO can escalate to an MHz scale if we consider the center frequency of transmission

bandwidth to be carrier frequency. If the method presented earlier in this subsection is

employed, the difference could result in an inaccurate estimation of CFO due to aliasing.

Even in absence of noise, it is only possible to measure ∆ fc accurately up to ∆ fSCS/2,



since ∆ fc + j ·∆ fSCS cannot be distinguished from each other, where j ∈ Z. The provided

algorithm makes the corrected CFO a multiple of ∆ fSCS, not a zero.

However, the CFO correction algorithm is still deployed for feature extraction.

This is because even though this method cannot find the exact CFO, it can recover the

orthogonality among subcarriers. The CFO effect in our feature can be represented as:

Y i
∆n[k] =

NFFT−1

∑
n=0

y[n−∆n]e− j2πn(∆ fc/ fTX+k/NFFT)

= Y i [k+NFFT∆ fc/ fTX]e− j2π∆n(k/NFFT+∆ fc/ fTX)

Y i+1
∆n [k] = Y i+1 [k+NFFT∆ fc/ fTX]×

e− j2π(∆nk/NFFT+(∆n+(NFFT+NCP)∆ fc/ fTX)

⇒ ∆∠Y i
∆n[k] = ∠Y i+1 [k+∆ fc/∆ fSCS]−∠Y i [k+∆ fc/∆ fSCS]

−2π∆ fc(1/∆ fSCS +TCP).

(3.10)

To maintain orthogonality of ∠Y i
∆n[k] across k, ∆ fc/∆ fSCS should be an integer. We have

demonstrated that after the CFO correction using CP, the CFO value can be expressed

as j ·∆ fSCS, which renders ∆ fc/∆ fSCS to be an integer. Consequently, the phase of our

feature becomes the sum of a phase difference of originally transmitted symbols and a

phase caused by CFO. Since ∆∠Y i
∆n[k] in (3.10) contains TCP term, the CFO effect on

∆∠Y i
∆n[k] is different when OFDM symbol i− 1 is an OFDM symbol with long CP. To

make the CFO effect uniform in the feature, ∆∠Y i
∆n[k] where OFDM symbol i− 1 is not

used for building the feature.

The features may contain the effect of other PHY channels which use modulations

other than those used by PDSCH. It is impossible to perfectly filter out the effect be-

cause information about which REs were used for which PHY channels is not accessible.

However, since the modulations of other PHY channels are either BPSK or QPSK, the

constellation diagram of the features is only affected by PDSCH modulation. Thus, the
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Figure 3.6. Flow chart of proposed classifier system.

Table 3.5. DL model parameters

Batch size 32
Learning rate 5 ·10−5

Epochs 200
Loss Cross-entropy

distribution of phase differences is still an intrinsic characteristic of PDSCH modulation.

3.3.3 Input of neural network classifier

The obtained feature Y i
f [k] goes through two preprocessing steps to become input

to the classifier. 1) instead of ∆∠Y i
∆n[k], ∆∠Y i

∆n[k] modulo π/2 is used as a phase of

Y i
f [k]. A constellation diagram of every target modulation and corresponding features

Y i
f [k] without noise are symmetric with π/2. Thus, ∆∠Y i

∆n[k] modulo π/2 is used as a

phase of our feature to characterize a modulation. For Wi-Fi 6 signals, BPSK cannot be

distinguished from QPSK if ∆∠Y i
∆n[k] modulo π/2 is used. Thus, an additional classifier

with the original phase as an input is used to distinguish BPSK and QPSK from the high-

order QAM modulations, see Fig. 3.6. 2) A 2D histogram of the normalized amplitude of

the features |Y i
f [k]|/|Y i

f [k]|p99, where |Y i
f [k]|p99 denotes 99% percentile of |Y i

f [k]| in a single
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Figure 3.7. CNN-based modulation classfier structure.

data, and the phases ∠Y i
f [k]/2π, as an input for the classifier. Each bin in the histogram

is normalized by dividing it by the number of features in a single data. To remove outliers,

Y i
f [k] whose amplitude is larger than |Y i

f [k]|p99 was not included in the histogram.

The overall structure and the parameter of the classifier with the histogram as

input are summarized in Fig. 3.6 and Table 3.5. The neural network structure used for

each classifier is described in Fig. 3.7. To identify BPSK and QPSK, S = SP, and the

third Maxpool layer is not used.

Figure 3.8 shows a scatterplot of the IQ data of Y i
f [k] and Fig. 3.9 the corresponding

2D histogram for 5G 16QAM data with ∆∠Y i
∆n[k] modulo π/2. ∠Y i

f [k] on the red and black

dashed lines are the noise-free phase differences between two 16QAM symbols. Blue

dashed lines are from the phase differences between BPSK or QPSK symbols of the PHY

channel other than PDSCH. The noise-free phase difference values are (odd integer) ·π/4

and shifted further by CFO. The red, blue, and black dashed lines in Fig. 3.8 correspond

to the red, blue, and black dashed lines in Fig. 3.9, respectively. Fig. 3.8 and Fig. 3.9 show

that symbols are densely located at the points in the dashed lines, which is consistent

with our expectations.



Figure 3.8. Scatterplot of Y s
f [k] of measured 16QAM features at SNR= 25dB with 5G

OTA data.

Figure 3.9. histogram of |Y i
f [k]|/|Y i

f [k]|p99 and (∆∠Y i
∆n[k] mod π/2)/2π.

An advantage of using a histogram is that they are invariant to the length of Y i
f [k].

This enables a neural network with a fixed structure to handle signals of any duration.

This property is useful when dealing with 5G features where the number of samples of Y i
f [k]

is unknown due to unused resources. Moreover, in a histogram input, the effect of CFO

estimation error caused by aliasing (3.10) is a movement along y-axis of the histogram

as far as orthogonality of ∠Y i
∆n[k] across k holds. The neural network can be trained to

identify histogram movements along y-axis as a single class.



Table 3.6. Data generation parameters

SNR [5, 40] dB in steps of 5 dB
Carrier frequency 2.4 GHz (Wi-Fi 6), 2.6 GHz (5G)
The number of

{train, test} data
{800, 200} per each

(TIFFT,TCP,modulation) case
{SP,SQ} {15, 50}

Time duration
of each data 400 µs (Wi-Fi 6), 3.5 ms (5G)

3.4 Evaluation

3.4.1 Evaluation environments
Data collection

The proposed classifier is evaluated with synthetic data generated from AWGN

channel simulations with the details in Table 4.6. MATLAB R2023a WLAN and 5G

toolbox [24] are deployed to generate the synthetic AWGN dataset. Wi-Fi HT [25] and

HE format [4] are used to generate data with TIFFT = 3.2 µs and 12.8 µs in Wi-Fi 6. For

5G data, every SCS option in FR1, µ ∈ {0,1,2}, is tested. All PHY channels listed in

Table 3.4 are included in every 5G data item.

To evaluate whether the performance of the proposed system remains invariant

across varying 5G PHY channel configurations, the parameters for allocating REs to

PHY channels are set for each data type. For example in PDCCH, symbol duration,

aggregation level, and starting symbol number are randomly selected. PHY broadcast

channel (PBCH), primary synchronization signal (PSS), and secondary synchronization

signal (SSS) are included only when µ ∈ {0,1} since they are not available for µ = 2. The

other 5G PHY channel parameters are from FR1 test models in [26, 27].

Building classifier input

First, to avoid using the Wi-Fi preamble, we remove the first 2000 samples from

each data. If the estimated TIFFT corresponds to those of Wi-Fi 6, an IQ sequence whose
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Figure 3.10. OFDM parameter estimation results: (a) Accuracy for estimating TIFFT and
TCP, (b) Accuracy for choosing the first index of CP with acceptable error ε , and (c)
Accuracy for finding an OFDM symbol with long CP of 5G signals.

length corresponds to 40+2 or 10+2 OFDM symbols is deployed to build the feature,

Y i
f [k], starting with a random sample. We need an additional OFDM symbol due to the

unknown starting index of an OFDM symbol sequence, p ∈ [0,NFFT− 1]. Furthermore,

one more extra OFDM symbol is required to evaluate phase differences between those

of the last OFDM symbol and the next one. Nnull is set to 8 and 32 for Wi-Fi HT and

HE, respectively. If the estimated TIFFT refers to 5G, y′[n] of length (3 ms + 3 OFDM

symbols) is used to estimate p and firstIndexLongCP. For 5G, the sequence of 14 OFDM

symbols is utilized. We also evaluate the case using Y i
f [k] values as an input to assess

how much the histogram input contributes to the performance. In this case, one data

input consists of 2240 samples for Wi-Fi 6 or 7900 samples for 5G. The average number

of feature elements in a single piece of 5G histogram data is 7858. We use fixed-duration

data for a fair comparison, but the classifier can take the variable length data as input as

the obtained feature is processed to a histogram using the algorithms in Sec. 3.3.3. For

both cases of input formats, an input with both phases of ∠Y i
∆n[k] modulo π/2 and ∠Y i

∆n[k]

are evaluated.
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Figure 3.11. Classification accuracy for modulations vs. SNR: (a) Wi-Fi HT, (b) Wi-Fi
HE, (c) 5G.

3.4.2 Evaluation results

Results in Fig. 3.10 are obtained with synthetic AWGN channel data. Fig. 3.10a

shows estimation accuracy of the OFDM parameters {TCP,TIFFT}. Normal CP and Ex-

tended CP in the legend refer to the shortest and longest option for TCP, respectively,

given ∆ fSCS. Medium CP of Wi-Fi HE refers to 1.6 µs TCP. In every case, accuracy is

over 99%. In Fig. 3.10b, the estimation accuracy of correctly finding the starting index

of an OFDM symbol is shown for the method in Sec. 3.3.2. Correctly finding means that

the starting index time is within ε tolerance of the true time. In Fig. 3.10b, we note

that the estimation accuracy for identifying the starting index of an OFDM symbol falls

below 60% for both Wi-Fi 6 formats and 5G. When the tolerance is relaxed to NCP/4 time

samples, the reported estimation accuracy increases to 99%.

The accuracy of estimating an OFDM symbol with long CP is shown in Fig. 3.10c.

Aside from ∆ fSCS = 60 kHz, the performance is over 90% even at low SNR of 5 dB. Accu-

racy at ∆ fSCS = 60 kHz is low because the duration of an OFDM symbol with long CP

is larger than the others. The large number of symbols that the peak detection function

needs to detect also negatively affects the peak detection performance. At ∆ fSCS = 60 kHz,

there are 30 peaks that should be identified in line 4 of Algorithm 1, which is considerably

larger than the 9 or 16 peaks at ∆ fSCS = 15 kHz and ∆ fSCS = 30 kHz.



Table 3.7. SNR required for data communication with each modulation

Modulation BPSK QPSK 16QAM
SNR for Wi-Fi 6 (dB) 5 10 16

SNR for 5G (dB) - 15 18
Modulation 64QAM 256QAM 1024QAM

SNR for Wi-Fi 6 (dB) 22 30 35
SNR for 5G (dB) 21 27 -

Figure 3.11 shows modulation classification accuracy with AWGN channel data.

The proposed algorithm with a histogram input with the phases ∆∠Y i
∆n[k] modulo π/2

outperforms in all considered cases, except for Wi-Fi 6 at 5 dB SNR. The performance gap

between using the histogram as classifier input as opposed to using the feature value input

increases in Wi-Fi HE and even more so in 5G. This is because the histogram input helps

the classifier to discriminate the detailed symbol constellation of high-order modulations.

In Table 3.8, the accuracy of each modulation format is shown when the SNR sat-

isfies the minimum requirement for standard-compliant data communication. We deploy

error vector magnitude (EVM) levels required for data communication with each modu-

lation for Wi-Fi 6 and 5G documentations [4, 27]. Required SNR values are calculated

using the relation between EVM and SNR presented in [28]. SNR values required for the

smallest coding rate are chosen for each modulation and chosen values are arranged in

Table 3.7. For every modulation with both Wi-Fi 6 formats and 5G, accuracy is at least

98%.

3.5 Conclusion

Modulation classification of Wi-Fi 6 and 5G signals for spectrum sensing is stud-

ied. Our system deploys CAF to estimate SCS and CP length and achieve 99% accuracy.

Without control information, our proposed preprocessing algorithm extracts features char-

acterizing modulation schemes insensitive to synchronization errors. The preprocessing



Table 3.8. Accuracy when SNR is over the minimum requirements for standard-compliant
data communication

Modulation BPSK QPSK 16QAM
Wi-Fi HT 100% 100% 100%
Wi-Fi HE 100% 100% 100%

5G - 99% 100%
Modulation 64QAM 256QAM 1024QAM
Wi-Fi HT 100% - -
Wi-Fi HE 100% 100% 98%

5G 100% 100% -

stage also estimates the CP position and the symbol with long CP of 5G signals. The

form of the features is converted to be more suitable as inputs for the CNN-based classi-

fier, which contributes to performance improvement in identifying high-order modulation.

With data under various protocol configurations, our system identifies modulations of

OFDM signals with 98% classification accuracy when SNR is higher than the value re-

quired for data transmission given a modulation. We are planning to extend this study

to multiple-input multiple-output (MIMO) and orthogonal frequency division multiple

access (OFDMA) scenario, to make more general transmission cases covered.
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Chapter 4

Deep Learning-based Modulation Classifi-
cation of Practical OFDM Signals for Spec-
trum Sensing

4.1 Introduction

The growth of wireless technologies in the scarce radio spectrum has strongly pri-

oritized spectral efficiency: A challenge that is being addressed by, e.g., (massive) MIMO

technology, joint radar communications, and cognitive radio [1, 2, 3]. Here, we focus on an

essential component of cognitive radio, namely intelligent spectrum sensing, which allows

for real-time characterization of radio spectrum usage and aids in online decision-making

for spectrum allocation. Spectrum sensing encompasses signal detection [4], predicting

available spectrum [5], and identifying modulation schemes. In this study, we focus on

the classification of modulations of state-of-the-art wireless orthogonal frequency division

multiplexing (OFDM) signals.

OFDM transmission has become foundational in current wireless communication

systems, such as Wi-Fi 6 and 5G. In these systems, message bits are first encoded and

subsequently mapped to digital symbols using quadrature amplitude modulation (QAM)

on individual subcarriers. Many QAM symbols are modulated onto many subcarriers, so

each time sample contains only a small fraction of the information carried by an OFDM
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symbol. As a result, the modulation classifiers designed for single-carrier signals [6, 7]

are not directly applicable to OFDM signals. Therefore, an accurate modulation classifier

for Wi-Fi 6 and 5G signals requires additional processing beyond using raw time-domain

samples as inputs.

