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TensorFlow and Matlab training

Optimizer
GradientDescentOptimizer
AdadeltaOptimizer
AdagradOptimizer
AdagradDAOptimizer
MomentumOptimizer

AdamOptimizer

FtrlOptimizer
ProximalGradientDescentOptimizer
ProximalAdagradOptimizer

RMSPropOptimizer

The network will be trained with Levenberg-Marquardt backpropagation
algorithm (tr21011 ), unless there is not encugh memory, in which case
scaled conjugate gradient backpropagation (1200 will be used.



« Grading> Full scale of the letter grade. Grade consist of
About 25 % homework, 25% seminar summary, and 50%
final-project 2-4 man teams. Your and my purpose is to lean,
so a good effort is sufficient. 10% reduction/day for a delayed
homework.

Seminar summary Based on one talk at the 3-day

workshop Big Data and The Earth Sciences: Grand
Challenges Workshop write a one or two page summary. Due
at class on 7 June.

Final project Either propose a topic before may 1. Or it will
be based on my paper: Niu et al, 2017 on arXiv. We will make
teams on April 24 and 26. Report due ABOUT June 16.
Howework Homework 1 due 1 May on cody
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TensorFlow

TensorFlow is an Open Source Software
Library for Machine Intelligence

Input: Sample cov. matrix: 272 Neurons (16*17/2*2) per frequncy at each range
Output: binary range vector: 0.1-3km, 138 neurons

Just one middle layer 128 Neurons

* * * * * * *
[ 0 0 0 ]—n
[ 0 0 0 ]—)7'2
[0 0 1 0 0 0 0 ]—T




TensorFlow implementation

h: softmax
function:
a=Wz



Four-frequency localization

e o predictions 10% error interval
— GPS ranges

| | | |

(b) | L (c) _

Training

Range (km)
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Test |
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Test Il
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FIG. 12. (Color online) Range predictions on training data (a, b, ¢, d, first row), Test-Data-1 (e,
f, g, h, second row) and Test-Data-2 (i, j, k, 1, third row) by FNN with multi-frequency inputs.
(a)(e)(i) 450, 490, 520, 550 Hz. (b)(£)(j) 560, 590, 620, 650 Hz. (c)(g)(k) 660, 690, 720, 750 Hz.
(d)(h)(1) 450, 600, 750, 900 Hz. The time index increment is 10 s for training and Test-Data-1,
and 5 s for Test-Data-2.



TRANSFER LEARNING AND DEEP
FEATURE EXTRACTION FOR
PLANKTONIC IMAGE DATA SETS

Ay \f
1 /'~a

: . "ﬂt &P 4D N
Eric C. Orenstein’ and Oscar Beijbom?

1 Scripps Institution of Oceanography — University of California San Diego
2 Department of Electrical Engineering and Computer Science — University of California Berkeley
IEEE Winter Conference on Applications of Computer Vision 2017 — Paper ID #313




» Feature extraction
example in python

In situ imaging systems e ~100 features
: : Using SVM and RF
better with CNN

Scripps Plankton
Camera
(SPC)

In Situ Icthyoplankton
Imaging System
(ISIIS)

Imaging FlowCytobot
(IFCB)




RESEARCH ARTICLE

Qingkai Kong is from Berkeley, | have 3GB
of data and examples of analysis by

EARTH SCIENCES

students there, in Jupyterhoetebooks.

exclusive licensee American Assodiation for

MyShake: A smartphone seismic network for the Advancement ofScience, Distibted
earthquake early warning and beyond MonCommardel Lcsse 40 €0C 813

Qingkai Kong,'* Richard M. Allen,’ Louis Schreier,” Young-Woo Kwon?

Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of
people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes
of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other
machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks

RESEARCH ARTICLE
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Noise Tracking of Cars/Trains/Airplanes

Distance along track [m]
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Nonparametric Methods (1)

« Parametric distribution models are restricted to
specific forms, which may not always be suitable;
for example, consider modelling a multimodal
distribution with a single, unimodal model.

