
Floor Surface Classification with Robot IMU Sensors Data
Group 14

Jiang, Yueyu
UC San Diego

A53277031
y5jiang@ucsd.edu

Zhou, Weiwei
UC San Diego

A53273469
w1zhou@ucsd.edu

Zhang, Song
UC San Diego

A53275617
sozhang@ucsd.edu

Gao, Shang
UC San Diego

A53275724
shgao@ucsd.edu

Abstract

In order to work intelligently and flexibly, robots should
have the ability to navigate themselves. In this situation,
understanding the surroundings becomes one of the most
important tasks that helps robots to get reasonable reac-
tions for navigation. Our project is aimed at establishing
a floor surface classification model with the data collected
by Robot Inertial Measurement Units (IMU). With several
advanced feature engineering techniques, our customized
Convolutional Neural Network beats a bunch of popular
machine learning algorithms including KNN, Logistic Re-
gression, Random Forest and LSTM with an multi-class ac-
curacy of 80.15% on the test dataset.

1. Introduction

On different floor surfaces (carpet, tiles, concrete, etc.),
robots can take different actions to move quickly and effi-
ciently due to friction magnitude and bounce amplitude. If
robots are able to figure out different types of the floor, it
will be very helpful for the navigation of the robots.

The difficulties in the project can be concluded in three
aspects. Firstly, the training dataset is relatively small
(around 3k) so that the performance of deep learning model
may not meet the expectation due to over-fitting or some
other issues related to lack of data. Secondly, we have
no prior ideas about how the robot is moving in general,
whether moving straight like a robot car or balancing like
a humanoid Robot, so that we can only explore the moving
patterns based on the data without any hypothesis. Thirdly,
the data is recorded in time series and noises exist, so we
need to apply some denoising techniques for feature engi-
neering.

Our goal is to evaluate both classic machine learning
methods and deep learning methods, then making a com-
prehensive comparison between model candidates. With
the help of some advanced engineered features on time se-

ries data and experiments on different models, we have got
some satisfying results.

2. Related work
In this section, we will have a brief overview of the re-

lated work about the feature engineering and classification
on time series data using different kinds of models and tech-
niques.

2.1. Vibration Feature Extraction

The data in time series can be treated as a period of vi-
bration. For classification on time series data, features ex-
tractions are performed in time domain, frequency domain
and time-frequency domain. Among them, frequency re-
lated domain is both time consuming and resource consum-
ing. René-Vinicio et al. [19] combined Chi-square, ReliefF
and information gain feature ranking methods to select the
optimal number of feature set for vibration in time domain.
René-Vinicio et al. [22] presented the most relevant fea-
tures of time domain for vibration using K-nearest Neighbor
(KNN) and Chi-square method and tested accuracy of the
classifier based on these features. In their research, the clas-
sification accuracy for vibration based on the top 10 selected
features of time domain can reach approximately 95%.

2.2. Convolutional Neural Networks for time series
data classification

Over the past few years, convolutional neural net-
works have achieved great performance in many areas,
such as computer vision [15, 21, 20], natural language
processing[14, 23, 11] etc. And CNN has shown its incom-
parable ability on classification. Inspired by this success, in
2014, Zheng et al. [25] applied deep convolutional neural
networks on time series classification. In their work, they
proposed a multi-channels convolutional neural networks,
which is directly applied on raw data. Unlike previous algo-
rithms, the proposed method does not rely on hand-crafted
features. It can learn the classification objective function

1



directly from time series data. In the networks structure,
convolutional layers are used to extract data features auto-
matically and MLP is then applied on the hidden variable to
perform classification. Specifically, they modified the tradi-
tional CNN by splitting data into univariate series units and
learn data pattern from these units individually. Patterns are
learnt by convolutional operations with bias and activation
functions, which are Sigmoid and Tanh. This approach out-
performs previous state-of-the-art algorithms on time series
data classification at that time. Later, in 2016, Cui et al.
[12] proposed an end-to-end networks model with similar
structure as [25] but has multi-scale input for CNN. In the
proposed method, input data is preprocessed to get multi-
ple extra branches, which have different time downsampling
rates. This approach take the high frequency perturbations
and random noise into consideration and thus enable better
performance on real-world applications.