In contrast to a dedicated receiver (RX) as a node in a wireless network, a spectrum

sensor must be able to handle OFDM signals with diverse subcarrier configurations with-

out access to prior information about the transmission format. In Wi-Fi 6 and 5G systems,

information about the user data transmission, including the modulation, is provided to

the RX through a protocol-specific procedure. However, since a spectrum sensor does not

have prior knowledge of the type of signals it detects, it cannot deploy the procedure to

obtain user data transmission information. The parameters shaping OFDM signals, fast

Fourier transform (FFT) size to generate inverse fast Fourier transform (IFFT) sequence,

and cyclic prefix (CP) length, might be different even among OFDM signals with the

same modulation scheme. The diverse parameter options complicate the Wi-Fi preamble

structure and in the recent Wi-Fi 6 these become more diverse. This makes spectrum

sensing harder only with Wi-Fi preamble to identify the modulation scheme, even though

the preamble structure is known. Moreover, the carrier frequency configurations in 5G

become increasingly diverse and data transmission might occupy only a part of channel

bandwidth. As a result, estimation of these carrier frequency configurations is becoming

increasingly difficult using transmission bandwidth and center frequency alone. Thus,

a modulation classifier for spectrum sensing should estimate the modulation scheme us-

ing only the observed user data transmission without knowledge of the OFDM signal

parameters including FFT size, CP length, and carrier frequency.

We propose and analyze a modulation classifier for Wi-Fi 6 [8] and 5G [9] for a

spectrum sensing system. Without knowledge of the transmitter (TX) carrier frequency,

Wi-Fi preamble, or 5G control information, the classifier exploits only the basic OFDM

structure, IFFT sequence, and CP. This includes the estimation of OFDM parameters:



CP length and subcarrier spacing (SCS), which is directly related to the FFT size of

the IFFT sequence. We focus on identifying modulation schemes used in the payload

of Wi-Fi 6 signals and the physical downlink shared channel (PDSCH) of 5G signals.

Signals studied in this paper are single-input single-output (SISO). For 5G, they are in

the frequency range 1 (FR1), whose frequency band is below 7.125 GHz.

For the SCS and CP length estimation, the cyclic autocorrelation function (CAF)

is deployed. Thrfule capability of CAF to detect intervals of repeated sequences and

repetition periods enables the estimation of those parameters. We observe that symbol-

level synchronization is not perfect if autocorrelation using CP is utilized only. Our

preprocessing removes the effect of the synchronization error by using phase differences

between phases of two adjacent OFDM symbols. The modulation classifier for Wi-Fi 6 and

5G signals should recognize high-order modulations such as 256QAM and 1024QAM since

these state-of-the-art protocols include those schemes. We change the feature format to a

histogram representing the distribution of the features so that the classifier can effectively

capture high-order modulation characteristics.

Related work on modulation classification: Many papers address modulation clas-

sification for wireless communication signals [6, 7, 10, 11, 12, 13, 14, 15, 16, 17]. The works

in [10, 11, 12, 13, 14, 15] study modulation classification of OFDM signals and achieve at

least 78% accuracy at 20 dB SNR for an AWGN channel. It is assumed that the inputs

start from the first sample of the OFDM symbol duration [10, 11, 12, 15], which requires

detecting the timing of the Wi-Fi preamble or 5G synchronization signals. To apply this

approach to a spectrum sensor, the sensor needs to follow protocol-specific procedures.

Further, neither of these works is evaluated on real-world measured data.

Previous works on OFDM modulation classification without symbol-level synchro-

nization [13, 14, 16, 17] and the algorithms [13, 14, 17] are evaluated with hardware-

generated data. However, their algorithms [13, 14, 17] are not evaluated with high-order

modulations such as 256QAM or 1024QAM, as used in Wi-Fi 6 and 5G. Moreover, since



their classifier structures [13, 14] are designed to recognize only a fixed set of modula-

tions, the overall structure needs to be redesigned to identify a new modulation scheme.

The work [16] proposes the system to estimate SCS of OFDM signals and modulation of

single-carrier signals jointly. Nonetheless, it does not estimate the modulation of OFDM

signals. The neural network-based modulation classifiers [6, 7] study how environmental

change affects classification performance for only the single-carrier signals, not OFDM

signals.

Related work on sniffing OFDM signals: One approach to modulation identification

for spectrum sensing uses sniffing of control information which notifies the RX about

modulation and coding formats. The work [18, 19, 20, 21] attempts to overhear Long

Term Evolution (LTE) signals. LTEye [18] and OWL [19] decode PHY DL control channel

(PDCCH) data for LTE network monitoring. LTESniffer [21] decodes sniffed both user

and control data using the PDCCH decoder FALCON [20]. FALCON overcomes the

limitation of LTEye and OWL, which require more than 97% decoding accuracy. In

LTE, the starting symbol of the PDCCH is always the first symbol in a slot. This is

different from 5G, where the PDCCH starting symbol can be any symbol in a slot and

its information is notified by radio resource control (RRC) signaling. Accordingly, it is

not straightforward to modify the LTE PDCCH sniffer for 5G. Eavesdropping PDCCH

data of 5G signals [22] applies to 5G signals with diverse configurations. Still, it is

vulnerable to configuration changes since it takes a few minutes to learn a new PDCCH

configuration. The authors of [23] study sniffing Wi-Fi probe request packets, which is for

mobile devices to broadcast the existence of themselves. They build a hardware model

for a sniffer and test with real Wi-Fi probe request packets. However, the probe request

packets are simpler in format than those for user data communication. Thus, it is not

straightforward to deploy this approach to our setting.

To summarize, the main contributions of the paper are:



Wi-Fi 6
router

5G gNB

Host 
PC Signal 

detection

Modulation 
ClassifierSDR

User

Figure 4.1. System capturing DL Wi-Fi 6 and 5G signals.

• OFDM parameter estimation for up-to-date protocols: We have applied the OFDM

parameter estimation method with CAF [24] to Wi-Fi 6 and 5G signals to estimate

SCS and CP length.

• Feature extraction without symbol-level synchronization: Only with estimated val-

ues of SCS and CP length, our system builds the features characterizing modulation

of OFDM signals. The proposed feature extraction algorithm is designed to be re-

silient to symbol-level synchronization errors caused by using CP only.

• Modulation classification without control information: For spectrum sensing, con-

trol information might not be accessible. We show that the proposed classification

system robustly works with diverse configurations with the evaluation of hardware-

generated data without knowledge of the information.

4.2 System Objective

We aim to build a modulation classifier using IQ samples of SISO Wi-Fi 6 and FR1

5G DL signal for spectrum sensing. The system scenario is described in Fig. 4.1. There

is a Wi-Fi 6 or 5G TX transmitting its signal to an RX. SDR continuously senses the

spectrum by generating IQ samples with sampling rate fSDR and transfers those samples

to the host PC. In the host PC, there is a signal detection algorithm and a modulation

classifier. Using IQ samples generated from SDR, the signal detection algorithm detects
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Figure 4.2. Spectrum sensing scenario using a software defined radio.

the duration and frequency band where the OFDM signal is located and extracts IQ

samples corresponding to the detected OFDM signal, described as the blue rectangle in

Fig. 4.2. We assume the accurate signal detection of Wi-Fi 6 or 5G signals and a single

modulation scheme is used for data communication in one detected OFDM signal.

The IQ samples from SDR sampled with rate fSDR are resampled to fRX, 20 MHz.

We only consider Wi-Fi 6 signals with 20 MHz channel bandwidth and 5G signals with

a PDSCH bandwidth from 15 to 20 MHz. Thus, a 20 MHz sampling rate can let the

resampled IQ sequence encompass the OFDM signal in our scenario. Extending the

analysis to different transmission bandwidth ranges is straightforward. These resampled

IQ samples, denoted by y[n], are taken as inputs of the feature extraction algorithm, as

elaborated in Sec. 4.3 in detail.

4.2.1 Wi-Fi 6 PHY Layer

Wi-Fi 6 supports the high-efficiency (HE) transmission format as well as earlier

formats, which are non-high throughput (non-HT), high throughput (HT), and very high

throughput (VHT) formats. Table 4.2 summarizes the parameters that configure the

payload of the Wi-Fi frame for each Wi-Fi format. In HE format, given channel bandwidth,

the number of subcarriers is increased because the SCS (denoted as ∆ fSCS) is one-fourth

of that of the previous transmission formats. Over time, the Wi-Fi standard has evolved



Table 4.1. Variable definitions

Variable Definition (unit)
fTX TX sampling rate (Hz)
fRX Sampling rate of a system input sequence (Hz)

∆ fSCS Subcarrier spacing (Hz)
TIFFT IFFT sequence duration (s)
NFFT FFT size used to generate IFFT sequence
TCP CP duration (s)

NCP
Number of time samples

in CP for one OFDM symbol

y[n]
Received time-domain sequence after

resampling to 20 MHz

y′[n]
5G time-domain sequence after

resampling to 30.72 MHz

ys[n]
Received time-domain IFFT sequence

for the sth OFDM symbol

Y s[k]
Received symbol in subcarrier k

for the sth OFDM symbol
(S ×S ) Number of bins in a 2D histogram

Table 4.2. Parameters for different formats of Wi-Fi

Non-HT format HT format
TIFFT 3.2 µs 3.2 µs
TCP 0.8 µs {0.4,0.8}µs

Modulations BPSK, QPSK,
16QAM, 64QAM

BPSK, QPSK,
16QAM, 64QAM

VHT format HE format
TIFFT 3.2 µs 12.8 µs
TCP {0.4,0.8}µs {0.8,1.6,3.2}µs

Modulations
BPSK, QPSK,

16QAM, 64QAM,
256QAM

BPSK, QPSK,
16QAM, 64QAM,

256QAM, 1024QAM
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and several options for the CP duration are available.

4.2.2 5G DL PHY Layer

The 5G downlink (DL) resource structure and its associated terminology is illus-

trated in Fig. 4.3 and Fig. 4.4. A resource element (RE), illustrated in Fig. 4.3, represents

the smallest unit that carries data, encompassing a single OFDM symbol in the time

domain and a single subcarrier in the frequency domain. A resource block (RB) is the

smallest radio resource that can be allocated and refers to one OFDM symbol in the time

domain and 12 subcarriers in the frequency domain.

Fig. 4.4 shows the 5G frame structure in the time domain. An OFDM symbol in

5G is comprised of both a CP and an IFFT sequence. The number of symbols within



Table 4.3. 5G frame structure parameters

{SCS (kHz), CP option} {60, Normal} {60, Extended}
TIFFT 16.17 µs 16.67 µs

{Short, long} TCP {1.17,1.69}µs {4.17,−}µs
NFFT when fTX = 30.72 MHz 512 512

{Short, long} NCP when fTX = 30.72 MHz {36, 52} 128
{SCS (kHz), CP option} {30, Normal} {15, Normal}

TIFFT 33.33 µs 66.67 µs
{Short, long} TCP {2.34,2.86}µs {4.69,5.21}µs

NFFT when fTX = 30.72 MHz 1024 2048
{Short, long} NCP when fTX = 30.72 MHz {72, 88} {144, 160}

a single slot (Nslot
sym) varies following the CP length. There are normal and extended CP

options in the transmission format. When a normal CP is used then Nslot
sym = 14, otherwise

Nslot
sym = 12. The SCS, the distance between two adjacent subcarriers in OFDM systems,

determines the number of slots within a single subframe, Nsubfr,µ
slot . µ represents an SCS

option and corresponds to ∆ fSCS = 15× 2µ kHz. There are five SCS options in 5G, but

we consider only three cases, namely 15, 30, and 60 kHz, which are available in FR1. The

number of slots in a subframe for each SCS is computed as Nsubfr,µ
slot = 2µ . Finally, one

frame of duration 10 ms consists of ten subframes.

The structural parameters that define the 5G frame are listed in Table 4.3. The

length of an IFFT sequence, TIFFT, is:

TIFFT = NFFT/ fTX = 1/∆ fSCS. (4.1)

There is a one-to-one correspondence between TIFFT and ∆ fSCS (4.1). Under the normal

CP option, CP is longer than that in other symbols, every 0.5 ms, or equivalently, 7 ·2µ

OFDM symbols in OFDM symbol unit, called long CP. There is no long CP in the

extended CP option, so TCP is uniform. The transmission rate of 5G signals is a power of

2 times 15 kHz and 30.72 MHz is an example of a 5G transmission rate. NFFT and NCP



Table 4.4. Modulations used for 5G physical channels

Physical channel PDSCH PSS/SSS PDCCH CSI-RS

Modulation
QPSK, 16QAM,

64QAM, 256QAM,
1024QAM

BPSK QPSK QPSK

Physical channel PBCH PDSCH-PTRS PDSCH-DMRS
Modulation QPSK QPSK QPSK

values are arranged when fTX is 30.72 MHz, the value used in our evaluation.

In addition to PDSCH, there exist other physical (PHY) channels that serve spe-

cific functions although not carrying user data. For instance, PDCCH conveys downlink

control information (DCI), which contains information required to decode PDSCH data

such as modulation and coding scheme (MCS). Each of these channels utilizes predefined

single-type modulation, see Table 4.4.

Compared to Wi-Fi, which has a predefined configuration of data, pilot, and null

subcarriers, 5G resource configuration for PHY channels is flexible. Instead, the 5G system

has a network dedicated to exchanging information on how data packets are forwarded,

called the control plane, in addition to the network for data transmission, called the user

plane. An example of data transferred over the control plane is RRC signals. Information

on the starting OFDM symbol of PDCCH and channel state information-reference signal

(CSI-RS) is notified to an RX with RRC signals via control plane [9].

4.3 Proposed Algorithm

High-level procedures to build features characterizing the modulations of Wi-Fi 6

and 5G signals are illustrated in Fig. 4.5 and explained in Sec. 4.3.1 and 4.3.2 with

additional processing for 5G signals in Sec. 4.3.3. The 2D histogram is then taken as an

input to the neural network model, described in Sec. 4.3.4.
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Figure 4.5. Flow chart of proposed modulation classification algorithm.

4.3.1 OFDM Parameter Estimation

Before building the features that characterize modulation, it is necessary to esti-

mate two essential OFDM parameters of OFDM signals, SCS and CP length. To estimate

these parameters, we use CAF, a Fourier-series coefficient of the autocorrelation function,

Ryy(α,τ) =
∞

∑
n=−∞

Ryy(n,τ)e− j2παn. (4.2)

CAF is used to extract a repeated pattern presented in wireless signals [24, 25, 26]. A

variant of the CAF estimator presented in [24] is deployed here,

R̂yy(α, ℓ) =
1

L − l− ℓ+1

L−l−ℓ

∑
n=0

{
l−1

∑
i=0

y[n+ i]y∗[n+ i+ ℓ]

}

× e− j2παn,

(4.3)

where α is a cycle frequency and L is the length of y[n]. One sample of our estimator is

computed as the autocorrelation with delay ℓ. It differs from the estimator in [24], which

corresponds to l = 1 in (4.3). The increase in the length of a sample sequence y[n+ i] aims

to make peaks more distinct. We set l = 8 corresponding to the shortest CP length in our

scenario.

CP in OFDM symbols causes a sequence to be repeated at both ends of each symbol.



The distance between starting indices of the two repeated sequences at both ends of an

OFDM symbol is TIFFT in time units or NFFT( fRX/ fTX) = fRX/∆ fSCS in time sample units.

