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1. Summary
Deforestation has become a severe issue in the past

decades, resulting in reduced biodiversity, habitat loss, cli-
mate change, and other devastating effects. And deforesta-
tion in the Amazon Basin accounts for the largest share
every year. Better data analysis about the location of de-
forestation and human encroachment on forests can help
governments and local stakeholders respond more quickly
and effectively. This project aims to label the satellite im-
age chips of Amazon forest with atmospheric and various
classes of land cover/land use.[6] We proposed two main
methods: XGBoost and convolutional neural networks and
achieved precisoin of 96.3% and F2 score of 0.90.

Based on our results and experiment, we can see that
the CNN outperforms XGBoost for this problem, which in-
dicates that the CNN is a powerful tool for visual classi-
ficaiton or recognition. But XGBoost is really a handful
and fast training model. Besides, we think that use model
ensemble and effective image pre-processing may improve
our prediction further.

2. Introduction
Every minute, the world loses an area of forest the size

of 48 football fields. Deforestation of Amazon Basin ac-
counts for the largest share.[6] Tracking changes in the for-
est and differenciation human cause or natural cause for de-
forestation can help people stop deforestation and protect
the earth. With the technology developing, hight resolu-
tion imagery has already been applied to detect small-scale
forest degradation; however, robust methods to diffrenciate
human encroachment and natrual factors has not been pro-
posed. In this project, we are given a series of image seg-
ments of Amazon Basin and try to label these images with
multiple tags accurately and efficiently.

2.1. Problem Formulation

There are 17 labels for the imagery in total, consisting of

• four weather labels: clear, partly cloudy, haze, cloudy;

• six land labels: primary, agriculture, water, cultivation,
habitation, road;

• seven rarer labels: slash burn, conventional mine, bare
ground, artisinal mine, blooming, selective logging,
blow down.

Since each image chip may have multiple labels, like
’partly cloudy’ and ’primary’, this problem can be defined
as a multi-class classificaiton problem opposed to standard
multi-class classificaiton problem. We investigate the meth-
ods by solving the multi-label classification problem:

ŷi = f(xi) i = 1, 2, ..., N (1)

where N is the number of images in the dataset, ŷi is a
1 × 14 vector containing 1s and 0s, f : Rm → R14 is
the decision function, xi is the ith images with m fea-
tures. We label xi as 1s and 0s to represent if the image
contains the specified tag or not. For example, if a im-
age chip is clear and primary, then the true label should
be [1, 0, 0, 0, 1, 0, 0, ...0], and any class vector ŷi different
from this will be regarded as incorrect.

2.2. Data Overview

The chips for this project were derived from Planet’s full-
frame analytic scene products using our 4-band satellites in
sun-synchronous orbit (SSO) and International Space Sta-
tion (ISS) orbit. The set of chips for this competition use
the GeoTiff format and each contain four bands of data:
red, green, blue, and near infrared. Each of these chan-
nels is in 16-bit digital number format. The imagery has a
ground-sample distance (GSD) of 3.7m and an orthorecti-
fied pixel size of 3m. The data comes from Planet’s Flock
2 satellites in both sun-synchronous and ISS orbits and was
collected between January 1, 2016 and February 1, 2017.[5]
Limited by our computer capability, we used the JPEG for-
mat image chips which only contains three channels(red,
green and blue), the GeoTiff format dataset may provide
more information though. The training dataset consisted of
40479 labeled files, which implies that this problem can also
be defined as a supervised-learning classification. The test
dataset consisted of 61191 files.
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Figure 1. Sample chips and their labels

3. Data Engineering
3.1. Data Analysis

Some data exploration and analysis have been done be-
fore classificaiton. Given the histogram of labels in Figure
2, we can see that the label ”primary” and ”clear” have the
hightest proportion of labels.

The co-occurence matrix can provide a lot of informa-
tion for multi-label classificaiton challenge. Figure 3 shows
heat map of co-occurence matrix between different labels.
If we zoom out the map, we can find that each image seg-
ments can only have one weather labels, but the land labels
and rarer labels may overlap. And some pairs of labels have
trend to occure together, like primary and argriculture, ar-
griculture and water.

Figure 2. Histogram of labels distribution[1]

3.2. Feature Selection

According to previous reported image classification so-
lutions, we have selected 7 classic statistic properties of 3

Figure 3. Heat map of co-ocurrence matrix[7]

channels (RGB) as features, i.e.

