Projects
3-4 person groups

Deliverables: Poster, Report & main code (plus proposal, midterm slide)
Topics: your own or chose form suggested topics / kaggle
Week 3 groups due to TA Nima. Rearrangement might be needed.

May 2 proposal due. TAs and Peter can approve.
Proposal: One page: Title, A large paragraph, data, weblinks, references.
Something physical and data oriented.

May ~16 Midterm slides. Likely presented in 4 subgroups (3TA+Peter).
5pm 6 June Jacobs Hall lobby, final poster session. Snacks

Poster, Report & main code. Report due Saturday 16 June.



Final Report

Poster on June 6 from each group is mandatory. Upload poster as well.

For the Final project (Due Saturday 16 June). Delivery Dropbox request <2GB (details to follow).:
Deliver a code:

Assume we have reasonable compilers installed (we use Mac OsX)
Give instructions if any additional software should be installed.

You can ask us to download a dataset. Or include it in this submission
Don'’t include all developed codes. Just key elements.

We should not have to reprogram your code.

Report

The report should include all the following sections: Summary -> Introduction->Physical and Mathematical
framework->Results.

Summary is a combination of an abstract and conclusion.
Plagiarism is not acceptable! When citing use “ “ for quotes and citations for relevant papers.
Don’t write anything you don’t understand.

Everyone in the group should understand everything that is written. If we do not understand a section during
grading we should be able to ask any member of the group to clarify. You can delegate the writing, but not
the understanding.

Use citations. Any concepts which are not fully explained should have a citation with an explanation.

Please be concise. Equations are good. Figures essential. Write as though your report is to be published in
a scientific journal.

Last year’s reports are on class website. Especially good projects 2,11,12,13,



Lecture 8. Backpropagation



A difference in notation
* For networks with multiple hidden layers Bishop uses an
explicit extra index to denote the layer.

* The lecture notes use a simpler notation in which the index
denotes the layer implicitly.
y is the output of a unit in any layer
X I1s the summed input to a unit in any layer
The index indicates which layer a unit is In.
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Non-linear neurons with smooth derivatives

For backpropagation, we need Y. =h. 4 W
neurons that have well-behaved S Zyl J
derivatives. :

- Typically they use the logistic ~,, . — 1
function J X,
— The output is a smooth function I+e
of inputs and weights. Ox Ox ;
a yl a ij
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Yj dy; ey
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Backpropagation
J nodes
Observations t;

Predictions y; @i X J y

Energy function E = J
dE
o=
dE
ax;

dE
awi;
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TensorFlow and Matlab training

.GradientDescentOptimizer
.AdadeltaOptimizer
.AdagradOptimizer
.AdagradDAOptimizer
.MomentumOptimizer

.AdamOptimizer

.FtrlOptimizer
.ProximalGradientDescentOptimizer

.ProximalAdagradOptimizer

Choose a Multilayer Neural Network Training Function R2018a

It is very difficult to know which training algorithm will be the fastest for a given problem. It depends on many factors, including the complexity of the problem, the
number of data points in the training set, the number of weights and biases in the network, the error goal, and whether the network is being used for pattern
recognition (discriminant analysis) or function approximation (regression). This section compares the various training algorithms. Feedforward networks are trained
on six different problems. Three of the problems fall in the pattern recognition category and the three others fall in the function approximation category. Two of the
problems are simple “toy" problems, while the other four are "real world" problems. Networks with a variety of different architectures and complexities are used,
and the networks are trained to a variety of different accuracy levels.

The following table lists the algorithms that are tested and the acronyms used to identify them.

