Sparse processing / Compressed sensing

Model : y = Ax+n, X is sparse
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Problem : Solve for x

e Basis pursuit, LASSO (convex objective function)
e Matching pursuit (greedy method)

Sparse Bayesian Learning (non-convex objective function)



Bayesian interpretation of LASSO

MAP estimate via the unconstrained -LASSO- formulation

XLasso (i) = argmin ||y — Ax||3 + ||y
xeCN

Bayes rule:
p(y[x)p(x)

p(xly) = o(y)

MAP estimate:
Xmap = arg max In p(x|y)
X
— argmax [In p(ylx) + In p(x)]
X

— argmin [~ In ply}x) ~In p(x)]
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MAP estimate via the unconstrained -LASSO- formulation
Bayes rule:

p(y[x)p(x)

p(xly) = o(y)

MAP estimate:
Xmap = argmin [— In p(y|x) — In p(x)]
X
Gaussian likelihood:

2
ly—AxI3

ply[x) oce 2

Laplace-like prior:

MAP estimate (LASSO):

Xmap=arg min [|ly — Ax||3 + plxll1]=Xasso(u), p=—
X



Prior and Posterior densities (Ex. Murphy)
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Figure 13.17 Top: plot of log prior for three different distributions with unit variance: Gaussian, Laplace
and exponential power. Bottom: plot of log pesterior after observing a single observation, corresponding
to a single linear constraint. The precision of this observation is shown by the diagonal lines in the top
figure. In the case of the Gaussian prior, the posterior is unimodal and symmetric. In the case of the
Laplace prior, the posterior is unimodal and asymmetric (skewed). In the case of the exponential prior, the
posterior is bimodal. Based on Figure 1 of (Seeger 2008). Figure generated by sparsePostPlot, written
by Florian Steinke. 4/12




Sparse Bayesian Learning (SBL)

Model : y = Ax+n
Prior : x ~ N (x;0,T) E =
I' = diag(y1, ..., 7m) . o

measurements

Likelihood : p(y|x) = N (y; Ax, o%Iy)

Evidence : p(y) = /p(y]x)p(x)dx =N(y;0,Xy)

X

Yy = o’Iy + ATAY
SBL solution : I' = arg max p(y)
T
= arg min { log |2y + yHEgly}
r

M.E.Tipping, "Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research,
June 2001.



SBL solution : I’ = argrmin {log |=y | + yHE;Iy}

SBL objective function is non-convex

Optimization solution is non-unique

Fixed point update using derivatives, works in practice

I = diag(1,...,7m)

m

H —1 2 T
Update rule : 40" = 7°'d <||y2yam||2>
. m

Hy -1
an Xy an

¥, = oIy + ATAH

Multi snapshot extension : same I' across snapshots
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e Posterior : xpost = TAH S 1y
e At convergence, ¥, — 0 for most v,

o T controls sparsity, E(|z,]?) = ym

iteration #0
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e Different ways to show that SBL gives sparse output

e Automatic determination of sparsity

e Also provides noise estimate o2



Applications to acoustics - Beamforming

e Beamforming

e Direction of arrivals (DOAs)
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SBL - Beamforming example

e N = 20 sensors, uniform linear array

e Discretize angle space: {—90:1:90}, M = 181
Dictionary A : columns consist of steering vectors

K = 3 sources, DOAs, [—20, —15,75]°, [12,22,20] dB

e M >N>K
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SBL - Acoustic hydrophone data processing (from Kai)
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Problem with Degrees of Freedom

« As the number of snapshots (=observations) increases, so does the
number of unknown complex source amplitudes

 PROBLEM: LASSO for multiple snapshots estimates the realizations of
the random complex source amplitudes.

* However, we would be satisfied if we just estimated their power
— 2
Y = E{ [x,l* }

* Note that y,, does not depend on snapshot index .

Thus SBL is much faster than LASSO for more snapshots.
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Example CPU Time

LASSO use CVX, CPUxL?2

SBL nearly independent on snapshots
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