This repetition makes the CAF estimator at α = 0 have a peak at ℓ= fRX/∆ fSCS. TCP is

also estimated with the CAF estimator, R̂yy(α, fRX/∆ fSCS). Since ∑l−1
i=0 y[n+ i]y∗[n+ i+ ℓ]

in (4.3) has peaks at period of fRX(TCP + 1/∆ fSCS), it is expected of R̂yy (α, fRX/∆ fSCS)

to have a large amplitude at α = 1/{ fRX(TCP +1/∆ fSCS)}.

In our scenario, there are five candidates ℓ values, ℓC = {64,256,333,667,1333},

each corresponding to an IFFT sequence length for a given SCS at fRX = 20 MHz. IFFT

sequence length is estimated as:

TIFFT = ℓ′/ fRX s.t. ℓ′ = argmax
ℓ∈ℓC

∣∣R̂yy(0, ℓ)
∣∣ (4.4)

When the estimated TIFFT corresponds to that of Wi-Fi 6 or 60 kHz SCS NR, where

multiple CP options are available, CP length is further estimated as:

TCP =
1

fRX

(
1
α ′
− ℓ′

)
s.t. α ′ = argmax

α∈αℓ′
C

∣∣R̂yy(α, ℓ′)
∣∣ (4.5)

where αℓ′
C denotes a set of possible values of α = 1/{ℓ′+( fRX ·TCP)}, given ℓ′.

4.3.2 Feature Extraction

The motivation behind our proposed feature extraction lies in the observation that

when a sampled time-domain sequence is contained within a single OFDM symbol s, the

FFT of that sequence yields the original symbols with a phase drift that scales linearly



with subcarrier index k and synchronization error ∆n, as shown in

Y s
∆n[k]≜ F (ys[n−∆n])

=
NFFT−1

∑
n=0

ys[n−∆n]e− j2πnk/NFFT

= Y s[k]e− j2π∆nk/NFFT .

(4.6)

To build a feature characterizing modulation based on this property, two objectives must

be achieved: first, sampling a sequence fully contained in an OFDM symbol, and second,

removing the phase drift caused by synchronization errors.

Utilizing the knowledge of NCP and NFFT, the CP position is determined through

autocorrelation analysis,

Ryy(m,NFFT) =
1

NCP

NCP−1

∑
i=0

y[m+ i]y∗[m+ i+NFFT], (4.7)

where m is the first index of original sequence of autocorrelation Ryy(m,NFFT). The position

of CP is indicated by the peaks in |Ryy(m,NFFT)| since it is expected that |Ryy(m,NFFT)|

peaks when m is the first index of CP. To locate a peak, we search for a sample whose

amplitude is larger than both of its neighboring samples while ensuring that the minimum

distance between two adjacent peaks is 90% of the OFDM symbol duration (i.e., (256+

64)×0.9 = 288-time samples for HE format with 3.2 µs CP), to avoid selecting undesired

local peaks. The indices of peaks are denoted as {p′0, · · · , p′S−1} for S potential OFDM

symbols. Using those peaks, the first index of the OFDM symbol is estimated:

p = Mediani{mod(p′i,NFFT +NCP)}, (4.8)

where i ∈ {0, · · · j−1}. Noise and varying amplitudes of time samples can introduce small

errors in the estimated CP position. To reliably sample the sequences contained in a



single OFDM symbol, we deploy the sequence {y[p+NCP/2],y[p+NCP/2+ 1], · · · , y[p+

NCP/2+N−1]}. This sequence is entirely within a single OFDM symbol for estimation

error of p below NCP/2.

We demonstrated (4.6) that Y s
∆n[k] exhibits a phase drift, e− j2π∆nk/N , while main-

taining amplitude Y s[k]. We compute the phase differences between successive potential

symbols s and s+1 in subcarrier k to build the feature invariant of this phase drift due

to synchronization errors as:

∆∠Y s
∆n[k]≜∠Y s+1

∆n [k]−∠Y s
∆n[k]

= ∠
{

Y s+1[k]e− j2π∆nk/N
}
−∠

{
Y s[k]e− j2π∆nk/N

}
= ∠Y s+1[k]−∠Y s[k].

(4.9)

Despite ∆n unknown, sequences with constant ∆n are obtained by adjusting the interval

between the starting indices of two sampled sequences to be one OFDM symbol. The

feature used to identify the modulation type is

Y s
f [k]≜ |Y s

∆n[k]|e j∆∠Y s
∆n[k]. (4.10)

For Wi-Fi 6, the null subcarrier symbols are eliminated by discarding symbols with the

Nnull smallest average amplitudes.

In protocol-compliant reception, the Wi-Fi preamble and 5G PDSCH-phase track-

ing reference signal (PDSCH-DMRS) are deployed for CFO estimation. However, since

not accessible to a spectrum sensor, the CP in each OFDM symbol is used for CFO

estimation ∆ fc, i.e.,

∠(y[p+NFFT + i] · y∗[p+ i]) = 2π∆ fc/∆ fSCS, (4.11)

where y[p+ i] is in CP. We use i ∈ {⌊NCP/4⌋, · · · ,⌈3NCP/4⌉} so that the sequence



y[p+ i] are entirely within CP unless estimation error of p exceeds NCP/4. We determine

CFO as the average of ∆ fc (4.11) evaluated over multiple OFDM symbols. If the absolute

value of the CFO is larger than ∆ fSCS/2, the CFO cannot be accurately estimated due to

aliasing. It is discussed in Sec. 4.3.3.

4.3.3 Additional Procedures for 5G Signal

To build a modulation feature for 5G, 5G characteristics distinct from those of

Wi-Fi, including a different transmission rate, long CP, and flexible usage of subcarriers,

should be considered. First, the transmission rate of 5G signals is not fRX = 20 MHz,

but is a power of 2 times 15 kHz. Hence, for the signal classified as 5G, we resample

the sequence to f5G = 30.72 MHz= 2048 ·15 kHz, the smallest sampling frequency above

20 MHz. NFFT and NCP with 30.72 MHz sampling rate for each ∆ fSCS are arranged in the

last two rows in Table 4.3.

In the case of the normal CP option, there is a long CP every TLCP = 0.5 ms, which

is slightly longer than that of other OFDM symbols. Long CP breaks the assumption of

uniform OFDM symbol duration, which is required by the method to find the first indices

of OFDM symbols and estimate CFO. Moreover, in building Y s
f [k], maintaining the fixed

interval does not guarantee the constant ∆n over multiple OFDM symbols. Therefore,

long CP also should be located when finding the first index of the OFDM symbol.

Algorithm 2 explains the detailed steps to estimate the first index of OFDM symbol

with long CP. y′i in line 3 is a sequence cropped to be as long as (0.5 ms + 2 OFDM symbols

+ TCP).

In line 4, we find M+2 peaks from y′i using autocorrelation |Ry′iy
′
i
(m,NFFT)|, where

M denotes the number of OFDM symbols in TLCP given µ and we also compute the au-

tocorrelation at the two symbols at each end. The M average differences between the

remainders of two peaks separated by two OFDM symbols modulo OFDM symbol dura-

tion, ∆p j, are computed in line 7. We expect that ∆p j is the largest when p j corresponds



Algorithm 2: Finding first index of long CP in 5G
Data: (y′[n] of length (3 ms + 3 OFDM symbols)), µ

1 M = 7 ·2µ , NFFT = 512 ·22−µ , NCP = 18 ·22−µ ;
2 for i = 0 : 5 do
3 y′i ≜ {y′[ f5GTLCP · i], · · · , y′[ f5GTLCP(i+1)+ 2(NFFT +NCP)+NCP−1]};
4 Find peaks {p′i0, · · · , p′i(m+1)} with y′i using |Ry′iy

′
i
(m,NFFT)| and peak

locating function in Sec. 4.3.2;
5 pi j = mod(p′i j,NFFT +NCP);
6 end
7 ∆p j = (∑5

k=0{pk( j+1)− pk( j−1)})/6 where j ∈ {1,2, · · · ,M};
8 {∆pr0 , · · · ,∆prM−1}= sortDescending({∆p j});
9 symLongCP = argmaxrq

Var({p0rq , · · · , p5rq}) where q ∈ {0,1};

10 qi j =

{
pi j if j ≤ symLongCP
pi j−16 otherwise

q = Median j(∑5
k=0 qk j/6);

Result: IndexLongCP= q+symLongCP(NFFT+NCP)

to long CP. For a more reliable estimation of a long CP, we add a criterion.

In line 10, we choose the two candidates k0 and k1 that give ∆pki the two largest

values. We select kq where the set {p0kq , · · · p5kq} has the larger variance between two

candidates of kq. This is because we expect that {p0 j, · · · , p5 j} has the largest variance

if pi j corresponds to long CP since long CP makes |Ry′iy
′
i
(m,NFFT)| a plateau with some

width. Using estimated IndexLongCP, we put an additional 16 samples delay at the

OFDM symbol with long CP while extracting the feature Y s
f [k] to maintain uniform ∆n.

The number of 16 samples comes from the difference between long CP and non-long CP

with a 30.72 MHz sampling rate.

In contrast to Wi-Fi 6 signals, some subcarriers might not be used for transmission

amid transmission. If no transmission is made in Y s[k] or Y s+1[k], their phases are random,

and ∆∠Y s
∆n[k] cannot be the phase difference between two constellation points. Therefore,

we set the threshold for the amplitude, denoted as β , to check whether the RE is being

used for transmission. Only when |Y s[k]| and |Y s+1[k]| are higher than β , Y s[k] is used.

The discrepancy between the center frequency of TX and that of received IQ



samples of 5G signals might be much larger than for Wi-Fi. In contrast to Wi-Fi, which

covers the entire channel bandwidth unless OFDMA is used, PDSCH in 5G might use only

the part of channel bandwidth so the center frequency of PDSCH might be different from

that used for transmission. Thus, the discrepancy is solely from hardware imperfection in

Wi-Fi. For a Wi-Fi link operating at fc = 5GHz and a frequency tolerance of 1 ppm for

commercial-off-the-shelf temperature-compensated crystal oscillators [27] on both sides of

the Wi-Fi link, the worst-case CFO is ∆ fc = 2 fc · 10−6 = 10 kHz. However, in 5G, the

CFO can escalate to an MHz scale if we consider the center frequency of transmission

bandwidth to be carrier frequency. If the method presented earlier in this section is

employed, the difference could result in an inaccurate estimation of CFO due to aliasing.

Even in the absence of noise, it is only possible to measure ∆ fc accurately up to ∆ fSCS/2,

since ∆ fc + z∆ fSCS cannot be distinguished from each other, where z ∈ Z. The algorithm

makes the corrected CFO a multiple of ∆ fSCS, not a zero.

However, the CFO correction is still deployed for feature extraction. This is be-

cause even though this method cannot find the exact CFO, it can recover the orthogonality

among subcarriers. The CFO effect in our feature is represented as:

Y s
∆n[k] =

NFFT−1

∑
n=0

y[n−∆n]e− j2πn(∆ fc/ fTX+k/NFFT)

= Y s [k+NFFT∆ fc/ fTX]× e− j2π∆n(k/NFFT+∆ fc/ fTX)

Y s+1
∆n [k] = Y s+1 [k+NFFT∆ fc/ fTX]× e− j2π(∆nk/NFFT+(∆n+(NFFT+NCP)∆ fc/ fTX)

⇒ ∆∠Y s
∆n[k] = ∠Y s+1 [k+∆ fc/∆ fSCS]−∠Y s [k+∆ fc/∆ fSCS]−2π∆ fc(1/∆ fSCS +TCP).

(4.12)

To maintain orthogonality of ∠Y s
∆n[k] across k, ∆ fc/∆ fSCS should be an integer.

We have demonstrated that after the CFO correction using CP, the CFO is expressed
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Figure 4.6. Flow chart of proposed Wi-Fi 6 classifier system.

Table 4.5. DL model parameters

Batch size 32 Learning rate 5 ·10−5

Epochs 200 Loss Cross-entropy

as z ·∆ fSCS, which renders ∆ fc/∆ fSCS to be an integer. Consequently, the phase of our

feature becomes the sum of a phase difference of originally transmitted symbols and a

phase caused by the CFO. Since ∆∠Y s
∆n[k] in (4.12) contains TCP term, the CFO effect on

∆∠Y s
∆n[k] is different when OFDM symbol s+ 1 is an OFDM symbol with long CP. To

make the CFO effect uniform in the feature, ∆∠Y s
∆n[k] where OFDM symbol s+ 1 is an

OFDM symbol with long CP is not used for building the feature.

The features may contain the effect of other PHY channels that use modulations

other than those used by PDSCH. It is impossible to perfectly filter out the effect because

information about which REs were used for which PHY channels is not accessible for

spectrum sensors. However, since the modulations of other PHY channels are either

BPSK or QPSK, the constellation diagram of the features is only affected by changes

in PDSCH modulation. Thus, the distribution of phase differences is still an intrinsic

characteristic of PDSCH modulation.

4.3.4 Neural Network Classifier

The obtained feature Y s
f [k] goes through two preprocessing steps to become input

to the classifier:
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Input size: Conv2D layer 

 FC layer 

1200
 FC layer 
84  

Softm
ax

Output size: 
1  

 FC layer 
1200 84 

R
eLU

R
eLU

R
eL

U

Flatten
M

ax
po

ol
2D

Conv2D layer 
 

M
ax

po
ol

2D

R
eL

U Conv2D layer 
 

Conv2D layer 
 

Maxpool2D

ReLU 

Figure 4.8. CNN-based modulation classifier structure. Nc is the number of modulations
a classifier aims to recognize.

1) instead of ∆∠Y s
∆n[k], ∆∠Y s

∆n[k] modulo π/2 is used as a phase of Y s
f [k]. A constel-

lation diagram of every target modulation and corresponding features Y s
f [k] without noise

are rotationally symmetric with π/2. Thus, ∆∠Y s
∆n[k] modulo π/2 is used as a phase of

our feature to characterize a modulation. For Wi-Fi 6 signals, BPSK cannot be distin-

guished from QPSK if ∆∠Y s
∆n[k] modulo π/2 is used. Thus, an additional classifier with

the original phase as an input is used to distinguish BPSK and QPSK from the high-order

QAM modulations, see Fig. 4.6.

2) A 2D histogram of the normalized amplitude of the features |Y s
f [k]|/|Y s

f [k]|p99,

where |Y s
f [k]|p99 denotes 99th percentile of |Y s

f [k]| in a single data, and the phases ∠Y s
f [k]/2π,



as an input for the classifier. The histogram value of each bin is computed as:

Z(u,v) = The number of Y s
f [k] s.t.

u/S ≤ |Y s
f [k]|/|Y s

f [k]|p99 ≤ (u+1)/S and

v/S ≤ ∆∠Y s
∆n[k]/ϕ ≤ (v+1)/S .

(4.13)

If ∆∠Y s
∆n[k] modulo π/2 is used, ϕ is π/2, otherwise 2π. We normalize histogram value

to be classifier input:

Z′(u,v) = Z(u,v)/Z , (4.14)

where Z denotes the number of valid Y s
f [k] in one data. To remove outliers, Y s

f [k] whose

amplitude is larger than |Y s
f [k]|p99 was not included in the histogram.

