ECE 285 Final Project

Michael Threet

mthreet@ucsd.edu

Abstract

Source localization allows for range finding in underwa-
ter acoustics. Traditionally, source localization was done
using Matched Field Processing, but this method has proven
to be complicated to model and computationally expensive.
This paper examines the used of three machine learning
methods (Random Forests, Support Vector Machines, and
Neural Networks) in the source localization problem, and
does some fine-tuning to achieve acceptable results. Instead
of treating source localization as a regression problem, this
paper creates range classes based on “cutting up” the ob-
served ranges into uniform chunks of distances. The results
when using classification were largely successful. All three
machine learning methods produced accurate results, with
the Support Vector Machine performing the best.

1. Introduction

Source localization is an important problem in underwa-
ter acoustics. Using an array of underwater pressure sen-
sors, the range of a passing ship may be estimated. This is
normally done using Matched Field Processing (MFP), but
this technique is not always straightforward. MFP requires
the local ocean environment to be accurately modeled, but
this is a very complicated task that produces unpredictable
results. In addition, MFP can be computationally expensive
when predicting a ship’s range.

This paper uses machine learning techniques to perform
source localization, namely Random Forests (RFs), Support
Vector Machines (SVMs), and Neural Networks (NNs).
These three techniques attempt to solve the issues that arise
when doing MFP. All of the techniques do not need to
model an underwater environment; instead, they require a
(large) set of data to be trained and evaluated on. Addition-
ally, while the machine learning techniques require a rel-
atively long training time, their prediction times are quick
and computationally inexpensive compared to MFP.

For more information, see [6].

Chenyin Liu
chl1586@Q@ucsd.edu

Rui Guo
rug009Ceng.ucsd.edu

34.27 —— T T T
2
34.265 DataSet02 ,,
'®o,
3426 DataSet03 1
34.255
& DataSet01
S 34.25 P
()
R LJ
0 34.245 - 4
E $
E’ 34.24 |- —
DataSet05
34.235 b
34.23 - .
S
34.225 |-] -
DataSet04 o~ N6,
& .
34.22 1 L L L O] L I
12014 12013 12012 120.11 120.1 120.09 120.08 120.07 120.06 120.05

Longitude (deg, aspect corrected for Latitude)

Figure 1: The paths of the ship that were tracked to obtain
the training data

1.1. The Data

The data used in this paper was obtained from an un-
derwater array of pressure sensors. To obtain the “ground
truth” data, a ship was sailed on five different courses with
its GPS position recorded, which provided the true ranges
used for training the machine learning methods (see Fig-
ure[I). For this paper, only DataSet01 and DataSet02 were
used.

2. Background

The three machine learning techniques used in this pa-
per required an input that was a vector of observations or
samples. To meet this requirement, some preprocessing
was required. In addition, source localization was treated
as a classification problem in this paper by discretizing the
the ranges into a set number of classes. This led to much
higher prediction accuracy, albeit at the cost of some range
knowledge due to discretization. The three machine learn-
ing methods described in this section are therefore assumed
to perform classification instead of regression.

quitting
time?

2 18: ’
<1830 o rpeen > 21:30

:::e; Y deadline?

true false > 2days_~between . < —2days

N) ¢ N Y N

Figure 2: An example structure of a decision tree for deter-
mining whether it is time to quit a process

2.1. Preprocessing the Data

The data is initially a time series of pressure values
received at L sensors. The DFT of the time series re-
sponse at each sensor is taken to form a vector p(f) =
[p1(F); ;pL(F)]". This vector is then normalized to

p(f) _ »p()

L, ke(Pke
Iglnm(f)J

The sample covariance matrices are then averaged over
Ns snapshots to form

p(f) =

6]

NS
o) = > po(FIP (F); @
S s=1

Only the real and imaginary parts of the complex val-
ued entries of diagonal and upper triangular matrix in C(f)
are used as input to save memory and improve calculation
speed. These entries are vectorized to form the real-valued
vector x of length L (L + 1), which is used as the input
vector to all three machine learning techniques used in this
paper.

For more information, see [6].

2.2. Random Forest

A RF is a well-known machine learning method based on
decision trees. A RF is composed of many decision trees,
each of which can provide a class prediction [5]. Since a RF
is composed of many decision trees, it can form more com-
plex features and relationships from the data than a single
decision tree. At prediction time, the RF selects the class
that is predicted by the most decision trees as the true class.
The subsections below describe the major components of
the RF algorithm.

