ECE285/S10209, Machine learning for physical applications,

Spring 2017
Peter Gerstoft, 534-7768, gerstoft@ucsd.edu
We meet Wednesday from 5 to 6:20pm in Spies Hall 330
Text Bishop
Grading A or maybe S

Classes

First 4 weeks: Focus on theory/implementation

Middle 3 weeks: 50% Applications plus 50% theory

Last 3 weeks: 30% Final Project, 30% Applications plus 50% theory

Applications

Graph theory for source localization: Gerstoft

Source tracking in ocean acoustics: Grad Student Emma Reeves
Aramco Research: Weichang Li, Group leader

Seismic network using mobile phones: Berkeley

Eric Orenstein: identifying plankton

Plus more

- Dictionary learning

Homework: Both matlab/python will be used, Just email the code to me (I dont need anything else).

Homework is due 11am on Wednesday. That way we can discuss in class.

Hw 1: ] ]
matlab/ python/ ipython/ jupyter ?

Tritoned? https://tritoned.ucsd.edu/
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Big Data and The Earth Sciences: Grand Challenges Workshop May 31 - June 2

The goal of the The Big Data and Earth Sciences: Grand Challenges Workshop is to bring thought leaders in Big Data and Earth
Sciences together for a three day, intensive workshop to discuss what is needed to advance our understanding and predictability of
the Earth systems and to highlight key technological advances and methods that are readily available (or will be soon) to assist this
advancement. With the ever growing quantity and quality of hyper-dimensional earth science data (satellite and ground based
observations and cutting—edge Numerical Weather Prediction (NWP) models), the advancements in machine learning (e.g.
supervised, unsupervised and semi-supervised learning techniques), and the progress made in the application of Graphical
Processing Units (GPUs) and GPU clusters, we now have an unprecedented opportunity and challenge to engage these
computational advances to improve our understanding of the complex nature of the interactions between various earth science
events, their variables and their impacts on society (flooding, drought, agriculture, etc.).

Grand Challenges Lectures (CONFIRMED):

Dr. Larry Smarr, Founding Director of the California Institute for Telecommunications and Information Technology (Calit2), a UC
San Diego/UC Irvine partnership, holds the Harry E. Gruber professorship in Computer Science and Engineering (CSE) at UC San
Diego's Jacobs School.

Dr. Vipin Kumar, Regents Professor at the University of Minnesota, holds the William Norris Endowed Chair in the Department of
Computer Science and Engineering, University of Minnesota.

When

Where

Contact
Name

Add
event to
calendar

May 31, 2017 08:00 AM to
Jun 02, 2017 06:00 PM

Qualcomm Institute, Calit2 -
University of California, (UCSD)
Atkinson Hall Auditorium 8500
Gilman La Jolla, CA 92093

Scott L. Sellars

[ﬂ; vCal
[y ical

Dr. Padhraic Smyth, Professor, Director, UCI Data Science Initiative and Associate Director, Center for Machine Learning and Intelligent Systems, UC Irvine.

Dr. Michael Wehner, Senior Staff Scientists, Computational Research Division at the Lawrence Berkeley National Laboratory.
Hotel accommodations:

« La Jolla Sheraton (nice, economical, close by): http://www.sheratonlajolla.com/
« Estancia (Closest location and most beautiful): http://meritagecollection.com/estancialajolla/

» La Jolla Shores (beach front property - farther away): http://www.ljshoreshotel.com/?
src=ppc_google_ljshores_brand_expanded&NCK=ppc_google_ljshores_brand&gclid=CNTF8JTmgdICFQmIfgodfTMP7A

Please send abstracts to scottsellars@ucsd.edu
Please register here: Workshop Registration Form

Download the call for papers HERE
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Important quantity in
 coding theory
e statistical physics
* machine learning

probabilities

Entropy

0.5

025}

H=177

probabilities

0.5

025}

H =3.09




Parametric Distributions

Basic building blocks: p(X‘ 9)
Need to determine Hgiven {X1, ¢ oo ,XN}
Representation: 9*orp(9)

Recall Curve Fitting

p(tlx,x,t) = /p(t\x,w)p(w\x,t) dw / \

(4




The Gaussian Distribution

N(z|p,0?)

Nl 0?) = — exp{—i(w—u)Q}
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Central Limit Theorem

*The distribution of the sum of N i.i.d. random variables becomes increasingly
Gaussian as N grows.

*Example: N uniform [0,1] random variables.




Geometry of the Multivariate Gaussian
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Moments of the Multivariate Gaussian (1)

(27)D/ |z\11/2 /eXp{_%(X_mTE_l(X_”)}XdX

1
)P/
1 1 1 g
(27)D/2 |2,1/2/6XP{—§Z 2 z}(z+u)dz

thanks to anti-symmetry of z
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Moments of the Multivariate Gaussian (2)
Exx'] = pp' + =
covix] =E[(x —E[x])(x —E[x])' | =%
A Gaussian requires D*(D-1)/2 +D parameters.

Often we use D +D or
Just D+1 parameters.




Partitioned Gaussian Distributions



Partitioned Conditionals and Marginals

z]a|b
I“l'a|b

P(Xalxp) = N (Xa| g ajp)

— A;al = Yiga — Eabz&gl 2iba
= b {Aaakty — Aab(Xp — 1)}
= Mg — Ac?alAab (Xp — p)
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Partitioned Conditionals and Marginals

1 - 10 .
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p(zg|zy = 0.7)
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Bayes’ Theorem for Gaussian Variables

Given p(x) = N (X|[,L,A_1>
I p(ylx) = N (y|Ax+b,L7")
p(y) = N(ylAp+b, L'+ AATTAT)
p(xly) = NxE{A'L(y —b)+Au}, %)
where

>=(A+A'LA)!