The overall structure and the parameter of the classifier with the histogram input

are summarized in Fig. 4.6, Fig. 4.7, and Table 4.5. The neural network structure used

for each classifier is described in Fig. 4.8. Cin and Cout in Conv2D layers correspond to

the number of input and output depth. A 2×2 size kernel is used in every Conv2D and

Maxpool2D layer. Nc is the number of modulations that a classifier aims to recognize. For

the classifier to identify BPSK and QPSK, the third Maxpool layer is not used, S = SP,

and Nc = 3. The classifier for 5G and for identifying the QAM types for Wi-Fi 6 use

Nc = 5,4, respectively.

For 5G 16QAM real-world measured over-the-air (OTA) data, Fig. 4.9 shows a

scatterplot of the IQ data of Y s
f [k] and Fig. 4.10 the corresponding 2D histogram with

∆∠Y s
∆n[k] modulo π/2. ∠Y s

f [k] on the red and black dashed lines are the sum of the

noise-free phase differences between two 16QAM constellation points and the phase shift

caused by CFO. Blue dashed lines are from the phase differences between BPSK or QPSK

symbols of the PHY channel other than PDSCH and the shift by CFO. The red, blue,

and black dashed lines in Fig. 4.9 correspond to the red, blue, and black dashed lines in

Fig. 4.10, respectively. Fig. 4.9 and Fig. 4.10 show that symbols are densely located at



Figure 4.9. Scatterplot of Y s
f [k] of measured 16QAM features at SNR= 25dB with 5G

OTA data.

Figure 4.10. Histogram of |Y s
f [k]|/|Y s

f [k]|p99 and (∆∠Y s
∆n[k] mod π/2)/(π/2) of measured

16QAM features at SNR= 25dB with 5G OTA data.

the points in the dashed lines, which is consistent with our expectations.

An advantage of using a histogram is that they are invariant to the length of Y s
f [k].

This enables a neural network with a fixed structure to handle signals of any duration.

This property is useful when dealing with 5G features where the number of samples of

Y s
f [k] is unknown due to unused resources. Moreover, in a histogram input, the effect of

CFO estimation error caused by aliasing (4.12) is a movement along the y-axis of the

histogram as far as orthogonality of ∠Y s
∆n[k] across k holds. The neural network can be

trained to identify histogram movements along the y-axis as a single class.
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Figure 4.11. OTA data propagation environment: (a) map with TX/RX locations, (b)
vertically polarized antennas for TX (left) and RX (right), attached to the wall.

Figure 4.12. Scatterplot of Y s
f [k] of measured 16QAM features at SNR= 25dB with 5G

OTA data.

4.4 Evaluation

4.4.1 Data Collection

The proposed classifier is evaluated with synthetic data generated from AWGN

channel simulations and real-world measured OTA data with the details in Table 4.6.

MATLAB R2023a WLAN and 5G toolbox [28] are deployed to generate the synthetic

AWGN dataset. Wi-Fi HT [29] and HE format [8] are used to generate data with TIFFT =

3.2 µs and 12.8 µs in Wi-Fi 6. For 5G data, every SCS option in FR1, µ ∈ {0,1,2}, is

tested. All PHY channels listed in Table 4.4 are included in every 5G data item.

To evaluate whether the performance of the proposed system remains invariant

across varying 5G PHY channel configurations, the parameters for allocating REs to PHY



Table 4.6. Data generation parameters

SNR AWGN data: [5, 40] dB in steps of 5 dB
OTA data: [4, 32] dB in steps of 4 dB

Carrier frequency 2.4 GHz (Wi-Fi 6), 2.6 GHz (5G)
The number of

{train, test} data
{800, 200} per each

(TIFFT,TCP,modulation) case
{SP,SQ} {15, 50}

Time duration
of each data 400 µs (Wi-Fi 6), 5 ms (5G)
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Figure 4.13. Accuracy for estimating TIFFT and TCP evaluatd with synthetic AWGN chan-
nel data.

channels are set for each data. For example in PDCCH, symbol duration, aggregation level,

and starting symbol number are randomly selected. PHY broadcast channel (PBCH),

primary synchronization signal (PSS), and secondary synchronization signal (SSS) are

included only when µ ∈ {0,1} since they are not available for µ = 2. The other 5G PHY

channel parameters are from FR1 test models in [30, 31].

Figure 4.11 documents the propagation environment where OTA data are mea-

sured. We deploy two networked software-defined radios, USRP N310 [32], for transmit-

ting and receiving signals OTA. Both TX and RX are in the same room and the distance

between TX and RX is 4.52m, see Fig. 4.11a. TX and RX antenna are attached to the

wall, see Fig. 4.11b. Fig. 4.12 shows a spectrogram with a 5G signal detected. Utilizing

the assumed accurate signal detection, an IQ sequence corresponding to a detected signal

(red box in Fig. 4.12) is extracted. After resampling to 20 MHz (y[n]), the sequence is

taken as an input of the OFDM parameter estimator.
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Figure 4.14. Accuracy for choosing the first index of CP with acceptable error ε with
synthetic AWGN channel data.
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Figure 4.15. Accuracy for finding an OFDM symbol with long CP of 5G signals with
synthetic AWGN channel data.

4.4.2 Building Classifier Input

First, to avoid using the Wi-Fi preamble, we remove the first 2000 samples from

each data. If the estimated TIFFT corresponds to those of Wi-Fi 6, an IQ sequence whose

length corresponds to 40+2 or 10+2 OFDM symbols is deployed to build Y s
f [k], starting

with a random sample. We need an additional OFDM symbol due to the unknown starting

index of an OFDM symbol sequence, p∈ [0,NFFT+NCP−1]. One more symbol is required

since phase differences between those of every OFDM symbol and the next one should be

computed. Nnull is set to 8 and 32 for Wi-Fi HT and HE, respectively. If the estimated

TIFFT refers to 5G, y′[n] of length (3 ms + 3 OFDM symbols) is used to estimate p and

IndexLongCP.

For 5G, the sequence of 14 OFDM symbols is utilized for a classifier input. β is

set to |Y s
f [k]|p99/10 in each input. We also evaluate Y s

f [k] values as an input to assess how

much the histogram input contributes to the performance. In this case, one data input
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Figure 4.16. Classification accuracy for modulations vs. SNR with synthetic data: (a)
Wi-Fi HT, (b) Wi-Fi HE, (c) 5G.
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Figure 4.17. Classification accuracy for modulations vs. SNR with OTA data. (a) Wi-Fi
HT, (b) Wi-Fi HE, (c) 5G signals.

consists of 2240 samples for Wi-Fi 6 or 7900 samples for 5G, which is the average number

of feature elements in a single 5G histogram data. We use fixed-duration data for a fair

comparison, but the classifier can take the variable length data as input as the obtained

feature is processed to a histogram using the algorithms in Sec. 4.3.4. For both input

formats, an input with both phases of ∠Y s
∆n[k] modulo π/2 and ∠Y s

∆n[k] are evaluated.

4.4.3 Evaluation Results
AWGN channel data

Results in Fig. 4.13, Fig. 4.14, and Fig. 4.15 are obtained with synthetic AWGN

channel data. Fig. 4.13 shows estimation accuracy of the OFDM parameters {TCP,TIFFT}

over different l, the length of y[n+ i] in CAF estimator (4.3). Using l = 2,4 achieves 99%

accuracy for both Wi-Fi 6 formats and 5G and outperforms l = 1 as used in [24]. In
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Figure 4.18. Classification accuracy for modulation with OTA data for each modulation
format separately.

Fig. 4.14, the estimation accuracy of correctly finding the starting index of an OFDM

symbol is shown for the method in Sec. 4.3.2. Correctly finding means that the starting

index time is within ε samples tolerance of the true time. In Fig. 4.14, we note that the

estimation accuracy for identifying the starting index of an OFDM symbol falls below 60%

for both Wi-Fi 6 formats and 5G. When the tolerance is relaxed to NCP/4 time samples,

the reported estimation accuracy increases to 99%.

The accuracy of estimating an OFDM symbol with long CP is shown in Fig. 4.15.

Aside from ∆ fSCS = 60 kHz, the performance is over 90% even at low SNR of 5 dB. Accu-

racy at ∆ fSCS = 60 kHz is low because the period of an OFDM symbol with long CP is

larger than the others. The degraded peak detection performance due to the large number

of symbols that the peak detection function needs to detect also negatively affects the

estimation performance. At ∆ fSCS = 60 kHz, 30 peaks should be identified in line 4 of

Algorithm 2, which is considerably larger than the 9 or 16 peaks at ∆ fSCS = 15 kHz and

∆ fSCS = 30 kHz.
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Figure 4.19. Classifier accuracy with OTA data when SNR exceeds the minimum require-
ments required for standard-compliant data communication.

Table 4.7. SNR required for data communication with each modulation

Modulation BPSK QPSK 16QAM
SNR for Wi-Fi 6 (dB) 5 10 16

SNR for 5G (dB) - 15 18
Modulation 64QAM 256QAM 1024QAM

SNR for Wi-Fi 6 (dB) 22 30 35
SNR for 5G (dB) 21 27 30

Figure 4.16 shows modulation classification accuracy with synthetic AWGN chan-

nel data. The proposed algorithm with a histogram input with the phases ∆∠Y s
∆n[k]

modulo π/2 outperforms in all considered cases, except for Wi-Fi 6 at 5 dB SNR. The

performance gap between using the histogram as classifier input as opposed to using the

feature value input increases in Wi-Fi HE and even more so in 5G. This is because the

histogram input helps the classifier to discriminate the detailed symbol constellation of

high-order modulations.

OTA data

The modulation classification accuracy with measured OTA data is in Fig. 4.17.

The achieved OTA accuracy is similar to the synthetic AWGN channel data: a histogram

input with the phases ∆∠Y s
∆n[k] modulo π/2 achieves the highest classification accuracy,

except for Wi-Fi 6 at 5 dB SNR and a larger performance gap for Wi-Fi HE and 5G.



The classification accuracy of all considered modulation formats with OTA data is

in Fig. 4.18. For a chosen accuracy, higher modulation orders require higher received SNR.

E.g., Wi-Fi HE 16QAM signals have 90% accuracy if the SNR exceeds 16 dB, whereas

Wi-Fi HE 256QAM requires 24 dB SNR. In Fig. 4.19, the accuracy of each modulation

format is shown when the SNR satisfies the minimum requirement for standard-compliant

data communication. We deploy error vector magnitude (EVM) levels required for data

communication with each modulation for Wi-Fi 6 and 5G documentations [31, 8]. Re-

quired SNR values are calculated using the relation between EVM and SNR [33]. SNR

required for the smallest coding rate are chosen for each modulation and chosen values are

arranged in Table 4.7. For every modulation with both Wi-Fi 6 formats and 5G, accuracy

is at least 97%.

4.5 Conclusion

Modulation classification of Wi-Fi 6 and 5G signals for spectrum sensing is studied.

Simulations show that our classifier which uses SCS and CP length estimates based on the

CAF achieves 99% accuracy. The classifier includes a preprocessing stage that is agnostic

to control information, and extracts signal features characterizing modulation schemes

insensitive to synchronization errors. For 5G signals, the preprocessing also estimates

the symbol positions with a long CP. The features are converted to a more suitable

form as inputs for the CNN-based classifier. This improves the classification of high-

order modulation constellations. The modulation classifier identifies OFDM modulations

with 97% accuracy when the SNR satisfies the requirements for standard-compliant data

transmission for each modulation format with both synthetic AWGN channel data and

measured OTA data.
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Chapter 5

Real-time Adversarial Attack to Deep Learning-
based Wi-Fi Human Activity Recognition

5.1 Introduction

As Wi-Fi sensing employing channel state information (CSI) is used for a range of

applications, including indoor localization [1, 2] and human activity recognition (HAR) [3,

4], concerns regarding privacy from widespread presence of Wi-Fi routers have escalated.

Data-driven approaches, deployed in diverse wireless communication applications [5, 6, 7],

also help to address the randomness of human bodies and activities, but the capability

to identify diverse human activities using sequences of Wi-Fi CSI with deep learning

(DL) raises privacy concerns. To address these issues in HAR, we propose a technique to

obscure human activities from being detected by HAR classifiers. This method involves

adding perturbation signals into the signals transmitted from the user device to the HAR

classifier, aiming to degrade its performance.

We examine a setup involving a room with a Wi-Fi router and a user device, along

with a human as in Fig. 5.1. The HAR classifier is located at a Wi-Fi router, which

communicates with a user device, and identifies human activities using CSI estimated by

the router. The signals used for CSI estimation in the Wi-Fi [8] is the long training field

(LTF) transmitted by the user device. The estimated CSI is then used as input for the

HAR classifier. On the user device, a perturbation signal generator manipulates the LTF

84
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Figure 5.1. The scenario attacking Wi-Fi-based HAR from the user side.

to degrade the performance of the HAR classifier.

Previous research [9, 10] has adapted adversarial attack originally developed for

deep learning (DL)-based image classification to degrade DL-based Wi-Fi HAR classifiers

using methods like the fast gradient method (FGM) [11]. In FGM, classifier inputs should

be manipulated; however, users typically cannot access the CSI collected by Wi-Fi routers.

In this setting, the adversary knows the CSI sequence estimated only up to when it manip-

ulates LTF. Subsequent CSI sequences, which could be part of inputs for the classifier, are

not accessible at the point of manipulation. This paper presents a real-time adversarial

attack as building signals that degrade the target model using the CSI available up to the

moment the LTF is perturbed [12].

For real-time adversarial attacks, we employ reinforcement learning (RL) to find

good decisions from the observed states. RL finds the actions, the adversarial examples

in our context, that maximize the reward function given observed states. The reward

function and the observed states correspond to the degraded performance of the HAR

classifier and the observed CSI in our scenario. While typical RL provides reward function

feedback [13], our case differs. Imitation learning (IL) offers an alternative, training only

with expert state-action pairs–known to yield high rewards–rather than reward values,

effectively addressing this challenge.

We propose an algorithm that constructs adversarial examples using only the CSI

sequence estimated up to the point of their insertion. We employ a generative adversarial

imitation learning (GAIL) algorithm. Notably, our algorithm does not necessitate knowl-



edge of the target model’s structure. Evaluation of a dataset collected over eight days

verifies that the GAIL model requires 1.0 dB lower perturbation signal amplitude than

that of baseline schemes that rely on impractical assumptions.

Designing perturbation signals to degrade Wi-Fi-based HAR for privacy protec-

tion has been studied [14, 15, 10, 16, 17, 18]. Ref. [14, 15] suggest manipulation of the

loss function of the Wi-Fi HAR classifier so that the proposed loss function is trained

not to detect a prearranged set of activities. Finding the subcarriers and timesteps of

the input sequence crucial to the HAR classifier performance is proposed in [10]. The

attacking scenarios [14, 15, 10] require the adversary to know the weights of the tar-

get HAR classifier. Target channel and attack power determination for the adversary

against Wi-Fi HAR considering the collision avoidance protocol is presented [17]. The

authors of [18] present the black-box and universal adversarial attacks against HAR with

mmWave radar. WiAdv [16] presents a targeted adversarial attack against Wi-Fi-based

gesture recognition, which only considers the target gesture [19]. These proposed adver-

sarial attacks [16, 17, 18] are built upon statistics of pre-observed surrounding wireless

environments.

