
Identifying the Existence of Pulsar Stars

Group 6 Wang, Xinwei
xiw180@ucsd.edu

Yu, Yue
yuy079@ucsd.edu

Zheng, Zihan
zizheng@ucsd.edu

ABSTRACT
A pulsar is a highly magnetized rotating neutron star that
emits a beam of electromagnetic radiation detectable on Earth.
Astronomers and scientists use pulsars throughout our galaxy
as a giant scientific instrument to directly detect gravitational
waves and a very precise timepiece to keep time accurately.
Therefore, being able to identify the existence of pulsar stars
with high accuracy is intriguing. In our project, we pre-
processed the University of Manchester’s HTRU2 dataset
[1] by balancing the data using a statistical approach which
will be explained later. We tried various models, including
logistic regression classifier, random, forest classifier, convo-
lutional neural network, and multi-layer perceptron classifier
to predict pulsar stars, and we got high accuracy, precision,
and recall from all 4 models.

1. INTRODUCTION
Pulsars are a special type of Neutron star that can produce

radio emission. They are of significant interest by scientist
because they are used as an instrument to detect gravitational
waves and to accurately keep space-time. When a pulsar ro-
tates, it produces a detectable pattern of radio emission, which
is very precise and repeats periodically [2]. Therefore, we
can use the pattern of radio emission signal to decide whether
a pulsar exists at a given location. However, in practice, radio
frequency interference and noise can produce signals that are
similar to that of pulsars, so it’s highly intriguing to come up
with a way to classify between pulsars and radio frequency
interference or noise.

In this paper, we are going to utilize four machine learning
models to automatically detect the existence of pulsar stars.
From the HTRU2 dataset, the input to our algorithm is an
eight-dimension vector, which is pre-processed by UCI from
some raw signal data. The feature set contains mean, standard
deviation, excess kurtosis, and skewness of the integrated
profile and mean, standard deviation, excess kurtosis, and
skewness of the DM-SNR curve. The following Dataset
section in 3.1 will explain these physic properties in detail.

We then use mainly 4 different models, including logistic
regression classifier, random, forest classifier, convolutional
neural network, and multi-layer perceptron classifier to out-
put a predicted label, which is either 1 or 0 (1 stands for
pulsar and 0 stands for non-pulsar). Finally, we measure the
performance of the models based on the accuracy, precision,
and recall for both positive and negative labels.

In addition to the build of models, we also pre-process the
HTRU2 dataset by adding more data with positive labels (pul-

sars) because the positive and negative labels in the HTRU2
dataset are unbalanced, which will also be explained in 3.1.
Without this step, our models can still get a good accuracy by
predicting 0 for all samples, but this will lead to a pretty bad
precision score.

2. RELATED WORK
One of the difficulties encountered during the searches for

pulsars in the past fifty years is the analysis needed for the
increasing number of ’candidate’ pulsar detections arising
from an increasing volume of data to be searched [3]. Our
study focuses on solving this difficulty using various machine
learning techniques to maximize the accuracy, precision, and
recall for both positive and negative labels on both the original
dataset and the generated fake dataset. There are several prior
works that have investigated this problem. In this section,
we discuss the prior work, comparing and contrasting where
appropriate.

2.1 New Candidate Features Selection
In Fifty years of pulsar candidate selection: from simple

filters to a new principled real-time classification approach
[4], Lyon et al. use statistical classification to extract 8 new
features for the purpose of minimizing the number of features
without reducing classification performance. These features
will be described in Section 3.2. Lyon et al. then use Gaussian
Hellinger Very Fast Decision Tree (GH-VFDT) to classify
multiple pulsar star datasets including HTRU2. Their results
are as below:

Table 1: Partial Result Table from Lyon 2016[4]
Algorithm Accuracy Precision Recall Specificity
GH-VFDT 0.978 0.899 0.829 0.992

Our study builds on classifying based on this 8 features that
Lyon et al. extracts, while we use more sophisticated machine
learning models to achieve higher accuracy, precision, recall,
specificity (fraction of negatives correctly identified), and also
negative precision (Fraction of retrieved negative instances
that are positive) than Lyon et al. do with decision tree.

