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Projects
3-4 person groups

Deliverables: Poster, Report & main code (plus proposal, midterm slide)
Topics: your own or chose form suggested topics / kaggle
Week 3 groups due to TA Nima. Rearrangement might be needed.

May 2 proposal due. TAs and Peter can approve.

Proposal: One page: Title, A large paragraph, data, weblinks, references.
Something physical and data oriented.

May ~16 Midterm slides. Likely presented in 4 subgroups (3TA+Peter).
5pm 6 June Jacobs Hall lobby, final poster session. Snacks

Poster, Report & main code. Report due Saturday 16 June.



Final Report

Poster on June 6 from each group is mandatory. Upload poster as well.

For the Final project (Due Saturday 16 June). Delivery Dropbox request <2GB (details to follow).:
Deliver a code:

Assume we have reasonable compilers installed (we use Mac OsX)
Give instructions if any additional software should be installed.

You can ask us to download a dataset. Or include it in this submission
Don’t include all developed codes. Just key elements.

We should not have to reprogram your code.

Report

The report should include all the following sections: Summary -> Introduction->Physical and Mathematical
framework->Results.

Summary is a combination of an abstract and conclusion.
Plagiarism is not acceptable! When citing use “ “ for quotes and citations for relevant papers.
Don’t write anything you don’t understand.

Everyone in the group should understand everything that is written. If we do not understand a section during
grading we should be able to ask any member of the group to clarify. You can delegate the writing, but not
the understanding.

Use citations. Any concepts which are not fully explained should have a citation with an explanation.

Please be concise. Equations are good. Figures essential. Write as though your report is to be published in
a scientific journal.

Last year’s reports are on class website. Especially good projects 2,11,12,13,



Lecture 8: Backpropagation
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A difference in notation
» For networks with multiple hidden layers Bishop uses an
explicit extra index to denote the layer.

* The lecture notes use a simpler notation in which the index
denotes the layer implicitly.
y is the output of a unit in any layer
X is the summed input to a unit in any layer
The index indicates which layer a unit is in.
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Non-linear neurons With smooth derivatives
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 For backpropagation, we need _/ . =ph. + W
neurons that have well-behaved S L Zy-l Y
derivatives. !

— Typically they use the logistic ~,, . 1 @
function J X,

— The output is a smooth function It+e
of inputs and weights. ij B @xj B
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Backpropagation
J nhodes
Observations tj

Predictions y;
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TensorFlow and Matlab training
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.train.Optimizer
tf.train.GradientDescentOptimiz

tf.train.AdadeltaOptimizer

AdagradOptimizer

AdagradDAOptimizer

-

MomentumOptimizer

AdamOptimizer

FtrlOptimizer

ProximalGradientDescentOptimizer

ProximalAdagradOptimizer

er Neural Network Training Function R2018a

It is very difficult to know which training algorithm will be the fastest for a given problem. It depends on many factors, including the complexity of the problem, the
number of data points in the training set, the number of weights and biases in the network, the error goal, and whether the network is being used for pattern
recognition (discriminant analysis) or function approximation (regression). This section compares the various training algorithms. Feedforward networks are trained
on six different problems. Three of the problems fall in the pattern recognition category and the three others fall in the function approximation category. Two of the
problems are simple “toy" problems, while the other four are "real world" problems. Networks with a variety of different architectures and complexities are used,
and the networks are trained to a variety of different accuracy levels.

The following table lists the algorithms that are tested and the acronyms used to identify them.

Acronym Algorithm Description

LM trainlm Levenberg-Marquardt

BFG trainbfg BFGS Quasi-Newton

RP trainrp Resilient Backpropagation

SCG trainscg Scaled Conjugate Gradient

CGB traincgb Conjugate Gradient with Powell/Beale Restarts
CGF traincgf Fletcher-Powell Conjugate Gradient

CGP traincgp Polak-Ribiére Conjugate Gradient

0ss trainoss One Step Secant

GDX traingdx Variable Learning Rate Backpropagation

Thm fallaimm bmbla linka Hhn miv bhamabhosnel: meablamn mmd mnmen cbhacnatbasintian af tha cnbhondin bemimimm mennmnman ~e A mmemems b o



Gradient results

Maybe from tensorflow with ocean acoustics data
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Gradients

Wii1 = Wi —NVE

——

>

 Batch
- E(wi) = Xn En(Wi)
« Stochastic gradient descent:

— Pick just one data sample n (of N) &
= Wiy1 = Wi — NVE (W)
— Less sensitive to global minima
| | =~
« Momentum W R
2wy,

- Wiy1 =W —NVE + u(Wy — Wi_1)

* Avoid Overfitting (regulariza\tign, drorgout, early stopping)

« 100’s PhD thesis on how to optimize. Always backpropagation.



ICASSP 2018 Plenary
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ICASSP 2018 Plenary




ICASSP 2018 Plenary

Two-layers
2 input features
3 output labels

Va(m) = y2(m) - t.(m)
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ICASSP 2018 Plenary

Deep Belief Net on Face \mages
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Input Label see Yy . g\




ICASSP 2018 Plenary
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Lecture 9: Kernels
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Input Space

Feature Space

Basis expansion

Kernel trick
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Basis expansion

wWix =0
wgr9=0




LSQ for classification

Each class Cy, is described by its own linear model so that

Y (%) = Wi X + wio (4.13)
where £ = 1,..., K. We can conveniently group these together using vector nota-
tion so that .

y(x) = WTx (4.14)

Consider a training set {x,, t,},n =1...N
Define Xand T

LSQ solution:
W= (X"X)"'X"T = XI'T (4.16)
And prediction

—~ ~N\T
yi) =W =T"(X) % (4.17)



Dual representation, Sec 6.2
Primal problem: mln E(w) ¥ o= [ / & /2

E= -ZN{W Xp = tp}*+ -IIWIIZ ||XW—t||2+ -IIWIIZ

————>

Solution ~ w=X*t = (X"X + M) X"t w-&R
=XTXXT+ M) t=X"K+ M) t=X"a acR”’
N ox i

The kernel is K = XXT < K
by = Px) @ix)

Dual representation is : %in E(a)

1
E =N x, — 6,1+ 3wl = |Ka — tll3+5a"Ka

Prediction

y=w'x=a"Xx =Y a,x;x =Yy a,k(x,,x)



Dual representation, Sec 6.2
Prediction

y=wix=a'Xx=YNa,xlx=YNa,k(x,,x)

« Often ais sparse (... Support vector machines)
 We don’t need to know x or @(x).Just the Kernel

A
E(a) = ||Ka - t||§+§aTKa




Gaussian Kernels

e (Gaussian Kernel

k(x,x") = exp (— % (x —x")T2 1 (x - x’))

r—-?

Diagonal X: (this gives ARD)
N 2
1 X; —X;
k(x,x") = exp ——Z( l 5 )
2 l_ oF

Isotropic ¢/ gives an RBF

I

|x —

k(x,x") = eXp( ) ?&) ?Kx‘)