2.3. LSTMs for time series data classification

Long Short Term Memory networks are a special kind of
RNN. Typically they are used to do time series prediction.
For example, Zheng et al. [24] used LSTM to do short-
term traffic forecast. Actually, LSTMs can also be used
to do classification tasks. Zachary et al. [17] used LSTMs
to recognize patterns in multivariate time series of clinical
measurements by replicating targets at each sequence step,
and do multilabel classification. Their models outperformed
several strong baselines, including a multilayer perceptron
trained on hand-engineered features. Also, some people
tried a combination of LSTM and CNN to deal with clas-
sification tasks. Soo et al. [9] used LSTM layers extract the
sequential information from consecutive audio features, and
CNN layers learn the spectro-temporal locality from spec-
trogram images. Then, they combined them together and
make predictions.

3. Dataset and Features
In this section, we talk about data analysis and various

feature engineering aspects.

3.1. Dataset Analysis

The dataset is a public accessible dataset on Kaggle[1],
provided by Heikki Huttunen and Francesco Lomio from
the Department of Signal Processing and Damoon Mo-
hamadi, Kaan Celikbilek, Pedram Ghazi and Reza Ghabch-
eloo from the Department of Automation and Mechanical
Engineering both from Tampere University, Finland. They
collected the sensor data from the Inertial Measurement
Units (IMU sensors) on robots in time series, shown in Fig-
ure 1. An IMU sensor is an electronic device that measures
and reports a body’s specific force, angular rate, and some-
times the magnetic field surrounding the body, using a com-
bination of accelerometers and gyroscopes, sometimes also

Figure 1. Visualization of Data Examples

data train test
number of measurements 487680 488448

number of time series 3810 3816
Table 1. size of train data and test data

magnetometers[2]. The surface types vary in different time
series.

For the size of dataset, shown in Table 1, there are 3810
time series and 128 measurements in each time series in
train data. And there are 3816 time series and 128 measure-
ments in each time series in test data. Each measurement
is presented as one row in X train.csv and X test.csv. The
surface types of each time series are recorded in y train.csv.
We can match and merge the measurements of each time
series and the corresponding surface type in train data using
series id as foreign key.

For features, each measurement records the data from 10
sensor channels: 4 orientation channels, 3 angular velocity
channels and 3 acceleration channels. The orientation chan-
nels encode the current angles how the robot is oriented as a
quaternion. Angular velocity describes the angle and speed
of motion, and linear acceleration components describe how
the speed is changing at different times. For classification
targets, there are 9 different surface types in train data, the
distribution of which is shown in Figure 2.

3.2. Feature Engineering

Before doing feature engineering, we do some data pre-
processing.

Firstly, we check for NULL data. Fortunately, there is

2



Figure 2. Distribution of Surface Types in train data

Figure 3. Correlation between Features

no NULL data in the dataset. Secondly, we transform 4
orientation features from quaternions to Euler angles[3],
′roll′,′pitch′ and ′yaw′. Although quaternions are more
rigorous in mathematics and provide an alternative mea-
surement technique that does not suffer from gimbal lock,
they are less intuitive than Euler angles for thinking about
actual cases and the math can be a little more complicated.
So transforming quaternions to Euler angle is more helpful.

Figure 3 shows the feature correlations of training data
after changing angle representation. We can notice that
there is a strong correlation between ′angular velocity Z ′

and ′angular velocity Y ′. And the feature correlations of
training data and test data are almost the same.

Then we do feature engineering and extract useful fea-
tures for each time series.

3.2.1 Statistical Feature

As we take a deep research into the dataset, we have find
that feature value follows different distributions if they be-
long to different classes. As the figure 1 shows, some of
them belong to normal distribution, some of them belong to

multimodal distribution. These distributions have different
means, variations, modes, quantiles, maximums and so on.
Given that we are classify a time series which means we
would classify a set of observations instead of a single. A
naive strategy is to extract the statistics in these time series,
then predict this series to the class with the most similar
distributions. Follow by this strategy, we designed a bunch
of statistics feature, including the classic mean, median,
max, min, range, std(standard deviation), absolute max,
absolute min. And for more accurately curve the dis-
tribution, we added more customized features including:
mean, maximum, minimum of absolute values, maximum
divided by minimum, mean of the changes between neigh-
bors. These features provide similarity metrics between dis-
tributions.