• mean

• standard deviation

• max value

• min value

• trim mean (pruned top 20% and least 20%)

• kurtosis: The kurtosis is the fourth standardized mo-
ment, defined as [2]

Kurt[X] =
µ4

σ4
=

E[(X − µ)4]

(E[(X − µ)2])2
(2)

where µ4 is the fourth central moment and σ is the
standard deviation. The kurtosis is a measure of the
”tailedness” of the probability distribution



• skewness: The skewness of a random variableX is the
third standarized moment γ, defined as [2]

γ = E[(
X − µ
σ

)3] (3)

where µ is the mean and σ is the standard deviation.
The skewness is a measure of the asymmetry of the
probability distribution about its mean.

There are 21 features in total for each image segment.

4. Methods
We implemented two methods for classification and

compare their results.

4.1. XGBoost

The first method we have used is based on XGBoost[3].
XGBoost is short for extreme gradient boosting, and pro-
posed based on this original model. The model of XGBoost
is tree ensemble, which is a set of classification and regres-
sion trees (CART). We classified the chips into different
leaves, and assigned them the score on the corresponding
leaves. A little bit different from decision tree, a CART leaf
only contains the decision values. Since one single tree is
not strong enough, we summed the prediciton score of mul-
tiple trees together to get the final results. The model can be
represented as:

ŷi =

K∑
k=1

fk(xi), fk ∈ F (4)

where K is the number of trees, fk is the funciont in the
functional space, F is a set of all CARTs. Therefore, the
objective function is:

obj =

n∑
i

l(yi, ŷi) +

K∑
k=1

Ω(fk) (5)

where l is the loss function, and Ω is the regularizaiton to
evaluate how complexity the model is. For the training part,
what we need to learn are those functions fi containing the
tree structure and leaf scores. To learn the ensemble trees at
once is difficult; instead, we use addictive strategy: fix what
we have learned in the previous steps, and add one tree at
each step. So, the prediciton value at step t can be written
as:

ŷ
(t)
i = ŷ

(t−1)
i + ft(xi) (6)

The objective function at step t is:

obj(t) =

n∑
i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

+Ω(fi)

=

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) +

t∑
i=1

+Ω(fi)

(7)

Here, we implement a model where logistic function as the
loss function, and L2 norm as the regularizaiton. To train
the mode, we first set the learning rate as 0.1 to tune the ap-
proximate optimal parameters, and then shirink the learning
rate to 0.02 to finetune our model and achieved more accu-
rate prediction.

4.2. Convolutional Neural Networks

XGBoost achieves pretty good results in a fast training
without tricky method. Since this is a image classifica-
tion problem, we decide to improve the performance of the
model further by CNN[4] and tried to get a better results.
Unlike ordinary neural networks, CNN makes the explicit
assumption that the input are images, which allows us to
encode certain properties that make the forward function
more efficient to implement and vastly reduce the amount
of parameters in the network.

Figure 4. Architecture of CNN

Due to the limitation of speed, our network only have 3
stages and each stage contains:

• Two convolutional layers: compute the output of neu-
rons that are connected to local regions in the input,
each computing a dot product between their weights
and a small region they are connected to in the input
volume.

• RELU layer: apply an elementwise activation func-



tion, such as the max(0,x) thresholding at zero. This
leaves the size of the volume unchanged.

• Pooling layer: perform a downsampling operation
along the spatial dimensions (width, height).

• Drop out layer: avoid overfitting

• Fully-connected layer: a fully-connected layer to com-
pute the class scores

The whole architecture of CNN is [INPUT-(CONV-
CONV-POOL-DROP OUT)×3-FULLY CONNECTED]

Figure 5. Samples of prediction

5. Results

Method F2 score
XGBoost 0.88221
CNN 0.90003

Table 1. F2 score of two methods

The final prediction is evaluated by mean F2 score,
which measures the accuracy with precision p and recall r.
The F2 score is given by

(1 + β2)
pr

β2p+ r
(8)

where p = tp
tp+fp , r = tp

tp+fn , β = 2. tp denotes true
positive, fp false positive, fn false negative.

We have achieved a precision at 96.3%. But since F2
score emphasizes more on recall, our final mean F2 scores
of two methods are a little bit lower. Figure 5 shows some
samples of our final prediction.
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