2.2 Past Methods & Models
There have been several attempts to solve this pulsar star

candidate selection problem. Eatough et al. and Bates et
al. use Artificial Neural Networks (ANNs) to approach the
problem [5][6]. Their models are effective to some extent but
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are not as sophisticated as the neural networks we use nowa-
days like Multi-Layer Perceptron (MLP) and Convolutional
Neural Networks (CNN). PEACE uses a set of algorithms to
analyze a pulsar candidate and calculate a score, which is a
measure of how likely a candidate is to be a real pulsar [7].
Compared to other studies, PEACE is fully pre-determined
by six quality factors [7] and focuses on significantly increas-
ing the rate of identifying pulsars rather than increasing the
prediction accuracy, precision, and recall. SPINN, an auto-
mated pulsar candidate classifier designed with maximum
recall in mind, is another ANN that produces a real-valued
and continuous output instead of a binary class label, which
can also produce a subjective ranking of candidates that can
be used to prioritize visual inspection [8]. Our study has a
different goal than that of SPINN: we want to use modern
machine learning models to maximize not only recall but also
positive/negative precision and specificity.

3. DATASET AND FEATURES

3.1 Dataset
HTRU2 is a dataset which describes a sample of pulsar

candidates collected during the High Time Resolution Uni-
verse Survey (South) [1] which describes pulsar candidates
collected during the High Time Resolution Universe Survey.
Each candidate in the dataset contains 8 attributes: Mean,
Standard deviation, Excess kurtosis, and Skewness of the
integrated profile, and Mean, Standard deviation, Excess kur-
tosis, and Skewness of the DM-SNR curve. Candidates are
labeled with the ground truth of whether a pulsar star exists
or not.

There are 17898 total examples in the dataset. 16239 of
them represent signals caused by noise or radio frequency in-
terference, which is roughly 90%. 1639 of the data represent
pulsars, which is only 10%. There is a necessity to balance
the dataset so that we have roughly 50% data with positive
labels and 50% data with negative labels or our models may
overfit the data by predicting accurately for negative labels
but poorly for positive labels.

Figure 1: before and after balancing the dataset

To balance our data, we need to generate more data with
positive labels, so we gather all data with positive labels
and calculate the mean and standard deviation of all eight
attributes. Then we randomized each attribute with the given
attributes’ normal distribution generated using their mean

and standard deviation and find the 9 nearest neighbors of
the generated data if more than half of the neighbors have
positive labels, we keep the data as one row of data. In this
way, we finally generate enough data to make a new dataset
with 50% positive labels and 50% negative labels. As figure
1 shows, the newly generated dataset looks balanced and
convincing.

3.2 Features
We have 8 features and they are all directly derived from

integrated profile and DM-SNR (signal-to-noise ratio) curve.
They are radio emission-related physics property and thus
are appropriate for predicting the existence of pulsar stars.
The integrated profile is an array of continuous variables that
describe a longitude-resolved version of the signal that has
been averaged in both time and frequency [4]. SNR, the
signal-to-noise ratio, measures the ratio between the level of
signal and level of noise, and DM-SNR curve is a combina-
tion between the real and theoretical acceleration-SNR curve
[9]. The description and definition of the 8 features are in
Table 2:

Table 2: The eight features derived from the integrated
pulse profile P and DM-SNR curve D from Lyon 2016[4]

Feature Description Definition
Pro f .µ Mean of P. 1

n ∑
n
i=1 pi

Pro f .σ Standard deviation of P.
√

∑
n
i=1(pi−P̄)2

n−1

Pro f .k Excess kurtosis of P.
1
n (∑

n
i=1(pi−P̄)4)

( 1
n (∑

n
i=1(pi−P̄)2))2 −3

Pro f .s Skewness of P.
1
n (∑

n
i=1 pi−P̄)3

(
√

1
n (∑

n
i=1(pi−P̄)2))3

DM.µ Mean of D. 1
n ∑

n
i=1 di

DM.σ Standard deviation of D.
√

∑
n
i=1(di−D̄)2

n−1

DM.k Excess kurtosis of D.
1
n (∑

n
i=1(di−D̄)4)

( 1
n (∑

n
i=1(di−D̄)2))2 −3

DM.s Skewness of D.
1
n (∑

n
i=1 di−D̄)3

(
√

1
n (∑

n
i=1(di−D̄)2))3

Below are 2 examples from the dataset. One is not a pulsar,
and the other represents a pulsar.

Figure 2: feature vector with negative label

Figure 3: feature vector with positive label

4. METHODS

4.1 Logistic Regression
The logistic regression model uses a logistic function to

model the output y. We train a logistic regression model
with binary class L2 regularization weight because the data is
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not sparse. Using this model, we minimize the loss function
L(w,b), which formula is shown below:

L(w,b) =
n

∑
i=1

ln(1+ e−y(i)(w·x(i)+b))

Then we use the gradient descent to update the weight to
minimize the loss function with the following formula:

wt+1 = wt +η

n

∑
i=1

y(i)x(i)Prwt (y
( j)|x(i))

where η is the step size.
After iterations, eventually, we have a better weight for our

logistic regression model.