3.2.2 Fourier Analysis

As we exploded the data, we find the features will fol-
low different developing trending in each series. And their
developments look very like some kind of wave. To ex-
tract their developing information, we did fourier analysis
in these series. Fourier analysis consider each series as an
addition of waves with different frequencies. Fourier anal-
ysis give us a clear view to the developing trend in each
series, as the figure shows, most of the amplitude concen-
trate on some specific frequencies. For each features in each
series, we take their amplitudes in the main frequencies as
their FFT (fast fourier transform) feature.

3.2.3 Vibration Features

Since the features from sensor channels are recorded in
many time series, we can treat the continuous measurements
of each feature in a single time series as an independent vi-
bration. So we can also extract some useful vibration fea-
tures from different vibrations. Firstly, we explore about
the vibration patterns of different surface type and notice
that they vary a lot from each other. Secondly, based on
the result mentioned by René-Vinicio et al. (2018)[22],
we extract the top 10 relevant features of time domain
for vibration on each channels. The top 10 features are
kurtosis, mean, CPT5, skewness, slope sign change,
wave length, norm entropy, square root amplitude
value, mean of absolute and zero crossing.

4. methods
In this section, the classification methods and network

architectures are stated in detail.

4.1. k-Nearest Neighbor (KNN)

As we mentioned in Section 3.2.1, a basic strategy for
this problem is to make prediction based on similarity be-

3



tween feature distributions. K-Nearest Neighbor is such
an algorithm to extract the similarity between samples.
For each sample in testing set, k-Nearest Neighbor find
the k samples in training set has the most similar feature
value, denoted as its neighbors. Then predict with the la-
bel appear most frequently in the neighbors using Euclidean
distance[13] (Equation 1).

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (1)

KNN is a simple model, but it matches the observa-
tion we have in data exploration, so we put it as a baseline
model.

4.2. Logistic Regression (LR)

Logistic regression is a widely used algorithm to solve
classification problem. It used maximum likelihood to es-
timate the parameters of logistic model, a kind of general-
ized linear model. A logistic model uses a logistic function
(Equation 2) to map the output of a linear model, so it can
generate a binary output which is suitable for classification
problem.

f(x) =
1

1 + e−x
(2)

Using logistic regression helps to model a probability of
an event. But usually it only takes binary or bipolar features,
to suits for logistic regression, we discretized our continu-
ous features. For each continuous feature, we collected their
value range in the training set, split this range into multiple
(typically 50) bins, then create binary features with the same
number to indicator whether the statistic feature value of a
series fall into the bins.

4.3. Random Forest (RF)

Random forest is a commonly used classification meth-
ods. Random forests [10], introduced by Breiman, are a
combination of tree predictors such that each tree depends
on the values of a random vector sampled independently
and with the same distribution for all trees in the forest.
Predictions are made by averaging the predictions from all
the individual regression trees, which can be concluded in
Equation 3.

f(x) =
1

B

B∑
b=1

fb(x) (3)

By comparison to single decision tree, using random for-
est can efficiently avoid over-fitting. What’s more, RF is rel-
atively robust to outliers and noise, which is beneficial for
the vibration data. Also, from the result of RF classifier, we
can obtain some internal estimates of error, strength, corre-
lation and variable importance, which can provide a deep
understanding of the extracted features.

4.4. Convolutional Neural Network (CNN)

One dimensional convolution is to perform the following
equation

(s ∗ k)[n] =
l∑

m=0

s[m]k[n−m] (4)

where s is the data we want to apply convotion operation
on, k is the convolution kernel, l is the length of the signal.

The convolution operation can be shown as Figure 4,
which is also the structure of one convolutional layer in our
network. Consider the convolutional kernel as a filter, by
modifying the value of the filter, it can be activated by dif-
ferent patterns. In our network, we apply convolution ker-
nels with multiple channels so that one layer of convolution
can extract several low level features from the input. These
simple features can then be used to form more complex pat-
terns within higher layers. So with hierarchy structures, we
are able to get abstract and complex features.

Figure 4. One dimension convolution

In our work, we consider time as the dimension we ap-
ply the convolution operation on. We assume that different
types of floor will force the robots to perform differently,
which would be represented as different change patterns of
the data through time. And as we mentioned above, the data
on time domain and frequency domain carry meaningful in-
formation of the floor types, so we will exploit both of these
information. Our approach will be detailed in the following
paragraphs.

The overall architecture of our network has three se-
quential stages: transformation stage, convolution stage and
MLP stage.

1) The transformation stage performs some data prepro-
cessing.

2) The convolution stage applies two separated convolu-
tional neural networks on the two branches of the data and
learn the features from the two branches individually.

