
ECE285/SIO209,	Machine	learning	for	physical	applications,	
Spring	2017

Peter	Gerstoft,	534-7768,	gerstoft@ucsd.edu
We	meet	Wednesday	from	5	to	6:20pm	in	Spies	Hall	330
Text	Bishop
Grading		A	or	maybe	S

Classes
First	4	weeks:	Focus	on	theory/implementation
Middle	3	weeks:	50%	Applications	plus		50%	theory
Last	3	weeks:	30%	Final	Project,	30%	Applications	plus		50%	theory

Applications
Graph	theory	for	source	localization:	Gerstoft
Source	tracking	in	ocean	acoustics:	Grad	Student	Emma	Reeves
Aramco	Research:	Weichang Li,	Group	leader
Seismic	network	using	mobile	phones:	Berkeley	
Eric	Orenstein:	identifying	plankton
Plus	more
- Dictionary	learning
-
Homework:	Both	matlab/python	will	be	used,	Just	email	the	code	to	me	(I	dont need	anything	else).	
Homework	is	due	11am	on	Wednesday.	That	way	we	can	discuss	in	class.
Hw 1:

Tritoned?	https://tritoned.ucsd.edu/

matlab/	python/	ipython/	jupyter ?





Entropy

Important	quantity	in
• coding	theory
• statistical	physics
•machine	learning



Parametric	Distributions
• Basic	building	blocks:
• Need	to	determine					given	
• Representation:								or											?

• Recall	Curve	Fitting



The	Gaussian	Distribution



Central	Limit	Theorem	
•The	distribution	of	the	sum	of	N i.i.d.	random	variables	becomes	increasingly	
Gaussian	as	N grows.
•Example:	N uniform	[0,1] random	variables.



Geometry	of	the	Multivariate	Gaussian



Moments	of	the	Multivariate	Gaussian	(1)

thanks	to	anti-symmetry	of	z 



Moments	of	the	Multivariate	Gaussian	(2)

A	Gaussian	requires	D*(D-1)/2	+D	parameters.
Often	we	use	D	+D	or	
Just	D+1	parameters.



Partitioned	Gaussian	Distributions



Partitioned	Conditionals	and	Marginals



Partitioned	Conditionals	and	Marginals



Bayes’	Theorem	for	Gaussian	Variables
• Given

• we	have

• where



Maximum	Likelihood	for	the	Gaussian	(1)
• Given	i.i.d.	data																													,	the	log	likeli-hood	function	is	given	by

• Sufficient	statistics



Maximum	Likelihood	for	the	Gaussian	(2)
• Set	the	derivative	of		the	log	likelihood	function	to	zero,

• and	solve	to	obtain

• Similarly



Maximum	Likelihood	for	the	Gaussian	(3)

Under	the	true	distribution

Hence	define	



Contribution	of	the	Nth data	point,	xN

Sequential	Estimation

correction	given	xN
correction	weight
old	estimate



Bayesian	Inference	for	the	Gaussian	(1)
• Assume	s2 is	known.	Given	i.i.d.	data

the	likelihood	function	for	µ is	given	by

• This	has	a	Gaussian	shape	as	a	function	of	µ (but	it	is	not a	distribution	
over	µ).



Bayesian	Inference	for	the	Gaussian	(2)
• Combined	with	a	Gaussian	prior	over	µ,

• this	gives	the	posterior

• Completing	the	square	over	µ,	we	see	that



Bayesian	Inference	for	the	Gaussian	(4)
• Example:																																							for	N = 0, 1, 2 and	10.

Prior



Bayesian	Inference	for	the	Gaussian	(5)
• Sequential	Estimation

• The	posterior	obtained	after	observing	N { 1 data	points	becomes	the	
prior	when	we	observe	the	N th data	point.



Bayesian	Inference	for	the	Gaussian	(6)
• Now	assume	µ is	known.	The	likelihood	function	for	 l=1/s2 is	given	by

• This	has	a	Gamma	shape	as	a	function	of	l.

• The	Gamma	distribution:



Bayesian	Inference	for	the	Gaussian	(8)
• Now	we	combine	a	Gamma	prior,																				 ,

with	the	likelihood	function	for	l to	obtain

• which	we	recognize	as																							 with	



Bayesian	Inference	for	the	Gaussian	(9)
• If	both	µ and	l are	unknown,	the	joint	likelihood	function	is	given	by

• We	need	a	prior	with	the	same	functional	dependence	on	µ and	l.



Bayesian	Inference	for	the	Gaussian	(10)
• The	Gaussian-gamma	distribution

• Quadratic	in	µ.
• Linear	in	l.

• Gamma	distribution	over	l.
• Independent	of	µ.	

µ0=0, b=2, a=5,	b=6



Bayesian	Inference	for	the	Gaussian	(12)

• Multivariate	conjugate	priors
• µ unknown, L known:	p(µ) Gaussian.
• L unknown,	µ known:	p(L) Wishart,

• L and	µ unknown:	p(µ, L) Gaussian-Wishart,



Mixtures	of	Gaussians	(1)

Single	Gaussian Mixture	of	two	Gaussians

Old	Faithful	geyser:
The	time	between	eruptions	has	a bimodal	distribution,	with	the	mean	interval	being	either	65	
or	91	minutes,	and	is	dependent	on	the	length	of	the	prior	eruption.	Within	a	margin	of	error	of	
±10	minutes,	Old	Faithful	will	erupt	either	65	minutes	after	an	eruption	lasting	less	
than  2 1⁄2 minutes,	or	91	minutes	after	an	eruption	lasting	more	than  2 1⁄2 minutes.



Mixtures	of	Gaussians	(2)

•Combine	simple	models	
into	a	complex	model:

Component

Mixing	coefficient
K=3



Mixtures	of	Gaussians	(3)



Mixtures	of	Gaussians	(4)
• Determining	parameters	p,	µ,	and	S using	maximum	log	likelihood

• Solution:	use	standard,	iterative,	numeric	optimization	methods	or	the	
expectation	maximization algorithm	(Chapter	9).	

Log	of	a	sum;	no	closed	form	maximum.


