ECE285/S10209, Machine learning for physical applications,

Spring 2017
Peter Gerstoft, 534-7768, gerstoft@ucsd.edu
We meet Wednesday from 5 to 6:20pm in Spies Hall 330
Text Bishop
Grading A or maybe S

Classes

First 4 weeks: Focus on theory/implementation

Middle 3 weeks: 50% Applications plus 50% theory

Last 3 weeks: 30% Final Project, 30% Applications plus 50% theory

Applications

Graph theory for source localization: Gerstoft

Source tracking in ocean acoustics: Grad Student Emma Reeves
Aramco Research: Weichang Li, Group leader

Seismic network using mobile phones: Berkeley

Eric Orenstein: identifying plankton

Plus more

- Dictionary learning

Homework: Both matlab/python will be used, Just email the code to me (I dont need anything else).

Homework is due 11am on Wednesday. That way we can discuss in class.

Hw 1: ] ]
matlab/ python/ ipython/ jupyter ?

Tritoned? https://tritoned.ucsd.edu/



Machine Learning for Geophysical Applications
Peter Gerstoft
noiselab.ucsd.edu

Plan
Unsupervised source localization (graph theory)
Supervised source localization (neural network)
Unsupervised dictionary learning for sound speed

Trevor Hastie
Robert Tibshirani

e e «— Murphy: “This books adopts the view that the
The Elements of best way to make machines that can learn from
Statistical Learning J data is to use the tools of probability theory,
e - Machine Learning . . . L.
A Probabilistic Perspective which has been the mainstay of statistics and

Kevin P. Murphy

ngineering for centuries. “
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Neural Networks (TensorFlow) for tracking a ship

Training data,
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TensorFlow implementation

TensorFlow is an Open Source Software
Library for Machine Intelligence

Input: Sample cov. matrix: 272 Neurons (16*17/2*2) per frequncy at each range
Output: binary range vector: 0.1-3km, 138 neurons

Just one middle layer 128 Neurons

* | * | * * | * | % | *
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TensorFlow implementation

1 f: Sigmoid

0.8t

z = f(Vx) 50.6»

y = h(Wz) 0.4 1
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h: softmax function: 910 5 0
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Four-frequency localization

e o predictions 10% error interval
— GPS ranges
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FIG. 12. (Color online) Range predictions on training data (a, b, ¢, d, first row), Test-Data-1 (e,
f, g, h, second row) and Test-Data-2 (i, j, k, 1, third row) by FNN with multi-frequency inputs.
(a)(e)(i) 450, 490, 520, 550 Hz. (b)(f)(j) 560, 590, 620, 650 Hz. (c)(g)(k) 660, 690, 720, 750 Hz.
(d)(h)(1) 450, 600, 750, 900 Hz. The time index increment is 10 s for training and Test-Data-1,
and 5 s for Test-Data-2.



TRANSFER LEARNING AND DEEP
FEATURE EXTRACTION FOR
PLANKTONIC IMAGE DATA SETS
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Eric C. Orenstein! and Oscar Beijbom?

1 Scripps Institution of Oceanography — University of California San Diego
2 Department of Electrical Engineering and Computer Science — University of California Berkeley
IEEE Winter Conference on Applications of Computer Vision 2017 — Paper ID #313




Qingkai Kong is from Berkeley, | have 3GB of

RESEARCH ARTICLE

data and examples of analysis by students there

EARTH SCIENCES

MyShake: A smartphone seismic network for
earthquake early warning and beyond

2016 © The Authors, some rights reserved;
exclusive licensee American Assodiation for
the Advancement of Science. Distributed
under a Creative Commons Attribution
NonCommercial License 4.0 (CC BY-NC).

10.1126/sciadv.1501055

Qingkai Kong,'* Richard M. Allen,’ Louis Schreier,” Young-Woo Kwon?

Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of
people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes
of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other
machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks

RESEARCH ARTICLE
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Why we got interested in traffic

Google Earth
& B[

.