4



Figure 5. Architecture of CNN (the configuration of each layer is
shown in table 2)

3) The MLP stage applies fully connected layers to per-
form classification. Separated fully connected layers are
first used on the two branches respectively and then the out-
put of two branches are concatenated together as the input
of the following MLP.

The architecture of our networks is presented as Figure
5. Notice that we use dropout at each convolutional layers
and Fully connected layers but it is omitted in the figure for
simplification.

The activation function we used is ReLu [18], which is
applied after each linear layer. The configuration of the net-
work is shown as Table 2.

4.5. Long Short-Term Memory (LSTM)

Long Short Term Memory networks are a special kind of
RNN. RNNs, also callled Recurrent Neural Networks, are
networks with loops in them. This is where it differs from
CNN.

Cells in LSTM networks have well-defined structures
which enable them to memorize information. Memory cells
in LSTM can bridge very long lags [16]. For each cell in an

Layer
Time

Domain
Frequency
Domain Output

Channelskernel
size stride

kernel
size stride

Conv 1 8 2 8 2 32
Conv 2 9 4 7 2 64
Conv3 8 2 8 2 128
Conv4 4 1 3 1 256

output channels
FC 1 64
FC 2 64

FC c 1 64
FC c 2 9

Table 2. Configuration of CNN

LSTM network, there are several computations to do. For
instance, suppose an LSTM cell takes Ct−1 and ht−1 from
the previous cell, and also takes xt as input. Then, first,
forget gate would be calculated as:

ft = σ(Wf · [hx−1, xt] + bf ) (5)

Then calculate how much information to store:

it = σ(Wi · [ht−1, xt] + bi) (6)

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

Now we can get calculate the output and pass it to the
next cell:

Ct = ft × Ct−1 + it × C̃t (8)

ot = σ(Wo · [hx−1, xt] + bo) (9)

ht = ot × tanh(Ct) (10)

In our work, for each ID number for the measurement
series, we have 128 measurements, each has 10 columns
corresponding to the sensor. Our basic idea is that, robots
on different kinds of floor will perform differently in their
time-series behaviors. Therefore, even though LSTMs are
typically used to do time-series prediction such as speeches
and movies, perhaps we can try to use LSTM model to help
us extract some time-series feature, and use them to do pre-
diction.

The basic network architecture can be shown as the Fig-
ure 6. So, the LSTM layer takes input size 10, which
corresponds to the input data. The hidden dimension is
256, so for each batch, the output tensor will be of size
batch size × 128 × 256. Here we make batch size to be
64. Then we take the statistical features from it, we can
take mean, standard division, max value and min value, and

5



Figure 6. Architecture of LSTM model

concatenate together. Finally, pass this tensor to some fully
connected layers and get the output.

5. Experimental Evaluation and Results
We use multi-class accuracy as the metric of our algo-

rithms. Detail of multi-class accuracy is showed in equation
9, where N is the number of samples, pi is the prediction to
sample i, yi is the label of sample i.

Acc =
1

N

N∑
i=1

I(pi == yi) (11)

5.1. Classic Machine Learning Models

We use k-Fold techniques[4] for cross-validation on clas-
sic machine learning models. We randomly shuffled and
created 20 data folds.

For k nearest neighbors[5], after a series of tuning, we set
the only hyper-parameter k the number of neighbors as 50.
With k = 50, KNN achieved 49.26% multi-class accuracy
in test dataset.

For logistic regression[6], we have 2 hyper-parameters
to tune, the number of bins (noted as k) we created for dis-
cretization as we have mentioned in Section 4.2, and the l2
penalty parameter (noted as c). L2 penalty could help to
improve over-fitting of model. With k = 100 and c = 1.0,
logistic regression achieve 60.25% multi-class accuracy in
test dataset.

For random forest[7], we have 2 hyper-parameters to
tune, the maximum depth of the tree (noted as max depth)
and the number of features to consider when look-
ing for the best split (noted as max features). With
max depth = 70 and max feature = 20, logistic
regression achieve 71.81% multi-class accuracy in test
dataset. The top 5 features with the highest impor-
tance are ′yaw absolute max′, ′yaw absolute mean′,

′yaw norm enropy′, ′yaw mean absolute′ and
′yaw square root amplitude value′. Obviously, fea-
tures related to ′yaw′ orientation value more importantly
than other features.

The detail of our experiment results are showed in Table
3.