4.2 Random Forest
Random Forest is a method using multiple decision trees to

train the model and make the output be the mean prediction
result of all decision trees generated. It is better than decision
tree classifier because it can better prevent data over-fitting.

For each iteration, n points would be chosen randomly,
with replacement from the data set. Then they are fitted into
a decision tree, where at each node restrict to one of

√
d

features chosen at random, where d is the dimension of the
data.

The final predictor would be the majority vote of those
iterations’ decision trees.

4.3 Multi-layer Perceptron
A Multi-layer Perceptron (MLP) is a logistic regression

classifier. A perceptron classifies its input x, which is a
feature vector, by separating 2 classes with a line. It produces
its output y by the following formula:

y = ϕ(
n

∑
i=1

wixi +b) = ϕ(wT x+b)

In the formula above, w is the weight vector, b is the bias
and ϕ is the activation function. An MLP is composed of
more than one perceptron. The input layer takes in the signal,
and the output layer makes a decision about what class the
input belongs to.

Figure 4: An MLP network example

4.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a regularized
version of multi-layer perceptrons. The network has many
different types of layers that serve variable roles. A Convo-
lutional layer takes a tensor with shape as input and outputs
a convolved feature whose dimensionality either increases,
remains the same, or decreases. Following the convolutional
layer, an activation function is usually applied to the out-
put tensor. For example, the figure below demonstrates how
ReLU, one kind of activation function works. ReLU takes in
a tensor and convert all negative values to zero and keep all
positive values.

Figure 5: ReLU function

A pooling layer reduces the spatial size of a convolved
feature, and it’s usually added after a convolutional layer. A
fully connected layer is usually a method to learn low-level
features and classify them with Softmax Classification, which
outputs a categorical probability distribution. The following
formula shows how a softmax function squashes each output
unit of the fully connected layer to a value between 0 and 1:

σ(z) j =
ez j

∑
K
k=1 ezk

Our CNN model uses Stochastic gradient descent (SGD)
algorithm to minimize the training loss. In each iteration, the
weight matrix is updated according to the following formula:

θ = θ −η ·Oθ J(θ ;x(i);y(i))

In the above formula, η is the step size and J is the loss
function. For J, the model uses binary cross-entropy to mea-
sure loss over iterations, which the formula is:

−(y log(p)+(1− y) log(1− p))

where p is the prediction and y is either 1 or 0.

5. RESULTS

5.1 Experiments
For all models, we first trained with the original HTRU2

dataset. Then we applied the statistical random data sampling
method mentioned in section 3.1 to create more data with
positive labels, which means we added more "pulsars" and
trained with the new dataset.

For the logistic regression, in order to better tuning the
parameters, we use grid search with cross-validation and
nfold = 5, to find the best C value from C_list where C_list =
[0.001,0.01,0.1,1,10]. After the grid search, we found that
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Accuracy Negative Precision Positive Precision Negative Recall Positive Recall
LR 0.972975 0.9656244 0.9806157 0.9810514 0.9648466
RF 0.988444 0.9847004 0.9922729 0.9923834 0.9844801

CNN 0.983692 0.9751824 0.9925728 0.9927549 0.9745699
MLP 0.985742 0.9768417 0.9950447 0.9951699 0.9762528

Table 3: Performance metrics for the 4 models

the best C is 10. So we used C = 10 for the logistic regression
model. For the random forest, we followed the same way of
doing grid search with nfold = 5, to find the best parameters
listed below:

We chose best n_estimators ’s value from n_estimator_list
where n_estimator_list = [10,30,50,100].

We chose best max_depth ’s value from max_depth_list
where max_depth_list = [3,5,7,9,11]. After the grid search,
we found the best n_estimators is 100 and the best max_depth
is 11, thus we used those two parameters to train the random
forest model.

For the multi-layer perceptron, we tried tanh and ReLU
for activation function. We tried adam and stochastic gra-
dient descent for weight optimization solver, and we tried
different alpha, the L2 penalty for the regularization term,
in our experiment. After the experiments, we found that the
combination of adam solver, 0.1 alpha, and ReLU activation
creates a model with the best performance, which will be
discussed in the next section.

For the convolutional neural network, we first tried differ-
ent number of convolutional layers from 1 to 4. Different
filter sizes, from (6, 2, 1) to (32, 4, 1) were experimented. We
also tried to add and to not add a max pooling layer to each of
the convolutional layer. For the activation function, we tried
tanh and ReLU. A Dropout layer was added after all convo-
lutional layers to avoid overfitting. For weight optimization
solver, we tried adam and stochastic gradient descent.