5.2 System objective

The Wi-Fi-based HAR classifier takes the sequence of CSI matrices as an input to

determine the probability of each activity. Specifically, the orthogonal frequency-division

multiplexing (OFDM)-MIMO system at ith timestamp and jth subcarrier with the trans-

mitted and received signal vector, xi j ∈ CNTX and yi j ∈ CNRX , is modeled as:

yi j = Hi jxi j +ni j. (5.1)

Here, i ∈ {1, · · · ,M}, j ∈ {1, · · · ,NSC}, and M denotes the human activity duration in the

time unit. Hi j ∈ CNRX×NTX and ni j ∈ CNRX are the CSI matrix and the noise vector at ith



subcarrier and jth timestamp, respectively. A receiver (RX) deploys the known LTF (xi j)

to estimate the channel (Hi j) using the received signals (yi j). The DL-based classifier

is used for the classifier model [20, 21]. The classifier fC takes as input a sequence of

CSI matrices H ∈ RM×NSC×NRX×NTX ≜ {|Hi j|}1≤i≤M,1≤ j≤NSC , where |Hi j| consists of the

amplitudes of Hi j’s elements. The classifier outputs the probability of each activity.

The adversary computes the adversarial example A ∈ RM×NSC×NRX×NTX , which de-

grades the target HAR classifier when added to the CSI sequence H . Utilizing A , the

adversary generates perturbation signals, resulting in a modified CSI estimated as H +A

by the router. The adversary adds β k
i j ∈ C to LTF transmitted by kth antenna on the

user device xk
i j ∈ R. Using the known LTF, xk

i j, the router estimates the CSI hk
i j ∈ CNRX .

This estimation is distorted to h̄k
i j ∈ CNRX :

h̄k
i j = hk

i j(x
k
i j +β k

i j)/xk
i j = hk

i j(1+β k
i j/xk

i j). (5.2)

The purpose of β k
i j is minimizing the accuracy of the target HAR classifier, fC, with input

H̄ ∈ RM×NSC×NRX×NTX consists of h̄k
i j.

5.3 Proposed Algorithm

5.3.1 Black-box FGM

Since the target HAR classifier is unknown to the adversary, we take a black-

box attack approach to compute adversarial examples. The surrogate HAR classifier

is trained using available CSI data and the adversarial which effectively degrades the

surrogate model performance is computed. Bidirectional long-short-term memory (Bi-

LSTM), which is used in multiple Wi-Fi-based HAR classifiers and is known to achieve

high accuracy [20, 21, 22, 23], is adopted as the network model of the surrogate LSTM

classifier, f ′C. We use the surrogate HAR with one Bi-LSTM layer and the following FC



layer. Using a surrogate model, black-box FGM ˆA ∈ RM×NSC×NRX×NTX is computed as:

Ĥ = H +α∇H L
(

f ′C(H ),y
)
= H + ˆA . (5.3)

5.3.2 GAIL-based Real-time Adversarial Example Generator

The real-time adversarial example generator is designed to compute adversarial ex-

amples that degrade the target classifier at each time step i, denoted as Ai ∈RNSC×NRX×NTX ,

only using the sequence of CSI estimated up to time step i,

H ℓ
i ≜ [Hi−ℓ,Hi−ℓ+1, · · · ,Hi−1] ∈ Rℓ×NSC×NRX×NTX , (5.4)

where ℓ denotes the time sample length of the generator input. The real-time adversarial

example generator is trained to find the policy function π(Ai|H ℓ
i ) such that H + ¯A

where ¯A ≜ {Āi}M
i=1 ∼ π(Ai|H ℓ

i ) minimizes the target classifier accuracy.

We aim to train the generator, π, to mimic adversarial examples that have been

demonstrated to effectively impair the target classifier. For the training process, the

black-box FGM ˆA (5.3) of CSI sequences, H , which are collected apriori is used as the

reference for imitation. The adversary computes ˆA using the available CSI sequence

and the surrogate model f ′C, associating Âi with H ℓ
i . These pairs compose an expert

trajectory guiding the training process of the generator.

GAIL [24] is an IL algorithm to extract the relation between H ℓ
i and Âi. GAIL

imitates the policy of an expert only using its trajectories, {H ℓ
i , Âi}M

i=1. The architecture

of GAIL is similar to that of a generative adversarial network (GAN). Like a GAN, GAIL

consists of two network components, comprising a discriminator (Dw) and a policy function

(πθ ). The networks are trained with two types of trajectories, the expert trajectories,

{H ℓ
i , Âi}M

i=1, and the learner trajectories, {H ℓ
i ,Ai}M

i=1|Ai∼πθ (·|H ℓ
i ), generated by πθ . The

discriminator, similar to that in a GAN, is trained to distinguish between the expert and



Algorithm 3: GAIL-based real-time adversarial example generator
Data: Expert trajectories τE = {H ℓ

i , Âi} where i = {1,2, · · · ,M}, initial
parameters of discriminator w0 and policy function θ0

1 for k = 0,1, · · · ,K−1 do
2 Sample trajectories with the policy of a learner τk ∼ πθk(Ai|H ℓ

i );
3 Update discriminator parameters to increase the objective:

wk+1← wk +∇wkJ(wk) (5.6)
4 Update policy function parameters to decrease the objective:

θk+1← θk−∇θkK(θk) (5.7)
5 end

Output: Trained policy network which can generate real-time adversarial
attack πθK(Ai|H ℓ

i )

learner trajectories. The training objective of the discriminator is to maximize the function

values evaluated at the expert trajectories, Dw(H ℓ
i , Âi) and minimize those evaluated

at the learner trajectories, Dw((H ℓ
i ,Ai)|Ai∼πθ (·|H ℓ

i )). Concurrently, the policy function

is optimized to increase the discriminator values computed for the learner trajectories.

Thus, the combined training objective that GAIL seeks to optimize can be summarized

as follows:

min
πθ

max
Dw

E(H ℓ
i ,Ai)∼πθ (Ai|H ℓ

i )[log(Dw(H
ℓ

i ,Ai))]+

E(H ℓ
i ,Âi)

[log(1−Dw(H
ℓ

i , Âi)]−λGH(π).
(5.5)

log(Dw) instead of Dw is optimized to address the constraint of the learnable function

types [24]. The entropy of policy H(πθ ) is used as a regularizer function. Algorithm 3

presents the full procedure to optimize the objective.

In each iteration in Algorithm 3, learner trajectories τ = {H ℓ
i ,Ai} are generated

from CSI data available to the user device with Ai sampled with the policy function,

πθk(·|H ℓ
i ). Both the discriminator and policy functions are optimized alternately using

learner and expert trajectories. In line 3, the discriminator function is trained by adjusting

its parameter, w, to minimize its values evaluated on expert trajectories and maximize



those on learner trajectories,

∇wJ(w) = E(H ℓ
i ,Ai)∼πθk

[∇w log(Dw(H
ℓ

i ,Ai))]

+E(H ℓ
i ,Âi)

[∇w log(1−Dw(H
ℓ

i , Âi))].

(5.6)

The policy gradient in line 4 aims to minimize the cost function evaluated on the learner

trajectories and maximize the regularizer function value,

∇θ K(θ) = Eτk [∇θ logπθ (Ai|H ℓ
i )C(H ℓ

i ,Ai)]−λG∇θ H(πθ ) (5.7)

where cost function C(H ℓ
i ,Ai) = Eτk [log(Dwi+1(H

ℓ
i ,Ai))]. Since the learner trajectory

τk = {H ℓ
i ,Ai}M

i=1 is sampled using π, cost function depends on policy. To compute the

gradient with regard to the policy, we deploy trust region policy optimization (TRPO) [25],

a policy gradient algorithm used in [24], to compute the gradient of K(θ).

5.3.3 LTF Manipulation in MIMO System

The adversary adds perturbation signals to LTF so that perturbed CSI is estimated

by the router as the sum of CSI and the adversarial example computed in Sec. 5.3.2. At

each subcarrier, manipulation on a single LTF at kth antenna distorts CSI estimated by

the router’s every antenna. If multiple antennas are present on the router, a change in

one LTF cannot induce arbitrary changes in multiple CSIs. To tackle this, we deploy a

perturbation signal that minimizes the distance between perturbed CSI and the sum of

CSI and the desired adversarial example.

For kth user device antenna, the adversary modifies LTF, xk
i j ∈ R, with an ad-

versarial example, β k
i j ∈ R. It aims to make original CSI, hk

i j ∈ RNRX to be inaccurately

estimated as hk
i j + āk

i j, where āk
i j ∈ RNRX represents an element of ¯A , the output of the

trained adversarial example generator. This element corresponds to ith timestamp, jth



Table 5.1. Dataset parameters

Channel
bandwidth (MHz) 20 {NTX, NRX} {1, 3}

No. experiment
participants 6 No. evaluation

days 8

CSI sampling
rate (Hz) 50 Carrier

frequency (GHz) 2.4

subcarrier, and kth transmitter antenna. The objective is represented as:

hk
i j(x

k
i j +β k

i j)/xk
i j = (hk

i j + āk
i j)⇒ hk

i jβ k
i j/xk

i j = āk
i j (5.8)

If NRX > 1, it is not always possible to find β k
i j which exactly satisfies (5.8). Instead, we

propose using β̄ k
i j, which minimizes the distance between the two terms in (5.8), defined

as:

β̄ k
i j = argmin

β k
i j

|hk
i jβ k

i j/xk
i j− āk

i j|= hk
i j · āk

i j/|hk
i j|2. (5.9)

Instead of the original LTF, xk
i j, the manipulated LTF, xk

i j + β̄ k
i j, is transmitted by

the user device antenna k.

5.4 Evaluation

For evaluation, we use the Wi-Fi HAR dataset [20], with details in Table 6.4.

Since NRX is 3, the perturbation signal minimizing the distance (5.9), β̄ k
i j, is added to

the LTF. The surrogate classifier and corresponding GAIL model are trained with the

dataset downsampled from 1 kHz, the original CSI sampling rate of the dataset, to 50 Hz.

This adjustment is designed to extend the time duration of GAIL input without altering

the input time sample length, ℓ. This downsampling approach is justified as it does not

compromise the performance of the trained models, since the sampling rate is above the

maximum frequency caused by human movement, which is 30 Hz at 2.4 GHz carrier fre-
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Figure 5.2. r values needed to degrade the accuracy of the Bi-LSTM-based target classifier
across varying levels when training and test data are collected from different environments.

quency. For the target classifier, we utilize a Bi-LSTM model whose structure is identical

to the surrogate.

5.4.1 Baseline schemes

The perturbation signal, β̄ k
i j, is added to the LTF transmitted by the user de-

vice in every baseline scheme except the white-box attack. To compare each scheme’s

performance of degrading target classifier, we test different average perturbation signal

amplitude ratios:

r = E[|β k
i j|/|xk

i j|] (5.10)

where the average is taken over i ∈ {1, · · · ,M}, j ∈ {1, · · · ,NSC}, and k ∈ {1, · · · ,NTX}.

White-box attack: White-box FGM (5.3) is computed with the target model fC,

instead of f ′C. To compute white-box FGM, the adversary should know the target classifier

structures, its weights, and future CSI.

Black-box attack: Black-box FGM Ĥ (5.3) is computed using the surrogate model

f ′C. The adversary needs to know the future CSI at the point of adding perturbation

signals.

Behavioral cloning: Behavioral cloning [26] is an IL algorithm used for real-time ad-



versarial attack. Similar to GAIL, black-box FGM is computed with the training dataset

of the surrogate model. State-action pairs, (H ℓ
i ,Ai), are deployed as input features and

output labels. In behavioral cloning, a Bi-LSTM classifier function fBC(H
ℓ

i ) is trained

in a supervised learning manner using those pairs. The input length is set to ℓ= 5, as in

GAIL. Behavioral cloning works without information on the target classifier, future CSI,

or action duration.

Random jamming: Random jamming, noise elements sampled with a Gaussian

distribution, is evaluated. This method requires no prior knowledge of the target classifier.

5.4.2 Evaluation Results

Figure 5.2 presents the results of the proposed algorithm and the baseline attack

schemes with the perturbation signal amplitude ratios, r. Here, the same Bi-LSTM-based

structure and sampling rate are used for the surrogate and target model. Across all the

datasets, white-box FGM yields the lowest accuracy, while random jamming results in the

highest accuracy for the same amplitude of perturbation signals. With similar r, GAIL

and behavioral cloning achieve performance degradation equivalent to that of black-box

FGM. This is promising for GAIL and behavioral cloning as they require less information

compared to black-box FGM.

The efficient perturbation signals effectively degrade the target classifier while min-

imizing the communication link impairment. Even when r values are the same, variations

in the perturbation signal amplitude distribution can have differing effects on the link

performance. Table 5.2 presents the ratio of LTF where the amplitude ratio, |β k
i j|/|xk

i j|,

exceeds a threshold. r is set for the target degraded accuracy specified in each column.

The threshold is set to 5 dB (0.301), the minimum SNR for data transfer over a wireless

link [8]. If the |β k
i j|/|xk

i j| surpasses this threshold, data transmission becomes impossible

even under ideal channel conditions. The ratio of LTF where perturbation signal pro-

portion is larger than 5 dB is comparable with black-box GAIL to degrade the classifier



Table 5.2. The ratio of LTF symbols larger than the threshold with target degraded
accuracy.

Target accuracy 90% 50% 25%
GAIL 1.0% 12.8% 52.5%

White-box FGM 0.0% 2.5% 9.5%
Black-box FGM 0.7% 12.0% 20.7%

Behavioral cloning 0.8% 26.5% 85.5%

performance below 90% or 50%. To make classifier accuracy below 25%, the required

ratio of LTF where communication is unavailable of GAIL is 48% of that of behavioral

cloning.

5.5 Conclusion

The real-time adversarial attack against Wi-Fi-based HAR is studied. We deploy

the emblematic IL algorithm, GAIL, to build a perturbation signal generator. With

a Bi-LSTM-based surrogate classifier, our GAIL-based algorithm degrades the classifier

accuracy to 50% with 0.5 dB higher than the other schemes based on impractical assump-

tions on average. This is achieved with only 12.8% of the resources distorted to the

extent that data communication is impossible, only 48% of the comparison scheme under

the same assumptions.
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Chapter 6

Remote Adversarial Attacks against Wi-Fi-
based HAR for Privacy Protection

6.1 Introduction

As Wi-Fi routers become prevalent indoors, Wi-Fi sensing with Wi-Fi channel state

information (CSI) has been employed for diverse purposes, including indoor localization [1,

2], radio fingerprinting [3, 4], and human mesh construction with millimeter-wave Wi-

Fi [5]. One application of Wi-Fi sensing is human activity recognition (HAR) [6, 7], which

aims to identify human activities using sequences of Wi-Fi CSI. Data-driven approaches

for HAR have been introduced in the classification framework [8, 9] due to the randomness

of human bodies and activities. The capacity of these methods to discern human activities

from sequences of Wi-Fi CSI highlights significant privacy implications. We address the

privacy concerns in HAR by proposing a method to prevent human activities from being

detected by HAR classifiers. The proposed method adds perturbation signals into the

signals transmitted from the user device to the router to degrade the classifier’s accuracy.