5.2. Convolutional Neural Network (CNN)

Firstly, we randomly split the training data into 2 parts:
80% to train the model and 20% for validation and hyper-
parameters tuning in CNN experiments.

The original input data has 10 channels. We then convert
the orientation channels data to Euler Angle, which reduces
the input to 9 channels. Each channel is a sequence of length
128. So, the shape of input for the time domain branch is
9 × 128. We applied Fourier transformation on the 3 an-
gular velocity channels and 3 acceleration channels, which
produces the input of frequency domain branch with shape
6 × 65. To avoid overfitting problem, we apply dropout on
each linear layer with ratio 0.5.

We use cross-entropy loss for this multi-class classifica-
tion task. The loss is computed as

Loss =
∑
i

y′i log(yi) (12)

where i denotes the class, y′i is the true probability for the
sample belonging to class i, yi is the predicted probability
for the sample belonging to class i.

The proposed CNN architecture is implemented on the
PyTorch[8] deep learning framework, and the stochastic de-
scent algorithm Adam is applied for an end-to-end training.
The learning rate is set to 10−4 and we apply gradient clip
with the max norm of the gradient set to 1. We train the
network for 2000 epochs with a batch size of 10.

The highest accuracy on validating data is 84.38% and
the highest accuracy on training data is 96.61%. As Figure
7. shows, accuracy increase as the training process going
on and overfitting problem exists.

5.3. Long Short-Term Memory (LSTM)

The LSTM architecture is also implemented on the
PyTorch[8] deep learning framework. In the experiment,
we also use cross-entropy loss for this multi-class classifi-
cation task. The batch size here is 64, dropout is 0.2, learn-
ing rate is 0.001, optimizer is Adam. Also notice that early
stop strategy is applied in the training process.

The training and validating accuracy along with training
process can be shown in Figure 8. The highest accuracy on
training data is 95.74%. However, when we test it on the
testing data, it only get an accuracy about 52%. It suffers
from over-fitting problem. One possible reason might be,
LSTM may not be a very good model to extract features
and do prediction in this task. Typically LSTM can be used

6



Figure 7. Training and Validating Accuracy vs Epochs of CNN
model

Figure 8. Training and Validating Accuracy vs Epochs of LSTM
model

Model
Accuracy

(training data)
Accuracy
(test data)

KNN 49.29% 49.26%
LSTM 95.74% 51.82%

LR 100.00% 60.25%
RF 89.16% 71.81%

CNN 96.61% 80.15%
Table 3. Summary of Multiclass Accuracy on each Model

to take time-series information as input, and predict a value
in the next moment. Probably it is not a very good model
for this problem.

5.4. Summary

The summary of the multiclass accuracy on each model
discussed above is listed in Table 3.

By comparison, CNN model outperforms the other mod-
els. The accuracy can reach 80.15% on the private test
dataset of Kaggle, ranking No.15 over nearly 1500 partici-
pants.

We also examine the confusion matrix on training data
of CNN model, shown in Figure 9. Obviously, dark col-
ors are concentrated on the diagonal. The main confusion
is between ′tiled′ floor and ′concrete′ floor. In common
sense, both ′tiled′ floor and ′concrete′ floor are of rela-
tively higher hardness and smoothness than other surface
types, like carpet, wood, etc. Correspondingly, the mov-
ing pattern on these two floors will be similar, especially on
vertical dimension. So, this confusion matrix is in line with
reality to some extent.

Figure 9. Confusion Matrix by CNN model

6. Conclusion and Future Works

In this project, we have tried 3 classic algorithms: KNN,
logistic regression, random forest. KNN is a baseline
model, it used each series neighbors to make prediction.
Each prediction is made based only a small part of train-
ing set, it is highly vulnerable to the noise in the dataset.

Compared with KNN, logistic regression generate a
maximum likelihood estimation to the series belonging to
each classes, this utilization of totally training set could be
the reason it beats KNN. While compared with logistic re-
gression, random forest overcome the restriction that input
must be either binary or probability. In logistic regression,
sub-range indicator are created manually, however in ran-
dom forest sub-range are created by maximizing informa-
tion gain. This could be the reason random forest beats lo-
gistic regression.

Compared with 3 classic algorithms, CNN and LSTM
provide an approach to automatically exploit wave feature

7



in the series and create more complex model. However,
LSTM, a variant of RNN, is created to predict future ini-
tially, maybe this is the reason it didnt achieve a good result.