5.2 Performance
Our primary metrics are accuracy, precisions for both pos-

itive and negative labels, and recalls for both positive and
negative labels. Detailed results are listed in table 1 below.
Our random forest model predicts with the best accuracy of
98.84%, negative precision of 98.45%, and positive recall of
98.45%

For the CNN model, we also measured the training loss
and accuracy over iterations/number of epochs, and they are
plotted below in Figure 6 and 7. Basically, the accuracy
goes up steadily and the training loss decreases as the model
iterates, which is what we expected because our sgd method
aims to minimize the loss in every step of training.

The confusion matrix describing the outcome of the bi-
nary classification is described in Figure 8 to Figure 11. We
evaluate our model with several attributes described in Table
4. The actual performance the models achieves are listed in
Table 3.

From the performance evaluations, we can see that all 4
models reach state-of-art performance for all 5 metrics we
evaluate. All the performance attributes for all 4 models are
above 97 percent.

Among all 4 models we use, Random Forest achieves the
best negative precision, accuracy, and positive recall while

Figure 6: CNN training loss vs num epoch

Figure 7: CNN accuracy vs num epoch

Multi-Layer Perceptron achieves the best negative recall and
positive precision.

5.3 Discussion
Initially, our models’ test accuracies were very high be-

cause the data was unbalanced (90 % with negative labels
and 10 % with positive labels). As a result, we have relatively
low precision and recall for Pulsars (positive label). After
sampling more data with positive data, our models’ perfor-
mance dropped as expected. After fine tuning the models, we
were able to achieve similar accuracy as what we had for the
unbalanced data and higher precision and recall.

We found that excess kurtosis is the feature that contributes
the most in identifying a Pulsar, but using just kurtosis for
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Figure 8: confusion matrix of logistic regression

Figure 9: confusion matrix of random forest

integrated profile and DM-SNR curve does not improve the
performance.

We expected Logistic regression and random forest to be
capable of identifying a Pulsar because these two models have
gained popularity for binary classification tasks. However,
we did not expect CNN, which is well-known for image
classification, to have an impressive performance.

6. CONCLUSION & FUTURE WORKS

6.1 Conclusion
In this study, we implement 4 machine learning models:

Logistic Regression, Random Forest, Multi-layer Perception
(MLP), and Convolutional Neural Network (CNN) to solve
the pulsar star candidates identification problem. We use
a statistical method to generate a balanced dataset to test
the 4 models we implement. All 4 models achieve state-of-
art performance for all 5 performance metrics we measure.
Among the machine learning models, RF performs the best
on the total accuracy of 98.84% while other models are only
slightly worse than it after fine-tuning the parameters for
these 4 models. Also, the random forest performs the best
on the negative precision of 98.47% and positive recall of
98.45%. We believe that these models will all be useful,

Figure 10: confusion matrix of random forest

Figure 11: confusion matrix of random forest

and especially random forest model, for future pulsar star
identification in the area of astronomy.

6.2 Future Works
There are several future works that can be done if given

more time for this study:

• Test our models in more pulsar star candidate datasets
other than HTRU2, like HTRU1 and LOTAAS1 de-
scribed in Lyon 2016 [4]

• Generate a better dataset, include more features that
are in the original HTRU2 datasets and key representa-
tions of Pulsars and is larger and balanced. Use better
balancing methods to generate better distributed fake
data.

• Use our model predictions to discover actual Pulsar
Stars in the universe like previous studies did [5][6].
If pulsar stars can be found based on our predictions,
our machine learning models are proved to be useful in
application.

7. CONTRIBUTIONS
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Table 4: Evaluation Attributs describing the outcome of
the classification

Statistic Definition
Accuracy (T P+T N)

(T P+FP+T N+FN)

Negative Precision T N
(T N+FN)

Positive Precision T P
(T P+FP)

Negative Recall (Specificity) T N
(T N+FP)

Positive Recall T P
(T P+FN)

7.1 Xinwei Wang
Created the logistic regression model. Investigated previ-

ous works for inspirations. Participated in parameter-tuning
process. Worked on Related Works, Features, Results, Con-
clusion, and Future Works sections.

7.2 Yue Yu
Created the Random forest model. Implemented the algo-

rithm to balance the data and drew the figure of showing how
data looks. Implemented the grid search algorithms to help
better tuning the parameters. Worked on Dataset and Fea-
tures, methods and results for logistic regression and random
forest sections.

7.3 Zihan Zheng
Created the MLP and CNN models. Worked on Introduc-

tion, Dataset and Features, methods and results for MLP and
CNN, and Discussion sections.
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