Maximum Likelihood for the Gaussian (1)

* Giveni.i.d. data , the log likeli-hood function is given by

X = (x1,...,Xn)"

e Sufficient statistics

N
ND N 1 _
Inp(X|p, 3) = ———=In(2m) — - In[%] -5 > (%0 — )" (%0 — )
n=1



Maximum Likelihood for the Gaussian (2)

* Set the derivative of the log likelihood function to zero,

0

o Inp(X|p, X Z > —0
 and solve to obtain
« Similarly Hue = nz::lxn'

N
1
ML = N Z — b)) (Xn — pr,)



Maximum Likelihood for the Gaussian (3)

Under the true distribution

Elpy] = w

N -1

Hence define

N
Z — poui)( MML)T-

nzl



Sequential Estimation

Contribution of the N data point, xy

(N) 1 o
N
My, = Nzxn
- ONTYTN &
1 N N
= NXN+TM1(\4L D
N—1 —1
— N( )‘|‘_(XN NML )>

N | ,
| correction given xy
correction weight
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Bayesian Inference for the Gaussian (1)

« Assume o’ is known. Given i.i.d. data X — {g;l’ o ’QjN}
the likelihood function for u is given by

p(x|p) = 1;[ p(xn|p) = (2W01>N/26XP{—2LZ }

* This has a Gaussian shape as a function of u (but it is not a distribution
over u).



Bayesian Inference for the Gaussian (2)

* Combined with a Gaussian prior over p,

p(p) =N (ulpo, o3) -

* this gives the posterior

p(p|x) oc p(x|m)p(p).

* Completing the square over p, we see that

p(plx) =N (plpn, o)

o2 N Nag 1 f:
— ] - — x
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Bayesian Inference for the Gaussian (4)
 Example: forN=0,1, 2 and 10.

p(p|x) =N (ulpn, o)




Bayesian Inference for the Gaussian (5)

e Sequential Estimation

p(plx) o p(p)p(x|w)

= |p(w) l:[ p(xn|p)| p(zN|w)

x N (ulun—1,0%_1) plen|)

* The posterior obtained after observing N { 1 data points becomes the
prior when we observe the N™ data point.



Bayesian Inference for the Gaussian (6)

* Now assume u is known. The likelihood function for A=1/c2is given by

N
A
N/2 A N2
p(x|X) = Hanlu, LR exp{ 2;(% ) }
e Thishasa Gamma shape as a function of A.
 The Gamma distribution:
Gam(A|a,b) = (@) M exp(—b))  E[N = % var|\] %
2 2 2
a=0.1 =1 a =4
b=0.1 b=1 b==6
1 | 1\- |
0 — - 0 =



Bayesian Inference for the Gaussian (8)

* Now we combine a Gamma prior, Gam()\|a07 bo)
with the likelihood function for A to obtain

2

n=1

N
p(Alx) oc X IAN/Z exp {_bM _2 > (w0 - u)Q}

Gam(A|ay,bn)

* which we recognize as with
N
aN = ag+ D)
N
1 N
bN — b0+§Z($n—u)2 :bO—FEO'I%/[L.

n=1



Bayesian Inference for the Gaussian (9)

* If both uand A are unknown, the joint likelihood function is given by

* We need a prior with the same functional dependence on pand A.



Bayesian Inference for the Gaussian (10)

 The Gaussian-gamma distribution

p(p, A) = N (o, (BX) ) Gam(Ala, b)

BA

X exp {—70& — uo)Q} X" exp {—bA}

\ J J
| !

* Quadraticinu.  * Gamma distribution over A.
* Linear in A. * Indenendent of w.
2

A lp




Bayesian Inference for the Gaussian (12)

Multivariate conjugate priors
n unknown, A known: p(n) Gaussian.
A unknown, pu known: p(A) Wishart,

W(AIW,v) = BJA|V=P=D/2 exp (—%Tr(W_lA)> .

A and p unknown: p(u, A) Gaussian-Wishart,

p(pe, Alprg, B, W, v) = N (o, (BA)™H W(AIW, v)



Old Faithful geyser:

Mixtures of Gaussians (1)

The time between eruptions has a bimodal distribution, with the mean interval being either 65

or 91 minutes, and is dependent on the length of the prior eruption. Within a margin of error of
+10 minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less
than 2 Y/, minutes, or 91 minutes after an eruption lasting more than 2 1/, minutes.
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Mixtures of Gaussians (2)

*Combine simple models »(z),
into a complex model:

p(x) = Zwk‘j\/’(x‘u’kv Ek?

k=1 |
Component

Mixing coefficient

K
Vk:m. >0 Z'zrkzl
k=1

3



Mixtures of Gaussians (3)




Mixtures of Gaussians (4)

* Determining parameters &, 4, and 2 using maximum log likelihood

\

N (K
Inp(X|m, p, X) = Zln< Zm/\/(xn\uk,ﬂk) >
n=1 \ k=1 y,

\ J
I

Log of a sum; no closed form maximum.
e Solution: use standard, iterative, numeric optimization methods or the

expectation maximization algorithm (Chapter 9).