Our study focuses on a scenario depicted in Fig. 6.1, involving a room with a Wi-Fi

router and a user device that transmits and receives signals, along with a human, whose

movements cause variations in CSI over time. A target Wi-Fi HAR classifier operates

on a Wi-Fi router that receives signals from user devices and identifies human activities

using CSI estimated by the router. The router estimates CSI using the long training field

98
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Figure 6.1. The scenario attacking Wi-Fi-based HAR by adding perturbation signals to
Wi-Fi preamble from the user side.

(LTF) transmitted by the user device, as specified in Wi-Fi standards [?]. A perturbation

signal generator on the user device modifies the LTF to degrade the HAR classifier with

little impact on communication link quality.

Previous works on compromising Wi-Fi HAR classifier [10, 11] have explored the

manipulation of HAR classifier inputs, adapting adversarial attacks originally designed

for DL-based image classifiers. These approaches effectively disrupt HAR classifiers using

the fast gradient method (FGM) [12]. However, such methods require the adversary to

directly manipulate the CSI estimated at Wi-Fi routers, making them impractical since

users might not be able to control these router-side measurements. In contrast, our

approach is more practical since users modify their own transmitted signals to protect

their privacy.

In adding perturbation signals to the HAR classifier input, we address two chal-

lenges to generating perturbation signals.

1. Unknown target HAR classifier: The adversary lacks information about the

structure or training data of the target HAR classifier. The adversary constructs a surro-

gate HAR classifier on the same activities as the target classifier. The adversarial attacks

designed for the surrogate HAR can transfer to the original model as well [13]—known as

black-box attack. Moreover, in a remote attack against Wi-Fi-based HAR, the adversary

does not know the CSI sequence sampling rate or which portion of the CSI sequence is

used as input. Existing HAR classifiers take sliding windows of the CSI sequence for the

entire activity duration [14, 15, 16]. However, the adversary at the user device cannot syn-



chronize the input sequence with the target classifier due to unknown start time, sequence

length, and sampling rate.

2. Unknown future CSI: In contrast with attacks on an image classifier, in the

remote attack on Wi-Fi HAR, perturbation signals should be computed only with the CSI

sequence estimated up to the point when the LTF is manipulated. Future CSI sequences,

which could be used as inputs to the classifier, are unknown at the time of the attack.

This paper defines the real-time adversarial attack as generating signals degrading the

target model with CSI available up to the point when LTF is manipulated [17].

For unknown future CSIs, reinforcement learning (RL)-based approaches find op-

timal decisions based on CSI estimated up to the current time. In RL, the decision

performance is evaluated using the SIreward function which the agent maximizes with

its actions. The reward function represents the degraded accuracy of the target HAR.

Estimated CSI up to the current time and corresponding adversarial examples against

the HAR classifier form a state-action pair. In RL, as REINFORCE [18], the learning

agent interacts with the reward function for feedback on its actions. However, the adver-

sary only determines the accuracy of the target classifier when processing the entire input.

Imitation learning (IL) provides a solution to this limitation. The IL is trained only with

expert trajectories, the sequences of state-action pairs, and not reward function values

as in RL. The IL is trained to imitate the state-action pairs of experts, which achieve

high rewards. Here, estimated CSI and pre-computed black-box FGM serve as expert

state-action pairs at each time step.

The main contributions are summarized as follows:

Real-time adversarial attack against Wi-Fi-based HAR: We present a real-time

adversarial attack against Wi-Fi HAR, which builds perturbation signals using only past

CSI estimates. We utilize GAIL, an RL algorithm, to train the adversarial example

generator.

Attacking scheme with limited knowledge available to the adversary: Our algo-



rithm does not require information on the target HAR structure or activity duration.

Moreover, the adversary is not synchronized with the target model’s input to generate

perturbation signals.

Evaluation with diverse scenarios: Our GAIL-based real-time adversarial attack

algorithm is evaluated on three Wi-Fi HAR datasets [14, 19, 20], collected across seven

environments. We evaluate our attack algorithm for six target models, including DL-based

classifiers and random forest (RF) [21].

6.2 Background

6.2.1 Wi-Fi-based HAR

Wi-Fi-based HAR classifier takes a sequence of CSI matrices as an input and

outputs the probability of each activity. Specifically, the orthogonal frequency-division

multiplexing (OFDM)-MIMO system for ith timestamp and jth subcarrier with the trans-

mitted and received signal vector, xi j ∈ CNTX and yi j ∈ CNRX , is modeled as:

yi j = Hi jxi j +ni j (6.1)

where i ∈ {1, · · · ,M}, j ∈ {1, · · · ,NSC}, and M is the length of human activity in the time

sample unit. Hi j ∈CNRX×NTX and ni j ∈CNRX represent the CSI matrix and the noise vector

of ith subcarrier and jth timestamp. A receiver (RX) uses apriori known knowledge on

LTF (xi j) for channel estimation (Hi j) using the received signals (yi j). In this work, we

denote the user device as the transmitter (TX) and the router as the receiver (RX).

LSTM is used for a neural network model of the HAR classifier in other Wi-Fi

HAR studies [14, 15, 22, 23]. LSTM HAR classifier, fC, takes as input a sequence of

CSI matrices, H ∈ RM×NSC×NRX×NTX ≜ {|Hi j|}1≤i≤M,1≤ j≤NSC , where |Hi j| is the matrix

containing the amplitudes of Hi j’s elements. The classifier outputs the vector of each

element that represents the probability of each activity. Since different activities take



different durations, the time length of each input sequence is not fixed. The capability

of LSTM to take inputs of flexible length is useful for processing CSI data of different

lengths. The exact bidirectional-LSTM (Bi-LSTM)-based model used as the surrogate

model is explained in detail in Sec. 6.4.

6.2.2 Adversarial Attacks against Neural Networks

FGM [24] computes adversarial examples that efficiently degrade the neural net-

work. With the input of neural network X, FGM is:

Ẋ = X+α∇XL ( f (X),z) (6.2)

where Ẋ and z ∈RNC are a perturbed input and the one-hot encoded label corresponding

to the input X, respectively. α is a parameter tuning the amplitude of FGM attack, L

the loss function of f , and NC the number of classes which f classifies.

When the adversary lacks access to the target classifier information, the FGM (6.2)

cannot compute adversarial examples. This scenario, known as a black-box attack [13],

occurs when the adversary has limited knowledge of the target model, including its net-

work weights, architecture, training data labels, or training dataset. Table 6.1 describes

the black-box attack scenario considered in this work. The adversary employs the surro-

gate model, f ′(X), instead of f (X), to generate the adversarial examples using FGM (6.2).

We specifically investigate cases where the adversary knows training data labels since the

adversary on the user device is likely to know user activity types while lacking all other

information detailed in Table 6.1. We evaluate scenarios where the surrogate and target

models have both identical and different network structures.



6.2.3 Imitation Learning

We propose RL architecture to address real-time adversarial attack problems. In

real-time adversarial attack scenarios, adversarial examples must be computed at each

time step using the sequence of CSI estimated up to that point. This challenge aligns with

the RL paradigm, where actions are determined based on observed states and influence

subsequent state transitions. The RL problem is represented with a Markov decision

process (MDP), MDP(S,A,T,R,γ):

• S: A set of possible states

• A: A set of possible actions

• T : S×A→ S: State transition probability distribution

• R : S×A×S→ R: Reward function

• γ : Discount factor for future rewards.

A policy function π(ai|si) : S×A→ [0,1] defines the learning agent’s decision-making strat-

egy, specifying the probability of selection action ai given state si at each time step. Given

MDP(S,A,T,R,γ), RL aims to find the optimal policy function π which maximizes the

cumulative reward function over a trajectory, τ = {(s1,a1),(s2,a2), · · ·, (sM,aM)}, where a

trajectory represents a sequence of state-action pairs, (si,ai).

IL is a specialized form of RL, where a training agent learns to replicate expert

behavior solely from given expert trajectories. Behavioral cloning [25] treats it as a super-

vised learning task where states serve as inputs and actions as labels. Behavioral cloning

is prone to the environment not encountered during the training, called covariate shift [26].

Inverse RL (IRL) [27] also addresses the IL problem by learning the policy and the reward

function, where the latter assigns higher scores to the trajectories similar to expert be-

havior. However, IRL is computationally expensive, as it requires executing complete RL



optimization at each time step. Apprenticeship learning is a computationally efficient al-

ternative to IRL [28]. While it learns both reward function and expert-mimicking policies

with reasonable computational cost, the class of functions it can learn is restrictive [29].

6.2.4 Related Work

Adversarial attack against Wi-Fi HAR: Designing perturbation signals to degrade

Wi-Fi-based HAR for privacy protection has been studied [11, 30, 31, 32, 33, 34, 35,

36]. Ref. [30, 31] suggest modifying the HAR classifier’s loss function to prevent the

detection of specific activities. The approach in [11] presents a method that identifies

and perturbs critical subcarriers and time steps in the input sequence that significantly

influence classifier accuracy. However, these attacking scenarios in [30, 31, 11] assume the

adversary has complete access to both the target HAR classifier and the exact inputs of

the classifier. In contrast, our algorithm works only with CSI which the adversary can

estimate.

The work [32] proposes Zigbee-like perturbation signals using statistics of pre-

observed CSI to avoid denoising schemes. The study [34] develops an algorithm to deter-

mine jamming signal power that disrupts Wi-Fi HAR while evading detection under the

Wi-Fi collision avoidance protocol. Black-box and universal adversarial attacks against

HAR with mmWave radar are presented in [35]. WiAdv [33] introduces a targeted adver-

sarial attack against Wi-Fi-based gesture recognition where perturbation signals depend

solely on the target gesture [37]. Li et al. [36] explored the Carlini & Wagner (C&W)

attack scheme to compromise Wi-Fi HAR by adding perturbation signals to the Wi-Fi

preamble. While previous approaches [32, 33, 34, 35, 36] rely on pre-observed environment

statistics, with the works [32, 33, 36] limited to single-antenna scenarios, our GAIL-based

method generates perturbation signals using real-time CSI while considering practical

multi-antenna receiver constraints.

Remote adversarial attacks against the neural network for wireless communications:



Several studies address remote adversarial attacks on neural network-based wireless sys-

tems [38, 39, 40, 41, 42]. These works address Wi-Fi-based indoor localization [38], device

identification [39], and vulnerabilities in DL-based decoders [40, 41, 42]. Universal per-

turbation signals are proposed for modulation classification [42] and autoencoder-based

decoders [40], while [41] presents a general attack scheme for DL-based decoders. How-

ever, some approaches [39, 40, 42] assume knowledge of input CSI sequence boundaries,

which is not impractical in our scenario. Others [38, 41] only consider CSI inputs for a

single OFDM symbol, unlike HAR classifiers that process variable-length sequences.

Real-time adversarial attack against neural networks: A real-time adversarial at-

tack using behavioral cloning-based IL against neural networks processing time-series

inputs is introduced in [17]. While universal perturbation signals [43] can be computed

using pre-observed data, their input-invariant nature makes them unsuitable to attack

HAR classifiers whose input length is unknown. Further studies on universal attacks for

time-series neural networks are presented in [44, 45], with [44] proposing perturbation

signals for audio inputs without needing synchronization. The predictive attack in [46]

develops a neural network that both predicts upcoming audio streams and generates ef-

fective perturbations for these predictions.

6.3 System Objective

We develop an adversary at the user device that generates perturbation signals to

degrade the accuracy of the HAR classifier at the Wi-Fi router as illustrated in Fig. 6.1.

The adversary determines perturbation signals added to the LTF transmitted by the

user device, causing the router to estimate CSI as the sum of unperturbed CSI and the

adversarial examples against the target classifier.

Unlike approaches where the adversary is located at the router [10, 11, 30, 31], our

system places the adversary at the user device. Compared to manipulation of classifier
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Figure 6.3. Real-time adversarial attack scenario.

inputs at the router, manipulation of LTF transmitted by the user device is more practical

since users can directly control their signal transmission for privacy. While manipulating

the inputs at the router could be feasible with open-source Wi-Fi router drivers, most

router vendors (e.g., Broadcom [47]) adopt proprietary drivers. Although customizing

Wi-Fi operations of user devices (e.g., in smartphones) is challenging, smartphone vendors

could incorporate our algorithm into future firmware releases for their customers’ privacy.

Fig. 6.2 illustrates the scenario where the adversary at the Wi-Fi router computes

adversarial examples with knowledge of the entire-length CSI input sequence. Conven-

tional adversarial example generation algorithms from other domains like image classifi-

cation can be applied in this setting. However, as previously discussed, this approach is



impractical since it requires control over router-side CSI.

In contrast, our real-time approach, described in Fig. 6.3, places the adversary

at the user device with control over transmitted signals. At time step i, the adversary

computes perturbation signals, Bi ∈ RNSC×NTX , using only the CSI estimated at the user

device up to the moment before LTF manipulation, Hi ≜ [H0,H1, · · · ,Hi−1], as it cannot

utilize future CSI which may serve as classifier input. Note that Bi has no RX antenna

dimension since each TX antenna transmits one single LTF to all RX antennas. For

each time step i, subcarrier j, and kth antenna of the user device, the adversary adds

perturbation β k
i j ≜ [Bi] jk ∈R to LTF, xk

i j ∈R. Using the known LTF, the router estimates

the CSI for user device antenna k as hk
i j ∈CNRX . This estimation is distorted to h̄k

i j ∈CNRX

as follows:

h̄k
i j = hk

i j(x
k
i j +β k

i j)/xk
i j = hk

i j(1+β k
i j/xk

i j). (6.3)

The objective of B ≜ [B0,B1, · · · ,BM−1] ∈ RM×NSC×NTX is to minimize the accuracy of

the target HAR classifier, fC:

arg min
B=(β k

i j)
E{H , l}

[
1({ fC(H̄ )}= l)

]
, (6.4)

where H̄ ∈ CM×NSC×NRX×NTX contain elements h̄k
i j and l is the true activity label of CSI

sequence H .

We assume that the user device and router estimate CSI at least once each pertur-

bation signal generation period, and that the CSI estimated by the user device matches

that estimated by a Wi-Fi router within this period. To maintain these assumptions,

we limit the maximum sampling period to 33.3 ms, corresponding to the channel coher-

ence time of 2.4 GHz Wi-Fi under human movement [48]. Channel reciprocity ensured

through Wi-Fi’s time division duplex guarantees that CSI estimated by two devices re-
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mains identical. Our maximum perturbation rate of 50 Hz is well within the capability of

commercial Wi-Fi adapters, which support CSI sampling up to 4 kHz [49], demonstrating

the practicality of our approach.