Given our model still suffer from insufficiency of
data(most of them shows over-fitting). In the meantime
there exists huge imbalance between samples number in
different classes. Over-sampling techniques like SMOTE
could be a promising direction to try. In addition, we
believe deep learning model have automatically extracted
some valuable features, applying these features on classic
model like logistic regression and SVM may be an inter-
esting attempt. Beyond improving models’ performance,
model interpretation is would be valuable. Visualization
for classic model like logistic regression and random forest
could help us understand how did our models make these
prediction.

7. Contribution
For the main part of our project, the contributions of each

author are listed as follows.
Song Zhang and Weiwei Zhou are responsible for the re-

search on feature engineering and implementation of classic
machine learning models (refer to Section 3, Section 4.1,
4.2 and 4.3, Section 5.1).

Yueyu Jiang is responsible for the design and implemen-
tation of CNN model (refer to Section 4.4, Section 5.2).

Shang Gao is responsible for the design and implemen-
tation of LSTM model (refer to Section 4.5, Section 5.3).

References
[1] https://www.kaggle.com/c/

career-con-2019/.
[2] https://en.wikipedia.org/wiki/Inertial_

measurement_unit.
[3] https://en.wikipedia.org/wiki/Euler_

angles.
[4] https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.KFold.
html.

[5] https://scikit-learn.org/stable/
modules/generated/sklearn.neighbors.
KNeighborsClassifier.html.

[6] https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html.

[7] https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestClassifier.html.

[8] https://pytorch.org.
[9] S. H. Bae, I. Choi, and N. S. Kim. Acoustic scene clas-

sification using parallel combination of lstm and cnn. In
Proceedings of the Detection and Classification of Acous-
tic Scenes and Events 2016 Workshop (DCASE2016), pages
11–15, 2016.

[10] L. Breiman. Random forests. Machine Learning, 45(1):5–
32, Oct 2001.

[11] D. Chen, J. Bolton, and C. D. Manning. A thorough ex-
amination of the cnn/daily mail reading comprehension task.
arXiv preprint arXiv:1606.02858, 2016.

[12] Z. Cui, W. Chen, and Y. Chen. Multi-scale convolutional
neural networks for time series classification. arXiv preprint
arXiv:1603.06995, 2016.

[13] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R.
Salakhutdinov. Neighbourhood components analysis. In Ad-
vances in neural information processing systems, pages 513–
520, 2005.

[14] D. Gordeev. Detecting state of aggression in sentences using
cnn. In International Conference on Speech and Computer,
pages 240–245. Springer, 2016.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[17] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel. Learn-
ing to diagnose with lstm recurrent neural networks. arXiv
preprint arXiv:1511.03677, 2015.

[18] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pages 807–814, 2010.

[19] R.-V. Sánchez, P. Lucero, J.-C. Macancela, M. Cerrada, R. E.
Vásquez, and F. Pacheco. Multi-fault diagnosis of rotating
machinery by using feature ranking methods and svm-based
classifiers. In 2017 International Conference on Sensing,
Diagnostics, Prognostics, and Control (SDPC), pages 105–
110. IEEE, 2017.

[20] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1–9, 2015.

[22] R. Snchez, P. Lucero, R. Vasquez, M. Cerrada, and D. Cabr-
era. A comparative feature analysis for gear pitting level
classification by using acoustic emission, vibration and cur-
rent signals. IFAC-PapersOnLine, 51:346–352, 01 2018.

[23] Y. Zhang, S. Roller, and B. Wallace. Mgnc-cnn: A simple ap-
proach to exploiting multiple word embeddings for sentence
classification. arXiv preprint arXiv:1603.00968, 2016.

[24] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu. Lstm net-
work: a deep learning approach for short-term traffic fore-
cast. IET Intelligent Transport Systems, 11(2):68–75, 2017.

[25] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Time
series classification using multi-channels deep convolutional
neural networks. In International Conference on Web-Age
Information Management, pages 298–310. Springer, 2014.

8

https://www.kaggle.com/c/career-con-2019/
https://www.kaggle.com/c/career-con-2019/
https://en.wikipedia.org/wiki/Inertial_measurement_unit
https://en.wikipedia.org/wiki/Inertial_measurement_unit
https://en.wikipedia.org/wiki/Euler_angles 
https://en.wikipedia.org/wiki/Euler_angles 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html 
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html 
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html 
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
https://pytorch.org 

