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Example problem: 
Ship Range for Noise 09 Experiment 
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•  Training data 
•  Jan. 31, 2009 01:43-2:05 
•  2 m/s 

•  Test-Data-1 
•  Jan. 31, 2009 01:01-01:24 
•  -2 m/s 

•  Test-Data-2 
•  Feb. 4, 2009 13:41-13:51 
•  4 m/s 
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Example problem: 
Ship Range for Noise 09 Experiment 

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

Comparison method: Matched-Field 
Processing (model-based) 
 
1.   Model the sound propagation. 

Parameters: water depth, sound 
speed profile of  water and sea floor, 
density, layers… 

2.   Compare the modeled sound 
pressure (pc) and observations (ps) . 

maximizing pc(r)HDpc(r) 

4

D. Input data preprocessing

It is essential to preprocess measured pressure data
before feeding the FNN. The complex pressure at fre-
quency f recorded by L sensors is denoted by p(f) =
[p1(f), · · · , pL(f)]T .

To remove the e↵ect of source term |S(f)|, the complex
pressure is normalized by

p̃(f) =
p(f)s

LP
l=1

|pl(f)|2
=

p(f)

kp(f)k2
. (10)

Further, the average of normalized cross-spectral den-
sity matrices (CSDMs) over Ns snapshots is formed as

D(f) =
1

Ns

NsX

s=1

p̃s(f)p̃
H

s
(f), (11)

where H denotes conjugate transpose operator. The ma-
trix D(f) is conjugate symmetric, which satisfies:

D(f) = D(f)H . (12)

Therefore, the entries of upper triangular matrix in D(f)
are fed as input to FNN, which can save memory and
improve calculation speed.

III. SIMULATIONS

Source localization in range is investigated by simu-
lations. We assume the source moves in range at con-
stant depth in an ocean waveguide. The noise-free com-
plex pressure signals at the receivers are obtained using
KRAKEN code. Then the field realizations with di↵er-
ent SNRs are generated by adding appropriate complex
Gaussian noise into the original signals.

Since the source moves in range and we further assume
the source level keeps constant with varying range, then
SNR here is defined as

SNR = 10 log10

P
L

l=1 |p̂l|2/L
�2

(dB), (13)

where p̂l is sound pressure signal received by the lth sen-
sor at the longest source-receiver distance and �

2 repre-
sents the Gaussian noise variance.

A. Environmental model and source-receiver configuration

In simulation, the source frequency is 300 Hz (see
Fig. 3). The range sampling interval is 20 m and the

D = 100 m

Zs = 5 m

R = 1 − 5 km

Zr = 10 − 90 m

∆z = 5 m

Halfspace

C0 = 1500 m/s

Cp = 1600 m/s

ρ = 1.6 g/cm3

α = 0.1 dB/λ

FIG. 3. Environmental model and source-receiver configura-
tion

source moves from 1 to 5 km. The source depth is con-
stant 5 m. The vertical array consists of 17 receivers
spanning 10–90 m with inter-sensor spacing 5 m. The
Pekeris waveguide is 100 m deep with sound speed 1500
m/s and a fluid halfspace bottom with sound speed 1600
m/s, density 1.6 g/cm3 and attenuation coe�cient 0.1
dB/�.

B. Structure and configuration of FNN

The vertical array consists of 17 sensors. The measure-
ments contaminated by Gaussian distributed noise with
di↵erent SNRs are obtained. The cross-spectral density
matrix with a dimension 17⇥ 17 is formed at each range
point. Therefore, the number of neurons in input layer is
D = 306 (i.e. the entries of upper triangular matrix with
real and imaginary parts). A total of N = 201 matrices
constitute the sample set spanning the whole range 1–5
km.
Typically there are not ample data samples in space,

as it is di�cult to collect ample samples at the same
source position. What attracts us is the performance
of FNN under the condition of deficient training data
samples. Therefore, we use only one sample at each range
point as the training input. Here we construct training
data set and test data set as follows. For each SNR, two
realizations of noisy measurements at 201 range points
are generated. One realization including 201 data points
(each data point includes D = 306 input neurons) is used
as the training set and the other one as the test set.
As there are 201 samples in range dimension (i.e., the

size of training data set is 201), the output layer of FNN
consists of K = 201 neurons. Thus each input signal
should be classified to one of the 201 ’range’ types for
this machine learning task.
There are M = 256 neurons in the hidden layer and

the keep probability for training dropout is set to 0.5
(The dropout technique39 is an e↵ective approach to
prevent neural networks from overfitting ). We use

16 sensors spanning from 
128 – 143 m depth (15 m) 



Example problem: 
Matched-Field Processing (MFP) 

EMAPE = 55% EMAPE = 19% 

Rpi = predicted range, Rgi = ground truth range.  