6.4 Perturbation Signal Generator

The proposed perturbation signal generator is illustrated in Fig. 6.4. First, the

adversary builds a surrogate model to compute adversarial examples following black-box

attack (Sec. 6.4.1). Using this surrogate model, black-box FGM computes adversarial

examples, which are then paired with the CSI estimated by the user device up to the time

step of computation. Using the GAIL algorithm, the adversary is trained to map the

CSI sequences to corresponding adversarial examples by imitating the black-box FGM
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(Sec. 6.4.2). Finally, considering MIMO system constraints, the perturbation signals

added to LTF are computed using the output of the trained adversarial example generator

(Sec. 6.4.3).

6.4.1 Black-box FGM

Since the target HAR classifier is unknown to the adversary, it computes the

examples using the black-box attack approach. A surrogate HAR classifier is trained

using available CSI data, with its network structure consisting of one LSTM layer follwed

by one fully-connected layer. Specifically, we adopt a Bi-LSTM layer, commonly used

in Wi-Fi-based HAR classifiers [14, 15, 16, 20, 21, 50, 51], as the network model of the

surrogate LSTM classifier, f ′C.

The surrogate HAR consists of one Bi-LSTM layer followed by one FC layer, as

illustrated in Fig. 6.5. Bi-LSTM processes input sequences in both forward and backward

directions, enabling the use of both past and future context, unlike standard LSTM which

only uses past information. The Bi-LSTM layer comprises a forward and a backward

layer, each consisting of multiple LSTM cells (shown as the green or blue solid rectangles

in Fig. 6.5). Each cell processes CSI matrices over subcarriers, H j ≜ {Hi j}1≤i≤NSC . In the

forward layer, hidden and cell states are updated with H j and passed to the cell with the

next time step input. In the backward layer, the hidden and cell states are propagated to

the cell with the input at the previous time step. The final hidden states from both the



Table 6.1. Available information in white-box/black-box attack scenarios

Information White-box Black-box
Neural network

structure O O/X

Weights of
neural network O X

Training data O X
Label of

training data O O

Table 6.2. Surrogate Bi-LSTM HAR classifier model parameters

Parameter Value Parameter Value
LSTM hidden

layer dimension 200 Learning
rate 1×10−5

Loss function Cross-
entropy Epoch 400

forward and backward layers serve as input for the remaining network, which outputs the

activity classification probabilities.

Since the target model is inaccessible to the adversary, black-box FGM computes
ˆA ∈ RM×NSC×NRX×NTX using a surrogate model:

Ĥ = H +α∇H L
(

f ′C(H ),y
)
= H + ˆA , (6.5)

here f in (6.2) is replaced with the surrogate model f ′C. The performance of these adver-

sarial examples against different target models is evaluated in Sec. 4.4.

6.4.2 GAIL-based Real-time Adversarial Example Generator

The real-time adversarial example generator aims to compute adversarial examples

effectively degrading the target classifier at time step i, Ai ∈RNSC×NRX×NTX , only using the



Table 6.3. GAIL network parameters

Parameter Value Parameter Value
Epochs 4000 Dw learning rate 2×10−5

Input
length (ℓ) 5 Hidden layer

dimension 200

εK , επ 0.01 No. hidden layers 4
Discount
factor (γ) 0.99 Policy regularizer

coefficient (λG) 0.01

sequence of CSI estimated up to time step i,

H ℓ
i ≜ [Hi−ℓ,Hi−ℓ+1, · · · ,Hi−1] ∈ Rℓ×NSC×NRX×NTX , (6.6)

where ℓ denotes the input sequence length. The generator’s objective is to find the policy

function π(Ai|H ℓ
i ) that satisfies

arg min
π(Ai|H ℓ

i )
E{H , l}

[
1({ fC(H + ¯A )}= l)

]
where ¯A ≜ {Āi}M

i=1 ∼ π(Ai|H ℓ
i ).

(6.7)

Our goal is to train the generator, π, to imitate black-box FGM adversarial examples,
ˆA (6.5), which effectively degrade the target classifier. The adversary computes ˆA using

the available CSI sequence and the surrogate model f ′C, creating expert trajectories by

pairing Âi with its corresponding H ℓ
i .

We employ GAIL [52], an IL algorithm that learns from expert trajectories, {H ℓ
i ,

Âi}M
i=1. It easily generalizes to unseen environments with practical computational com-

plexity [52]. GAIL’s structure resembles a generative adversarial network (GAN), which

comprises two networks trained on expert trajectories, {H ℓ
i , Âi}M

i=1, and learner trajec-

tories, {H ℓ
i ,Ai}M

i=1|Ai∼πθ (·|H ℓ
i ). Like GAN, the GAIL network comprises a discriminator

(Dw) and a policy function (πθ ). The discriminator in GAIL is trained to distinguish



expert and learner trajectories by maximizing the discriminator function evaluated in

the expert trajectories, Dw(H ℓ
i , Âi), and minimizing the values evaluated in the learner

trajectories, Dw((H ℓ
i ,Ai)|Ai∼πθ (·|H ℓ

i )). The policy function πθ is optimized to increase

the discriminator’s output on learner trajectories. Taken together, the complete GAIL

objective is:
min
πθ

max
Dw

E(H ℓ
i ,Ai)∼πθ (Ai|H ℓ

i )[log(Dw(H
ℓ

i ,Ai))]+

E(H ℓ
i ,Âi)

[log(1−Dw(H
ℓ

i , Âi)]−λGH(π).
(6.8)

Using log(Dw) instead of Dw helps to address function type constraints [52], and

the entropy of policy function H(πθ ) serves as a regularizer. Detailed optimization steps

are presented in Algorithm 4.

Algorithm 4: GAIL for real-time adversarial attacks against HAR
Data: Expert trajectories τE = {H ℓ

i , Âi} where i = {1,2, · · · ,M}, initial
parameters for discriminator function w0 and policy function θ0

1 for k = 0,1, · · · ,K−1 do
2 Sample trajectories with the policy of a learner τk ∼ πθk(Ai|H ℓ

i );
3 Update discriminator parameters to increase the objective:

wk+1← wk +∇wkJ(wk) (6.9)
4 Update policy function parameters to decrease the objective:

θk+1← θk−∇θkK(θk) (6.10)
5 end

Output: Trained policy network which can generate real-time adversarial
attack πθK(Ai|H ℓ

i )

In each iteration in Algorithm 4, the learner trajectories τ = {H ℓ
i ,Ai} are sampled

from CSI data available to the user device and the corresponding adversarial examples Ai

generated by the policy function, πθk(·|H ℓ
i ). The discriminator and policy functions are

alternately optimized using these learner and expert trajectories. In line 3, the discrimi-

nator function parameters, w, are updated using the gradient:

∇wJ(w) = E(H ℓ
i ,Ai)∼πθk

[∇w log(Dw(H
ℓ

i ,Ai))]

+E(H ℓ
i ,Âi)

[∇w log(1−Dw(H
ℓ

i , Âi))].

(6.9)



Line 4 describes the policy gradient, which minimizes the cost function evaluated on

learner trajectories while maximizing the regularizer,

∇θ K(θ) = Eτi [∇θ logπθ (Ai|H ℓ
i )C(H ℓ

i ,Ai)]−λG∇θ H(πθ ) (6.10)

where cost function C(H ℓ
i ,Ai) =Eτk [log(Dwi+1(H

ℓ
i ,Ai))]. Since the cost function depends

on policy through the sampled learner trajectory τk = {H ℓ
i ,Ai}M

i=1, computing ∇θ K(θ)

non-trivial. We address this using trust region policy optimization (TRPO) rule [53], with

detailed procedures presented in Appendix 6.7.

6.4.3 LTF Manipulation in MIMO System

The adversary manipulates LTF by adding perturbation signals to make the router

estimate perturbed CSI as the sum of the original CSI and the computed adversarial ex-

ample. However, when the router has multiple antennas, manipulating a single LTF from

kth transmitter antenna affects CSI estimation at all receiver antennas. This makes it im-

possible to achieve arbitrary changes in multiple CSIs through a single LTF modification.

To address this limitation, we propose perturbation signals that minimize the distance

between perturbed CSI and the sum of CSI and the desired adversarial example.

For kth antenna of the transmitter, the adversary adds perturbation, β k
i j ∈ R, to

LTF, xk
i j ∈ R. The goal is to make the router misestimate the original CSI, hk

i j ∈ RNRX as

hk
i j + āk

i j, where āk
i j ∈RNRX is the corresponding element of the desired adversarial example,

¯A , at ith timestamp, jth subcarrier, and kth transmitter antenna. This relationship can

be represented as:

hk
i j(x

k
i j +β k

i j)/xk
i j = (hk

i j + āk
i j)⇒ āk

i j = hk
i jβ k

i j/xk
i j (6.11)

When NRX > 1, an exact solution for β k
i j may not exist. Therefore, we propose using
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Figure 6.6. Data collection environments for (a) TAR, (b)-(d) JAR, and (e)-(g) WiAR.

β̄ k
i j that minimizes the distance between manipulated CSI and the desired adversarial

example:

β̄ k
i j = argmin

β k
i j

|hk
i jβ k

i j/xk
i j− āk

i j|= hk
i j · āk

i j/||hk
i j||2. (6.12)

The user device antenna k then transmits the manipulated LTF, xk
i j + β̄ k

i j, instead

of the original xk
i j.

6.5 Evaluation

6.5.1 Dataset and Target Models

We evaluate our algorithm using use publicly accessible datasets, TAR [14], JAR [19],

WiAR [20]. Table 6.4 summarizes the dataset details, and Fig. 6.6 illustrates data collection

environments, with floor plans sourced from the original dataset documents [14, 19, 20].

WiAR and JAR are collected across three different environments including one non-line-of-



Table 6.4. Dataset parameters

Dataset TAR JAR WiAR
Channel bandwidth (MHz) 20 20 20

{NTX, NRX} {1, 3} {1, 3} {1, 3}
No. activities 6 6 16

No. environments 1 3 3
No. evaluation days 8 1 1

No. experiment participants 6 30 10
Sampling rate (Hz) 1000 320 30

Table 6.5. Wi-Fi HAR target classifiers

HAR
classifier Dataset Input

features
DL

structure
Input
length

[14] TAR CSI LSTM 2 s

[15] TAR CSI LSTM+
Attention 2 s

[16] JAR CSI CNN+
LSTM 1.6 s

[21] JAR Statistical
features RF 1.6 s

[54] WiAR STFT CNN Variable



sight (NLOS) scenario for JAR. TAR spans eight different days, allowing us to evaluate our

algorithm under both spatial and temporal diversities. Since all datasets use NTX = 1 and

NRX = 3, we deploy β̄ 1
i j (6.12) to manipulate LTF transmitted from a single transmitter

antenna. For WiAR, we evaluate the same five activities tested in [11].

Our evaluation includes various target HAR models shown in Table 6.5. We assess

GAIL-based attacks against diverse architectures (CNN and Attention models) and RF

models. We also evaluate Bi-LSTM classifiers matching our surrogate model’s structure.

In addition to those taking raw CSI as inputs, the classifiers that take statistical features

including standard deviation and SNR [21] or short-time Fourier transform (STFT) [54]

are tested.

While existing Wi-Fi-based HAR classifiers use fixed-length sliding windows of

CSI sequences as inputs, the adversary likely lacks knowledge of the target model’s exact

starting window points. Therefore, our surrogate model is trained on a full-length activity

sequence, leveraging Bi-LSTM’s capability to handle variable-length inputs. Both FGM

and GAIL computations use these variable-length inputs, accordingly. The perturbation

signals generated with this surrogate against the targets taking fixed-length inputs are

also tested. In these tests, we evaluate the sliding window of the sum of the CSI matrix

sequence and computed perturbation signals. This work represents the first study of

HAR degradation without sliding window information. We additionally evaluate both

the target models with variable-length inputs matching our surrogate’s structure.

For TAR and JAR, we train the surrogate classifier and GAIL model on the down-

sampled dataset. The downsampling is intended to accommodate a longer time duration

coverage while maintaining the same input size of time samples. While increasing ℓ could

extend GAIL’s input time length, it increases model complexity. The downsampling

factor should balance surrogate classifier accuracy and GAIL model complexity. Given

that human movement in the 2.4GHz band produces maximum Doppler frequencies up

to 30 Hz [48], downsampling above 30 Hz should preserve activity classification capabil-



ity. We select 50 Hz and 40 Hz as sampling rates for surrogate model input trained on

TAR and JAR, respectively. The surrogate model accuracy with different sampling rates

is evaluated to ensure the surrogate works well with the chosen sampling rates.

6.5.2 Baseline Schemes

This subsection presents the baseline schemes for performance comparison. Like

our proposed generator, all schemes except white-box FGM add perturbation signal β̄ k
i j to

the LTF transmitted by the user device. To compare each scheme’s degrading efficiency,

we evaluate different average perturbation signal amplitude ratios:

r = E[|β k
i j|/|xk

i j|] (6.13)

averaged over i ∈ {1, · · · ,M}, j ∈ {1, · · · ,NSC}, and k ∈ {1, · · · ,NTX}.

White-box attack: The adversary knows the classifier structure, weights, and fu-

ture CSI. White-box FGM (6.2) is computed using the target model fC. We evaluate two

scenarios: direct manipulation of classifier input and LTF manipulation. These scenarios

are compared to assess how degradation efficiency varies with the MIMO constraint (6.12).

The scenarios are referred to as white-box FGM and white-box, MIMO, respectively, in

Sec. 6.5.3.

Black-box attack: Black-box FGM Ĥ (6.5) uses the surrogate model f ′C. We eval-

uate scenarios where the target model and surrogate models have identical and different

structures. Both assume the knowledge of future CSI when adding perturbation signals.

Universal attack: Universal FGM ĤU averages black-box FGM Ĥ computed on

surrogate model’s training data of each action [43]. Due to varying action durations, we

upsample all black-box FGMs to the longest duration per action before averaging. The

averaged examples are then resampled to match specific action lengths and processed for

LTF perturbation. This approach does not require future CSI knowledge but requires
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Figure 6.8. Bi-LSTM-based surrogate confusion matrices evaluated on datasets: (b) TAR,
(c) JAR, and (d) WiAR.

action duration knowledge beforehand.

Behavioral cloning: This IL algorithm [25] is applicable to real-time adversarial

attack [17]. Like GAIL, it uses black-box FGM computed on the surrogate training data,

with state-action pairs, (H ℓ
i ,Ai), as input features and labels. A Bi-LSTM-based classifier

trains the function fBC(H
ℓ

i ) in a supervised learning manner. We use downsampled

training data and ℓ = 5 for a fair comparison, matching GAIL’s configuration. As in

GAIL, behavioral cloning operates without knowledge of the target classifier, future CSI,

or action duration.

Random jamming: We evaluate Gaussian-distributed noise jamming, which re-

quires no prior knowledge.
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Figure 6.9. GAIL and baseline remote attack scheme results on Bi-LSTM-based target
classifier with data: (a) TAR, (b) JAR, and (c) WiAR.