Image Landsat

33.813463° lon -118.172662° elev 25m eyealt 4.89 km

March 5—12, 2011




Noise Tracking of Cars/Trains/Airplanes
5200 element Long Beach array (Dan Hollis)
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Noise Tracking of Cars/Trains/Airplanes
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Thought experiment: Party at a detection array_
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Objective

Find coherent but very localized event in a large array.
Don’t assume anything about the medium.
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Approach

Construct network using pair-wise sensor coherence.
Exploit network structure to identify sources.



What is Machine Learning?

Many related terms:

e Pattern Recognition

e Neural Networks

e Data Mining

e Adaptive Control

e Statistical Modelling

e Data analytics / data science
e Artificial Intelligence

e Machine Learning Big data



Learning:
The view from different fields

e Engineering: signal processing, system identification, adaptive and optimal
control, information theory, robotics, ...

e Computer Science: Artificial Intelligence, computer vision, information retrieval,

e Statistics: learning theory, data mining, learning and inference from data, ...

e Cognitive Science and Psychology: perception, movement control, reinforcement
learning, mathematical psychology, computational linguistics, ...

e Computational Neuroscience: neuronal networks, neural information processing,

e Economics: decision theory, game theory, operational research, ...

Physical science is missing!
ML cannot replace physical understanding.
It might improve or find additional trends

Machine learning is interdisciplinary focusing on both mathematical foundations and
practical applications of systems that learn, reason and act.



Probabilistic Modelling

e A model describes data that one could observe from a system

o If we use the mathematics of probability theory to express all
forms of uncertainty and noise associated with our model...

e ...then inverse probability (i.e. Bayes rule) allows us to infer
unknown quantities, adapt our models, make predictions and
learn from data.



Bayes Rule

P(datalhypothesis) P(hypothesis)
P(data)

P(hypothesis|data) =

Rev'd Thomas Bayes (1702-1761)

e Bayes rule tells us how to do inference about hypotheses from data.

e Learning and prediction can be seen as forms of inference.



Some Canonical Machine Learning Problems

e Linear Classification
e Polynomial Regression

e Clustering with Gaussian Mixtures (Density Estimation)



Linear Classification

A
Data: D = {(x("™), y™)} forn=1,...,N X
data points y y
X X X
x™ e RP X X
y(n) e {+1,-1} X XX
Model:

(

D

1 i Y 0q25" + 65> 0
d=1

| 0 otherwise

P(y™ = +1]6,x™) = 4

Parameters: 0 € RP*!

Goal: To infer 8 from the data and to predict future labels P(y|D, x)



Polynomial Regression

Data: D = {(«™),y(")} forn =1,...,N

M e R
Model: .
Y™ = ag + a1z + agze™” . 4+ anz™ +e
where
e ~ N(0,07%)
Parameters: 0 = (ag, ..., am,0)

Goal: To infer 8 from the data and to predict future outputs P(y|D, x, m)



Clustering with Gaussian Mixtures
(Density Estimation)

Data: D = {x("} forn=1,...,N B

x(") ¢ RP
Model: Sl T

x( Y " pi(x)
1=1

where | |
pi(x") = N (a9, 59)

Parameters: 8 = ((pV), SW) ... (um™) 5 1)

Goal: To infer 8 from the data, predict the density p(x|D,m), and infer which
points belong to the same cluster.



Bayesian Modelling

Everything follows from two simple rules:
Sum rule: P(z)=>_,P(x,y)
Product rule: P(z,y) = P(x)P(y|x)

P(D‘@) m)P(@‘m) P(D|6,m) likelihood of parameters 6 in model m

PO|D,m) = P(6|m) prior probability of 6

P(D|m) P(0|D, m) posterior of 8 given data D
Prediction:

P(z|D.m) = / P(2]0.D. m)P(0|D. m)dd
Model Comparison:

P(D|m)P(m)
P(m|D) =
(/D) 5D

P(Dlm) = /P(D\H,m)P(@\m)d@



ML overview

Output: y(x)
images X

Target vectoryort

Learning/ training [x;...]
Test set

Feature extraction
Supervised learning--- Making predictions

— Classification

— Regression
Unsupervised learning

— Clustering

— Density estimation
Reinforcement learning

— Exploration><exploitation

Nmist data set
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Polynomial Curve Fitting
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Sum-of-Squares Error Function