« Nonparametric approaches make few
assumptions about the overall shape of the
distribution being modelled.

* 1000 parameter versus 10 parameter



Histograms as density models

Pi = 5 A
« For low dimensional data we [a =004 |
can use a histogram as a
density model. 00 35 i
— How wide should the bins A =008 '
be”? (width=regulariser) ﬁ
— Do we want the same bin- 0
. 0 0.5 1
width everywhere? 5 .
o A =025 \
— Do we believe the density is
zero for empty bins? 0

0 0.5 1



Some good and bad properties of
histograms as density estimators

* There is no need to fit a model to the data.

— We just compute some very simple statistics (the
number of datapoints in each bin) and store them.

* The number of bins is exponential in the dimensionality of
the dataspace. So high-dimensional data is tricky:

— We must either use big bins or get lots of zero counts
(or adapt the local bin-width to the density)

* The density has silly discontinuities at the bin boundaries.

— We must be able to do better by some kind of
smoothing.



Local density estimators
» Estimate the density in a small region to be

K — points in region

p(x)=——

NV <+«— volume of region

1

total points

 Problem 1: Variance in estimate if K is small.

* Problem 2: Unmodelled variation across the region if V is
big compared with the smoothness of the true density



Kernel density estimators
« Use regions centered on the datapoints
— Allow the regions to overlap.

— Let each individual region contribute a total
density of 1/N

— Use regions with soft edges to avoid
discontinuities (e.g. isotropic Gaussians)

N 2
-1y ! exp[|x—xn|j

~ (252D 752



The density modeled by a kernel density
estimator

h — 0.005 is too narrow




Nearest neighbor methods for density
estimation

K — points in region

p(x)=——

N V' +— volume of region

I

total points

« Vary the size of a hyper-sphere around each test point

so that exactly K training datapoints fall inside the hyper-
sphere.

— Does this give a fair estimate of the density?

* Nearest neighbors is usually used for classification or
regression:

— For regression, average the predictions of the K
nearest neighbors.

— For classification, pick the class with the most votes.
 How should we break ties?



Nearest neighbor methods for classification
and regression

* Nearest neighbors is usually used for
classification or regression:

* For regression, average the predictions of the K
nearest neighbors.

— How should we pick K?

* For classification, pick the class with the most
votes.
 How should we break ties?

 Let the k'th nearest neighbor contribute a count
that falls off with k. For example, 4 1

2k



The decision boundary implemented by 3NN

The boundary is always the perpendicular bisector
of the line between two points (Vornoi tesselation)
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X7

Regions defined by using various numbers
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Gaussian Kernels
e (Gaussian Kernel

k(x,x") = exp (— % (x —xN)TEX 1 (x— x’))

Diagonal X: (this gives ARD)
N 2
1 X; — X;
k(x,x") = exp ——2( — )
2 : 0;

Isotropic o/ gives an RBF

207

x—x'||5
k(X,X,) — exp( ” “2)



Sparse Bayesian Learning (SBL)

Model : y = Ax+n :
Prior : x ~ N (x;0,T")
I' = diag(v1,...,7M) -

Likelihood : p(y|x) = N(y; Ax, %I y)

Evidence : p(y) = | p(yP)p(x)dx = N (¥:0,5,)
X
¥, = o’Iy + ATA"

SBL solution : I' = arg max p(y)
r
= arg min { log|Z,| + sz;I)’}
r

M.E.Tipping, " Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research,
June 2001.




Kernel machine
« GLM with feature vector

¢ ¢(X) — [k(xuul)' neey k(x, :uK)]
 |f kis RBF then this is RBF network

How to chose u?

Output y

Linear weights

Radial basis
functions

Weights

Input x



Kernels

poly10 ! prototypes
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Figure 14.2 (a) xor truth table. (b) Fitting a linear logistic regression classifier using degree 10 polynomial
expansion. (c) Same model, but using an RBF kernel with centroids specified by the 4 black crosses. Figure
generated by logregXorDemo.

k(x,x')=k(x',x) =0