•  “Ambiguity surfaces” show match at each modeled range 

•  MFP has challenges due to sidelobes 

Model Replicas (pc)      Data Replicas (pc) 

300-950 Hz,  
Δf  =10 Hz 
(66 frequencies) 



•  Feed-forward neural network, also called Multilayer Perceptron 

•  One hidden layer: 
•  For inputs xn, znj = σ((wj

(1))T�xn)  

•  σ(x) = sigmoid(x) = (exp(-x)+1) -1 

•  Softmax output: 
 

 f(znj) = 

•  Output is a probability, where  
maximum bin is model prediction 

Example problem: 
Feed-Forward Neural Network (FNN) 

Input 
layer L1

Hidden 
layer L2

Output 
layer L3
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•  Inputs for FNN (feature engineering) 

•  Vectorize re{C} and imag{C}. 
Concatenate for multiple frequencies. 

Example problem: 
Feed-Forward Neural Network (FNN) 

Sound pressure 

Normalize pressure to 
reduce the effect of              

Sample Covariance Matrix to 
reduce effect of  source phase  

: Source term 
: Number of  sensors 
: Number of  snapshots 



Input                         Label 

•  Classification:  
•  Map range to bins 

•  Use Kullbach-Liebler (KL, aka relative entropy) to 
compare softmax output with ‘one-hot’ vector 

Example problem: 
Feed-Forward Neural Network (FNN) 

**** ***
!": 					1								0									0							…							0									0								0									0
!(: 					0								1									0							…							0									0								0									0
!): 					0								0									1							…							0									0								0									0…

!*: 					0								0									0							… 							0									0								0									1

…



Example problem: 
Feed-Forward Neural Network (FNN) 

550 Hz 

950 Hz 

300-950 Hz,  
Δf  =10 Hz 
(66 frequencies) 

•  (a)-(c) Test-Data-1 

•  (d)-(f) Test-Data-2 

EMAPE = 18% 
EMAPE = 12% 

EMAPE = 8% EMAPE = 6% 

Rpi = predicted range, Rgi = ground truth range.  



Example problem: 
Ship Range for Noise 09 Experiment 

550 Hz 

950 Hz 

300- 
950 Hz 

EMAPE = 55% EMAPE = 19% 

EMAPE = 12% EMAPE = 18% 

EMAPE = 8% EMAPE =6% 
•  (a)-(c) Test-Data-1 

•  (d)-(f) Test-Data-2 

•  Best FNN: EMAPE = 3% (not shown) 



Random Forest (RF) 

 

 

Support Vector Machine 
(SVM) 

Example problem: 
Support Vector and Random Forest 

EMAPE = 3% EMAPE = 3% 

EMAPE = 2% EMAPE = 2% 



•  Cargo shipping lanes, 3 passing ships 

Example problem: 
Ship Range for SBCEx16 Experiment 
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•  Cargo ship 
spectral 
signatures 

Example problem: 
Ship Range for SBCEx16 Experiment 

(b)

(a)

(c)

•  Use 53-200 
Hz, spacing 
of  3 Hz 



Example problem: 
Ship Range for SBCEx16 Experiment 

•  (a)-(c) Test-Data-1. (a),(d) MFP; (b),(d) SVM; (c),(f) FNN. 