PE

m PE Response .
s 200
10 Mz good X @ ® @ ® @ ®
: * @ ® @
20 it bad ® o ®
M4 ® ®
! @ (o] ® @
M1 @ @ L J
45 M5 2 21 e @ @
» T
2 3

PE.
R IT=5
M o9 e =
@ e
@ -]
® e e e — -

@ O @ PE g (MT M2 M3}
wl @ ®
M3 .0 .] .. e @ :
i o o e

T

Figure 4: The data after decision tree classification

2.2.1 Decision Tree

The decision tree grows from the root, or topmost node. For
this paper, the root would be something of the form: “What
is the range of the observed ship given the sample covari-
ance input?”. When the root tries to grow it will judge the
growth condition based on the value of Gini impurity (see
Equation [3). As in Figure 2] the decision tree grows from
its root and forms nodes based on input values and infor-
mation from previous decisions [1]]. Moreover, any feature
can just be a part of decision tree and there will not be any
exception.

According to the accommodation of feature adjustment,
any feature of the data can be a part of a decision tree [5].
In a RF, the objective is to put features into decision trees.
The number of decision trees depends on the architecture of
the RF and the complexity of the input data. The decision
tree is a classifier that divides the input data into different
classes.

Figure [3]shows a distribution of raw data. The data con-
sists of good, bad, and unsure samples. The data has no
clear groupings or shared features between each class type.
However, a decision tree can be used to classify the raw
data. Figure [shows the result of applying a decision tree
to the raw data. The groupings are not perfect, but they do
manage to capture most of the classes correctly.

2.2.2 Gini Impurity

The Gini impurity is used to find the optimal partition. The
Gini impurity is described as

J
Is(F)=> fil i) 3)

i=1

Classifier 1 > Decision boundary! Classifier 2 - Decision boundary 2 Classifier 3 - Decision boundary 3
A

Feature 2
Feature 2
Feature 2

0
e
4 1
%‘ Feature 1

Feature 2

Feature T

nble based decision boundary

®

Feature 2

©Polikar, 2008 Feature 1

Figure 5: An example of the bagging algorithm

where 1 () is the Gini impurity, J is the total number of
classes, and Tj is the fraction of items labeled as class i in
the dataset. The Gini impurity measures how often a sample
would be mislabeled if its label was randomly chosen [1].
This allows the decision tree to “split” the dataset in the
best manner possible, as it can measure the likelihood of a
mislabel based on the current input class.

2.2.3 Bagging

Bagging is a method used in a RF to avoid overfitting. Bag-
ging can be used for classification to improve test accuracy
and lower the variance of the model [5]. Bagging involves
randomly selecting (with replacement) a subset of the train-
ing data, and training a single decision tree on this subset.
This is done over many training iterations, and allows for
different decision trees within the RF to form independent
features of the training data. At prediction time, the re-
sponse of each decision tree within the RF is observed, and
the class that was predicted the most often is chosen as the
predicted class. See Figure [5| for a visual example of bag-

ging.
2.3.SVM

In machine learning, Support Vector Machines are su-
pervised learning models that analyze data and are used for
classification and regression. The basic idea is, given a set
of training examples each marked as belonging to one or
the other of two categories, a SVM builds a model that as-
signs new examples to one class, making it a binary linear

classifier [2]. The SVM attempts to form a hyperplane that
best separates the two classes, first by maximizing the num-
ber of correctly labeled examples, and then by maximizing
each correctly labeled example’s distance from the hyper-
plane.

In addition to performing linear classification, SVMs can
perform a non-linear classification by using the kernel trick,
implicitly mapping the inputs into high-dimensional spaces
[3]. In this paper, 7200 data inputs are mapped to 1 of 150
total classes.

2.4. Principal Component Analysis

Introduction: The main goal of PCA is to reduce the
dimension of data space and fasten the model built time.
PCA is a procedure that uses an orthogonal transformation
to convert a set of observations into a set of values of lin-
early uncorrelated variables called principal components.
The number of principal components is less than or equal
to the number of original variables.