Ot" Order Polynomial




15t Order Polynomial




39 Order Polynomial




9th Order Polynomial




Over-fitting

—©— Training
—O— Test

Root-Mean-Square (RMS) Error: Egns = /2E(w*)/N



Polynomial Coefficients

M=0 M=1 M=3 M=9
wy | 019 082  0.31 0.35
wk 127 7.99 232.37
w -25.43 -5321.83
W 17.37  48568.31
w -231639.30
w? 640042.26
wy ~1061800.52
W 1042400.18
Wk -557682.99
wy 125201.43




Data Set Size:

9t Order Polynomial




Regularization

* Penalize large coefficient values

l\DIr—\

al A
=5 2 (vl w) —ta+ 5w



Regularization:

InA=0

e

o)




Regularization: VS.
ERMS In A
Training
Test
-35 -30 —215 —210

In A



Polynomial Coefficients

In\=—-00 InA=-18 InA=0
wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
(0 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
(0 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
w3 1042400.18 -45.95 -0.00
wg -557682.99 -91.53 0.00
(A 125201.43 72.68 0.01



Probability Theory

Joint Probability

nij

N

*Marginal Probability

*Conditional Probability

N4
p(Y = y;| X =x;) = C—]



Probability Theory

Sum Rule

Product Rule

p(X =2;,Y =vy,)

C; 1 &
A DI

_xh _yj)



The Rules of Probability

e Sum Rule p(X)=> p(X,Y)

* Product Rule
p(X,Y) = p(Y|X)p(X)




Bayes’ Theorem

posterior o likelihood x prior



Probability Densities




Transformed Densities




Expectations

E[f] =) p)f(z) E[f] = / p(z)f(z)dz
Ei[ﬂy] - Zp(:dy)f(x) Conditional Expectation(discrete)
1 <& Approximate Expectation
E{f] ~ N z::l f(@n) (discrete and continuous)

coviz,y] = Ezy[{zx—E[z]}{y —Ely]}]
= [E,,[zy] — E[z]E[y]
covix,y] = Exy |[{x-— Ex]Hy" — E[YT]}]

— E
Exy[xy'] — EX]E[y"]



The Gaussian Distribution

1 1
N (zlp,0%) = 2ra?)i/E P {—ﬁ(w — u)Q}

N(z|p,0?)
' N (2|, 0%) > 0

Gaussian Mean and Variance
E[z] :/ N (zlp,0?) zdz = p

E[z?] = / N (z|p,0?) 2% do = p* + o7

var[z] = E[z?] — E[z]? = o?



The Multivariate Gaussian

N, %) = s s ep { 3 (- )= - )}

@

51?2‘




Gaussian Parameter Estimation

Likelihood function

N(zp|p, 0?)




Maximum (Log) Likelihood

1 < N
Inp (x|p,0?) = ~53 Z(xn —p)? — =1Ino”* — — In(2m)
n=1
1 & 1
HML = Nzxn 01%/[L — NZ(fEn—MML)



Curve Fitting Re-visited

y(z, w) ,

p(t|xo, w, B)
=N (tly(zo, w),57)

Y(2g, W) fmmmmmmmmm et IQJ




Maximum Likelihood

Determine W1, by minimizing sum-of-squares error, F/(w ).

1
BuL

N
1
= 5 D {y(@n, wan) — ta)’
n=1



Predictive Distribution

p(t|:c, WML, BML) — N (t|y(x, WML)? /81\_/[%,)




MAP: A Step towards Bayes

p(wla) = N(w|0,a™ 1) = (%)(MH)/Q exp {—%WTW}
p(wlx, t,a, ) o< p(t|x, w, B)p(w|a)

~ 15} N x
PE() = 3 D {ylanw) —ta}? + 5w

Determine WA P by minimizing regularized sum-of-squares error, E(w).



Minimum Misclassification Rate

p(mistake) = p(x € Rq,C2) + p(x € Ra,Cq)

_ /Rlp(x,@)dx+/ p(x,C1) dx.

Ro



Reject Option

p(C1|z) p(Ca|x)

0.0

- — T
reject region






OLD