•  (d)-(f) Test-Data-2 

EMAPE = 34.6% EMAPE = 1.5% EMAPE = 2.2% 

EMAPE = 36.1% EMAPE = 2.2% EMAPE = 3.9% 



Feed-Forward Neural Network: 
Regression 

•  FNN with regression: 
•  Single output is estimate 

of  range 

 

•  Classification maximally 
separates classes while 
regression minimizes 
target error 

 

•  Mean squared error 
Input 
layer L1

Hidden 
layer L2

Output 
layer L3
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Noise 09 Results: FNN with Regression 

One hidden layer 

 

Two hidden layers 

 

Three hidden layers 

EMAPE = 5% 

EMAPE = 10% 

•  (a)-(c) Test-Data-1 

•  (d)-(f) Test-Data-2 



Example problem:  
Multiple ships at SCE17 

16 sensors spanning from 13m 
to 69.25m (56.25m) 

credit: John Goff  

	
	

	
	

	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	R	=	10m	-	20	km	
	zs	=	10m	

zr	=	13	-	69.25	m	

Δz	=	3.75	m	

75
m	

cp	=	1610-1640	m/	s,	h	=	10	m,	
ρ	=	1.8	g/cm3	,	α		=	0.3	dB/m	@	1kHz	

Halfspace	(h	->	�� 	
	

cp	=1796	m/s,	h=10m,	
ρ	=	2.2	g/cm3	,	α		=	0.15	dB/m	@	1kHz	SAND

cp	=	1435	-	1485	m/	s,	h	=	10m,	
ρ	=	1.6	g/cm3	,	α		=	0.005-0.01	dB/m	@	1kHz	MUD



Example problem:  
Multiple ships at SCE17 

•  9 training tracks, 1 test track (bold, orange) 

•  Test track from different region 



Example problem:  
Multiple ships at SCE17 

•  Ship tracks from Mar. 
23 - April 1, 2017. 

•  Tonals at ~300 Hz 
come from 
experiment ship R/V 
Endeavor. 

Ship: BBCTENNESSEE
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Ship: HOUSTONBRIDGE
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Example problem:  
Multiple ships at SCE17 

•  50-200 Hz used for 
experiment. 

•  Viking Bravery used 
as test track (not 
south of  array). 

Ship: TOMBARRA
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Ship: Unnamed19
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Example problem:  
Multiple ships at SCE17 

•  Training MAPE = 
2.5% 

•  Validation MAPE = 
20.2% 

EMAPE = 40% 

Test (Viking Bravery) 



PCA for high-dimensional input data 

•  Problem: not 
enough data to train 
variation in high 
dimensions 

•  M is a real matrix  

•  M’ is a real matrix 
projected into a 
lower dimension 

2 x 136 x Nf  100 
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PCA 



PCA for high-dimensional input data 

•  Choose the top k singular 
values & project into the 
reduced data space 

•  k is chosen based on 
model performance 

•  U is a unitary matrix of  
size Nsamples x Nsamples 

•  Σis a diagonal matrix of  
size Nsamples x Nfeatures 

•  V is size  
Nfeatures x Nfeatures 

2 x 136 x Nf  100 
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PCA 

M =UΣV T

M ' =MV [:,1: k]



Example problem:  
Multiple ships at SCE17 

•  100 top 
components kept 

•  Explains ~20% of  
variance within 
data (sum of  top k 
normalized 
singular values) 

3.4&��������LN
.FBO�3FMBUJWF�&SSPS��������EMAPE = 12.8% 



Conclusions 

•  Machine learning (ML) models were used to predict cargo 
ship ranges 
•  Trained on similar previous paths 
•  3-layer FNN, SVM, or RF 

•  ML models achieve lower error than MFP for real data 
from 1. controlled ship paths, 2. cargo ships in lane 
•  Typically one training track, similar test tracks 
•  Tracks are close in location, range, and time 

•  Larger variation between ship tracks results in worse ML 
performance 
•  PCA may help improve results when data is limited relative to 

variation within features 



Appendix: SVM 
•  SVM optimally divides the feature 

space by class (predicted label tn,  
true label y(xn)):  

 

•  Multi-class problem solved by 
iterating 2-class problem 
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Appendix: RF 

•  Decision tree 

For input xn=[xn1, xn2]: 

 

 

Minimize the number of  wrongly classified 
points per region by changing c. 

•  Random forest: 
•  Generate hundreds of  random trees 

•  Keep most frequently occurring regions  
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Example of  2D decision 
tree for two classes 

c1=1.9 and c2=4.6 


