
How the regularization parameter affects the bias and 
variance terms

low bias high bias

low variancehigh variance
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Using the posterior distribution
• If we can afford the computation, we ought to average the 

predictions of all parameter settings using the posterior 
distribution to weight the predictions:
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Predictive distribution for noisy sinusoidal data modeled 
by a linear combination of nine radial basis functions.



A way to see the covariance of predictions for different values of x
We sample models at random from the posterior and show the 
mean  of the each model’s predictions



Lecture 4: Linear Classification Methods



What is “linear” classification?
Classification is intrinsically non-linear

It puts non-identical things in the same class, so a difference in 
input vector sometimes causes zero change in the answer 
(what does this show?)

“Linear classification” means that the part that adapts is linear
The adaptive part is followed by a fixed non-linearity. 
It may be preceded by a fixed non-linearity (e.g. nonlinear 
basis functions).

))((,)( 0 xxwx yfDecisionwy T =+=

fixed non-
linear function

adaptive linear 
function



Representing the target values for classification
For two classes, we use a single valued output that has target 
values 1 for the “positive” class and 0 (or -1) for the other class

For probabilistic class labels the target value can then be the 
probability of the positive class and the output of the model 
can also represent the probability the model gives to the 
positive class.

For N classes we often use a vector of N target values 
containing a single 1 for the correct class and zeros elsewhere.

For probabilistic labels we can then use a vector of class 
probabilities as the target vector.



Three approaches to classification
• Use discriminant functions directly without probabilities:

– Convert the input vector into one or more real values so 
that a simple operation (like thresholding) can be applied 
to get the class.

• The real values should be chosen to maximize the useable 
information about the class label that is in the real value.

• Infer conditional class probabilities:
– Compute the conditional probability of each class.

• Then make a decision that minimizes some loss function
• Compare the probability of the input under separate, class-

specific, generative models.
– E.g. fit a multivariate Gaussian to the input vectors of 

each class and see which Gaussian makes a test data 
vector most probable. (Is this the best bet?)
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The planar decision surface 
in data-space for the simple 
linear discriminant function:
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Discriminant functions for N>2 classes
• One possibility is to use N two-way discriminant functions.

– Each function discriminates one class from the rest.
• Another possibility is to use N(N-1)/2 two-way discriminant 

functions
– Each function discriminates between two particular classes.

• Both these methods have problems 



Problems with multi-class discriminant functions

More than one 
good answer

Two-way preferences 
need not be  transitive! 



A simple solution
Use N discriminant functions,                     
and pick the max.

– This is guaranteed to give 
consistent and convex 
decision regions if y is linear.
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Using “least squares” for classification
• This is not the right thing to do and it doesn’t work as well 

as better methods, but it is easy:
– It reduces classification to least squares regression.
– We already know how to do regression. We can just 

solve for the optimal weights with some matrix algebra 
(see last lecture).

• We use targets that are equal to the conditional probability 
of the class given the input.
– When there are more than two classes, we treat each 

class as a separate problem  (we cannot get away with this if 
we use the “max” decision function).



Problems with using least squares for classification

If the right answer is 1 and the model 
says 1.5, it loses, so it changes the 
boundary to avoid being “too correct”

logistic regression

least squares 
regression



PCA don’t work well



picture showing the advantage of Fisher’s linear 
discriminant

When projected onto the line 
joining the class means, the 
classes are not well separated.

Fisher chooses a direction that makes 
the projected classes much tighter, 
even though their projected means are 
less far apart.



Math of Fisher’s linear discriminants

• What linear transformation is best for 
discrimination?

• The projection onto the vector separating 
the class means seems sensible:

• But we also want small variance within 
each class:

• Fisher’s objective function is:
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We have already done classification!



Logistic regression (jump to page 205)

When there are only two classes we can model the 
conditional probability of the positive class as

If we use the right error function, something nice 
happens: The gradient of the logistic and the gradient of 
the error function cancel each other:
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The logistic function
The output is a smooth function 
of the inputs and the weights.
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The natural error function for the logistic

To fit a logistic model using 
maximum likelihood, we 
need to minimize the 
negative log probability of 
the correct answer summed 
over the training set.
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Using the chain rule to get the error derivatives
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Cross-entropy or “softmax” error function for multi-class 
classification
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The output units use a non-
local non-linearity:

The natural cost function is the 
negative log prob of the right answer

The steepness of E exactly balances 
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Probabilistic Generative Models for Discrimination 
(p 196)

Use a generative model of the input vectors for each class, 
and see which model makes a test input vector most probable.
The posterior probability of class 1 is:
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A simple example for continuous inputs
Assume input vectors for each class are Gaussian, and all 
classes have the same covariance matrix.

For two classes, C1 and C0, the posterior is a logistic:
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Two Gaussian models and the resulting posterior 
for the red class

P(C1|x)

x1 x2 x1 x2



A way of thinking about the role of the inverse 
covariance matrix

• If the Gaussian is spherical no need to 
worry about the covariance matrix.

• So we could start by transforming the 
data space to make the Gaussian 
spherical
– This is called “whitening” the data.
– It pre-multiplies by the matrix 

square root of the inverse 
covariance matrix. 

• In the transformed space, the weight 
vector is the difference between the 
transformed means.
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The posterior when the covariance matrices are different for 
different classes

The decision surface is planar when 
the covariance matrices are the same 
and quadratic when not.