6.5.3 Evaluation Results
Training surrogate model

The surrogate model’s accuracy under different downsampling rates is presented

in Fig. 6.7. The surrogate accuracy deteriorates when the sampling rate is below 10 Hz,

confirming that our chosen rates, 50 Hz for TAR and 80 Hz for JAR, maintain good accu-

racy. Fig. 6.8a–6.8c presents the surrogate accuracy trained on each downsample dataset.

These models 93% average surrogate accuracy across all three datasets (all surrogate ac-

curacies >86% per activity), demonstrating that the Bi-LSTM-based structure serves as

a surrogate for computing black-box FGM and GAIL.

Performance to attack Wi-Fi-based HAR classifier

The target classifier accuracy with FGMs under diverse attack schemes and our

proposed algorithm is given in Fig. 6.9. The target model employs an identical Bi-LSTM-

based architecture and sampling rate as the surrogate model. Across all the datasets,



-10 -5 0
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

No attack
GAIL
Black-box FGM
Universal FGM
Behavioral cloning
Random jamming

(a)

-10 -5 0
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(b)

-10 -7.5 -5 -2.5 0
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(c)

-10 -7.5 -5 -2.5 0
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(d)

-10 -7.5 -5 -2.5 0
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(e)

Figure 6.10. GAIL and baseline attack scheme results on different target classifiers with
data: (a, b) TAR, (c, d) JAR, and (e) WiAR.

white-box FGM yields the lowest accuracy, while random jamming results in the highest

accuracy at equivalent perturbation signal amplitudes. This suggests that detailed knowl-

edge of the target model, including its weights, significantly impacts attack effectiveness.

White-box MIMO demonstrates lower efficiency than white-box FGM and performs sim-

ilarly to black-box FGM across all datasets. Beyond white-box FGM and random jam-

ming, no clear performance hierarchy emerges among the attack schemes. While GAIL

outperforms all comparison schemes except white-box FGM on the TAR dataset, it shows

comparable performance on the JAR and WiAR datasets. Nonetheless, these results are

promising for GAIL and behavioral cloning since both schemes require less information

than other comparison schemes.

Figure 6.10 presents the attack performance of GAIL and the baseline schemes

against the target models with architectures different from the surrogate model. GAIL
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Figure 6.11. r values needed to degrade the accuracy of the Bi-LSTM-based target clas-
sifier across varying levels when training and test data are collected from different envi-
ronments using the JAR dataset.

Table 6.6. Ratio (%) of LTF symbols larger than the threshold with degraded accuracy
in TAR dataset.

Degraded accuracy 90% 50% 25%
GAIL 1.0 12.8 52.5

White-box FGM 0.0 2.5 9.5
Black-box FGM 0.7 12.0 20.7
Universal FGM 1.1 16.2 24.7

Behavioral cloning 0.8 26.5 85.5

consistently outperforms behavioral cloning across every dataset and r values. Among

all the attack schemes, GAIL requires the smallest r to degrade the accuracy of certain

target models [14, 15] to 50%, demonstrating our generator’s effectiveness in producing

perturbation signals that compromise diverse target models. When targeting the non-DL

model [21] and STFT feature-based model [54], all the baseline schemes show minimal per-

formance improvement over random jamming, with universal FGM performing worse than

random jamming against the model [54]. However, GAIL matches the baseline schemes’

performance of against the model [21] and outperforms them against the model [54].
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Figure 6.12. Average perturbation signal amplitude ratios ri over time of one ”walk” data
in TAR dataset when the target classifier accuracy is degraded to (a) 90%, (b) 50%, and
(b) 25%.



Results on unseen environments.

Fig. 6.11 presents the perturbation signal amplitude ratios, r, needed to degrade

the target classifier accuracy to 90% and 50% when the training and test environments

differ on JAR dataset. The surrogate model is trained on line-of-sight (LOS) data with TX

and RX configurations in Figs. 6.6b and 6.6c. Testing is conducted in a non-line-of-sight

(NLOS) environment, as shown in Fig. 6.6d. The target model, trained on data from the

test environment, achieves 95.2% accuracy without perturbation.

GAIL degrades the target classifier accuracy to 90% and 50% using r values com-

parable to black-box FGM and universal FGM. In contrast, behavioral cloning requires

larger r to reach the same accuracy level. Notably, when degrading accuracy to 50%, be-

havioral cloning requires perturbation signal amplitude ratios similar to random jamming,

highlighting poor generalization to unseen environments. In contrast, GAIL maintains

robust degrading accuracy in unseen environments due to its objective function design

and regularization.

Impact on Communication Link

The perturbation signal aims to degrade the classifier while minimizing interference

with the communication link. Even with the same r, different distributions of perturbation

signal amplitudes can produce varying effects on the link. Concentrating the power of the

perturbation signals on specific time steps and subcarriers can minimize the impact on

the communication link.

To analyze the temporal distribution of perturbation signal power, we compute the

average ratios between the perturbation signal and LTF amplitudes at each time step:

ri =
1

NTX×NSC

NSC

∑
j=1

NTX

∑
k=1

|β k
i j|
|xk

i j|
. (6.14)

Figure 6.12 illustrates ri over time for one “walk” activity data in TAR dataset with r values



set to degrade the target classifier accuracy to 90%, 50%, and 25%. Each scheme exhibits

distinct peaks, particularly at time steps 130–150 and 550–600. Behavioral cloning and

GAIL demonstrate flatter and higher floor amplitude than black-box and universal FGM.

Black-box and universal FGM compute adversarial examples by simultaneously processing

the entire length’s input, allowing the adversary to concentrate power on critical time steps

that heavily impact classifier accuracy, as shown by the peaks. In contrast, behavioral

cloning and GAIL process only the past five steps and generate output for the current

time step. This limited context prevents these schemes from effectively identifying the

significant and insignificant time steps, resulting in a higher baseline amplitude ratio

across time compared to black-box and universal FGM.

The proportion of CSI where the amplitude ratio |β k
i j|/|xk

i j| exceeds a threshold

in Table 6.6. The r are adjusted according to the accuracy specified in each column.

The threshold is set to 5 dB (0.301), the minimum SNR required for data transfer over

wireless links [?]. When the |β k
i j|/|xk

i j| exceeds this threshold, data transmission becomes

impossible even under ideal channel conditions. We define such instances, represented as

the triplet {i, j,k}, as severely distorted resource. At 90% accuracy, all attack schemes

maintain the proportion of severely distorted resources at 1%.

With less accuracy, behavioral cloning yields the highest proportion of severely dis-

torted resources. At 25% accuracy, behavioral cloning produces four times more severely

distorted resources than black-box FGM, despite only 18% difference in r (r = 0.59 for

behavioral cloning vs. r = 0.50 for black-box FGM). This disparity stems from the behav-

ioral cloning’s higher baseline perturbation signal amplitude, see Fig. 6.12c. While GAIL

faces similar elevated baseline amplitude issues, at 50% accuracy, its ratio of severely

distorted resources remains comparable to that of black-box FGM and universal FGM,

owing to GAIL’s ability to achieve this degradation with smaller r. Although GAIL re-

quires larger r than behavioral cloning to achieve 25% accuracy, it still produces fewer

severely distorted resources. In summary, our GAIL generates perturbation signals caus-



ing less disruption to the communication link than behavioral cloning, even at similar

power levels.

6.6 Conclusion

This work examines remote adversarial attacks against Wi-Fi-based HAR for pri-

vacy protection. We implement GAIL, a representative IL algorithm, to develop a pertur-

bation signal generator. Our evaluation encompasses three datasets and six target models,

exploring scenarios beyond the unknown target model structures and weight to include

cases where adversaries lack synchronization with HAR classifier input. We further exam-

ine target model accuracy with the inputs at sampling rates different from the surrogate

model. Our GAIL-based algorithm achieves to degrade accuracy to 50% with only a

0.5 dB higher received signal than the other schemes relying on impractical assumptions.

Our approach renders data communication impossible in 12.8% of the time-frequency

slots, representing a 52% reduction compared to the comparison scheme under the same

assumptions.

The algorithm has not been implemented on physical radio hardware. One critical

consideration for hardware implementation is the latency of the perturbation generator. If

it exceeds the sampling period hardware modifications are necessary. During inference, the

policy network generates perturbation signals through 3 FC layers and the computation

in (6.12). Our tests show average inference latencies of 8.2 ms on a CPU and 2.4 ms

on GTX 2080Ti, both below the algorithm’s shortest sampling period, 12.5 ms. These

latency measurements suggest the algorithm could be implemented without modifications,

practical hardware implementation must account for additional latency, e.g., data transfer

between components.



6.7 Appendix. TRPO detailed steps

Policy gradient aims to increase the probabilities of actions that yield higher re-

turns along learner trajectories. The GAIL training process includes a policy gradient

to align the policy function closely with expert trajectories. We implement trust region

policy optimization (TRPO) as our policy gradient algorithm, which optimizes two key

components; the policy function π(Ai|H ℓ
i ) and the value function, V (H ℓ

i ). Following [53],

for value function estimation, we employ generalized advantage estimation (GAE) [55].

In kth iteration of GAIL, the detailed TRPO steps executed in line 4 in Algorithm 4 are

as follows:

1. Compute temporal difference (TD) error:

δ
Vϕk
i =−C(H ℓ

i ,Ai)+ γVϕk(Hi+1)−Vϕk(H
ℓ

i ) at all time steps i ∈ {1,2, · · · ,M}

2. Compute advantage values: Âi = ∑∞
l=0 (γλG)

lδ
Vϕk
m+l at all time steps i ∈ {1,2, · · · ,M}

3. Update the parameters ϕ of value function Vϕ (H
ℓ

i ) to decrease the objective, K(ϕ):

ϕk+1← ϕk−∇ϕ K(ϕ)

K(ϕ) =
M

∑
i=1
||Vϕ (H

ℓ
i )−V̂i||2

subject to 1
M

M

∑
i=1

||Vϕ (H
ℓ

i )−V̂i||2

2σ2 ≤ εK,

where V̂i =
∞

∑
l=0

γ lri+l and σ2 =
1
M

M

∑
i=1
||Vϕk(H

ℓ
i )−V̂i||2.

4. Update the parameters θ of policy function πθ to decrease the objective, Lθk(θ):



θk+1← θk−∇θ Lθk(θ)

subject to KL divergence, Dθk
KL(πθk ,πθ )≤ επ

where Lθk(θ) =
1
M

M

∑
i=1

πθ (Ai|H ℓ
i )

πθk(Ai|H ℓ
i )

Âi

Dθk
KL(πθk ,πθ ) =

1
M

N

∑
i=1

DKL(πθk(·|H
ℓ

i )||πθ (·|H ℓ
i )).
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Chapter 7

Conclusion

This dissertation explored the application of deep learning techniques in wireless

communication systems, focusing on two primary areas: modulation classification of prac-

tical OFDM signals for spectrum sensing, and remote adversarial attacks targeting Wi-

Fi-based Human Activity Recognition (HAR) for privacy protection.

7.1 Modulation classification of practical OFDM signals for
spectrum sensing

Intelligent spectrum sensing frequently targets unconstrained wireless signals in-

stead of signals of specific communication protocols. Accordingly, preamble or control

channel information, which contains modulation, is usually unavailable. To address this

challenge, Chapters 2, 3, and 4 present solutions for modulation classification of practical

OFDM signals, under scenarios with absent protocol information.

Chapter 2 introduces a deep learning-based modulation classification method to

handle practical OFDM signals without symbol-level synchronization. By developing

a preprocessing algorithm to enhance classification performance in scenarios where the

boundaries of OFDM symbols are unknown, the proposed solution robustly classifies

modulation against synchronization errors in realistic spectrum sensing environments.

Chapter 3 and 4 further advance modulation classification by incluidng OFDM pa-
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rameter estimation and modulation classification for modern wireless standards, including

Wi-Fi 6 and 5G signals. Two essential OFDM parameters, subcarrier spacing and cyclic

prefix (CP) length, are reliably estimated using cyclostationarity analysis. These parame-

ter estimates enable the proposed preprocessing of OFDM signals. Evaluations conducted

using simulated PHY-layer signals and software-defined radio (SDR) implementations val-

idate the practical effectiveness of the proposed methodology. These experiments confirms

that the method can accurately estimate OFDM parameters and reliably classify modula-

tion schemes in realistic, over-the-air environments, achieving at least 97% classification

accuracy provided the signal-to-noise ratio (SNR) exceeded protocol-specified thresholds.

7.2 Remote Adversarial Attacks against Wi-Fi-based HAR for
Privacy Protection

Chapters 5 and 6 addresses privacy concerns raised by Wi-Fi-based HAR systems

by exploring remote adversarial attacks using perturbation signals transmitted from user

devices. Specifically, this dissertation tackles challenges posed by unknown future channel

state information (CSI), a challenge to gradient-based adversarial methods.

Chapter 5 proposes a real-time adversarial attack framework by degrading the

accuracy of Wi-Fi-based HAR systems through manipulation of Wi-Fi pilot signals. To

overcome limitations inherent to gradient-based attacks, which require prior knowledge

of future CSI, a Generative Adversarial Imitation Learning (GAIL)-based algorithm was

developed. This novel algorithm effectively mimicked gradient-based attacks without

explicit knowledge of future channel conditions and successfully degrades the accuracy of

deep learning-based HAR models.

Building upon this foundation, Chapter 6 comprehensively evaluates the versatility

of the proposed GAIL-based adversarial attacks. Extensive experiments were conducted

across diverse environments and against multiple target models, including deep learning



and conventional non-deep learning classifiers. Evaluation scenarios extended to condi-

tions where essential parameters such as sampling rates, input sequence durations, and

target model configurations were unknown. These comprehensive evaluations demon-

strated the its broad applicability and practical relevance of the proposed adversarial

method.

7.3 Future work

Several directions remain promising for future research based on the outcomes of

this dissertation. First, since the proposed modulation classification framework is cur-

rently limited to single-input single-output (SISO) scenarios, future studies could extend

this methodology to more complex wireless environments, such as OFDM-MIMO and

millimeter-wave (mmWave) communication systems. Additionally, modulation classifica-

tion in orthogonal frequency division multiple access (OFDMA), where multiple modu-

lation schemes coexist simultaneously, provides another potential area of advancement.

Furthermore, identification and classification of other critical wireless transmission param-

eters, such as coding schemes, could also be explored in future research.

Regarding adversarial attacks, several improvements can be considered. Firstly,

the current perturbation signal generator does not explicitly determine the amplitude of

the perturbation signals, leaving potential optimizations for attack efficiency and stealth

unexplored. Secondly, no mechanism currently exists to minimize the negative impact

of perturbation signals on the underlying communication link quality. Physical imple-

mentation of the proposed adversarial attacks on actual radio hardware has not yet been

performed. Practical deployment and rigorous testing in diverse real-world wireless en-

vironments would substantially enhance the robustness and validity of the adversarial

approach presented in this dissertation.

Overall, this dissertation provides a solid foundation for leveraging deep learning



to advance wireless signal classification accuracy and to safeguard user privacy against

emerging sensing threats. The findings and methodologies established herein serve as a

valuable stepping stone toward future research and technological innovation in wireless

communications and security.
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