Take a data matrix X, with observations in its columns.
The column-wise mean is then subtracted from X to cen-
ter the observations around 0. PCA transforms a set of p-
dimensional vectors using weights Wy = (W1; 1} Wp)K that
map each row vector X; of X to a new vector of principal
component scores tj = (t1;::; tm)i, given by ti = X; Wy
fori = 1;::;;nand k = 1;::;;m. PCA attempts to ensure
that each variable in t inherits the maximum possible vari-
ance from X, so that the transformed data retains as much
of its original shape as possible. See [7] for more informa-
tion.

Using PCA with a SVM: PCA is used to reduce the di-
mensionality of the input vectors to the SVM. In this paper,
the original dimensionality is 7200, which is very large and
leads to long and computationally expensive training times.
With the benefit of PCA, the dimensionality of the input
vectors can be reduced while still maintaining enough in-
formation to accurately predict labels.

2.5. Neural Network

A neural network contains a number of hidden layers,
each with neurons that take inputs from the previous layer
and connect their outputs to the next layer (see Figure [6).
The number of hidden layers and the number of neurons in
each hidden layer can be varied to create networks that are
very deep and complex, or networks that are shallow and
less computationally expensive to train [4]].

Each neuron takes a linear combination of the outputs of
the previous layer as its inputs. The output of each neuron
is a non-linear function applied on this linear combination
(usually a sigmoid, hyperbolic tangent, or ReLU function).
By applying non-linear functions, the neural network is able
to learn more complex features, as it is not limited to just
linear combinations of the inputs.

()
\éb\;{M
}/'4%?«‘

output layer

input layer

hidden layer 1 hidden layer 2

Figure 6: An example architecture of a neural network with
two hidden layers

Mathematically, this means that the input to the j™ neu-
ron in the k" layer is

Ik =Wg 10k 1 4)
and the output of each neuron is
ok = F(iv) &)

where Wy 1;j is the vector of learned weights for the jin
neuron, Ok 1 is a vector of the output of each neuron in the
(k 1) layer, and F(x) is the activation function of the
neuron.

A neural network is “trained” by using error back-
propagation. A training example, accompanied with its cor-
rect label or output, is given to the network. After forward-
propagating the input using the current weights, the error is
calculated. Working backwards, the network can use this
error to adjust the weights for every neuron in every hidden
layer [4]. With enough training examples, the error should
converge to a small value, and the weights should stabilize
to their“ideal” values.

The neural networks used in this paper are implemented
using the scikit-learn MLPClassifier. While this is not the
most flexible model, it allowed for the easiest implementa-
tion and training. The networks use two hidden layers with
ReLU activations. The number of neurons in each layer var-
ied as an experimental parameter. Additionally, the solver
used to train the network was varied, with the Stochas-
tic Gradient Descent (SGD), Limited-memory Broyden-
FletcherGoldfarbShanno (LBFGS), and Adam solvers be-
ing used.

3. Experiments and Results

3.1. Random Forest

The RF has many tunable parameters and implementa-
tions. A good starting point is with the default setup of the
scikit-learn RandomForestClassifier.

2500

2000

1500

Range (m)

1000

500

5 0 s 100 125 150 175
Time [index]

Figure 7: The RF test results before parameter tuning

2500

2000

1500

Range (m)

1000

500

p-] 50 s 100 125 150 175
Time [index]

Figure 8: The RF test results for the first dataset after pa-
rameter tuning with a MAPE 17%

3.1.1 Parameters change

After some testing, it became clear that certain parameters
have a larger effect on the error rate than others. The im-
portant features were found to be the number of trees, the
number of features, and the depth of the trees. Figure
shows the test results for the first dataset with the default
RF configuration. The results are not good, as there are a
lot of samples scattered around without any structure.

Figure[8|shows the test results for the second dataset with
the tuned RF parameters. This result looks much better,
as there is a lot more structure to the predictions and a re-
spectable MAPE of 17%. The tuned parameters were 800
trees, 100 features, and a depth of 13.

Next, the tuned RF was trained and tested on the second
dataset to determine its robustness. Figure [9] shows the re-
sults of this test. While the RF produced a lower MAPE of
13% for the second dataset, the visual results do not look as
promising. The RF appears to have minimized its error by
guessing a nearly constant value, which is not a promising
result.

3.2.SVM

When implementing models using SVMs, a variety of
kernels should be considered. In this paper, three kernels
were evaluated.