Acronym

LM

BFG
RP

SCG
CGB
CGF
CGP
0ss
GDX

Algorithm Description

trainlm Levenberg-Marquardt

trainbfg BFGS Quasi-Newton

trainrp Resilient Backpropagation

trainscg Scaled Conjugate Gradient

traincgb Conjugate Gradient with Powell/Beale Restarts
traincgf Fletcher-Powell Conjugate Gradient
traincgp Polak-Ribiére Conjugate Gradient

trainoss One Step Secant

traingdx Variable Learning Rate Backpropagation

Tha fallauimm dmbhla linka tha Al hamcahan el ceablames Amedd mcmns shacantacinabion af the cnbhaoncden bemiminm menmnmnmmn e e L e L B |



Gradient results

Maybe from tensorflow with ocean acoustics data
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Gradien*~

Wii1 = W —NVE

- E(wy) = X5 En(wy)
Stochastic gradient descent:
— Pick just one data sample n (of N)
= Wgy1 = Wi —NVE, (W)

— Less sensitive to global minima

Momentum

- Wit1 =W —NVE + u(wy — wy_q)

Avoid Overfitting (regularization, dropout, early stopping)

* 100’s PhD thesis on how to optimize. Always backpropagation.



ICASSP 2018 Plenary
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ICASSP 2018 Plenary

Two-layers
2 input features
3 output \abels
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Lecture 9: Kernels

Ve 74

Input Space Feature Space

Basis expansion
Kernel trick



Basis expansion




LSQ for classification

Each class Cj. is described by its own linear model so that

Yi(X) = Wi X + wo (4.13)
where £k = 1,..., K. We can conveniently group these together using vector nota-
tion so that .

y(x) = W'x (4.14)

Consider a training set {x,,, t,},n =1 ...N
Define Xand T

LSQ solution:
W= (X"X)"'X"T = XIT (4.16)
And prediction

y(x) = WIx = TT (XT )T X, (4.17)



Dual representation, Sec 6.2
Primal problem: min,, E(w)

1 A A
E=-Ya{w'x, — t,}2+ Zllwll* = [[Xw — t]|3+ Z[lwll?

Soluton w=X%'t=(X"X+Al,)" X"t
=XT(XXT + M) 1t =XT(K+ Aly) 1t=X"a

The kernel is K = XX7T

Dual representationis: min E(a)
a

1 A A
E = IMWx, — t,}+ S Iwll? = I Ka — tl3+5a"Ka

Prediction

y=wlx=a'Xx=YNa,xlx=YNa k(x,,x)



Dual representation, Sec 6.2
Prediction

y=wlx=a"Xx=YNa,xlx =YNa,k(x,,x)

« Often a is sparse (... Support vector machines)
« We don’t need to know x or @(x).Just the Kernel

A
E(a) = ||Ka — tII%+EaTKa



Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp (— > (x —xN)T2 1(x— x’))

Diagonal X: (this gives ARD)
N 2
1 X; —X;
k(x,x’) = exp __z( l > l)
2 i 0;

Isotropic o7 gives an RBF

20°

x — x'||3
k(x,x") = exp (— | ”2)



Sparse Bayesian Learning (SBL)
Model : vy = Ax+n
Prior : x ~ N(x;0,I") E = % + E

I' = diag(v1,...,7M)
Likelihood : p(y|x) = N(y; Ax, %I y)

Evidence : p(y) = /p(y|x)p(x)dx =N(y:0,%,)

x

¥, = ¢’y + ATA"

SBL solution : I' = arg max p(y)
r

= arg min {log |, |+ y"“Z; 'y}
r

M.E.Tipping, " Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research,
June 2001.




Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp (— > (x —xN)T2 1(x— x’))

Diagonal X: (this gives ARD)
N 2
1 X; —X;
k(x,x’) = exp __z( l > l)
2 i 0;

Isotropic o7 gives an RBF

20°

x — x'||3
k(x,x") = exp (— | ”2)



Commonly used kernels

Polynomial: K(X,y)=(X.y+ l)p'\

Gaussian Parameters
2 2

. : —Ix—v|[F/20°«—— thatthe user

radial basis K (x, y) =e [x=yl must choose

function
_—/

Neural net: K(X,y)=tanh(kx.y — 0)

For the neural network kernel, there is one “hidden unit” per support vector,
so the process of fitting the maximum margin hyperplane decides how many
hidden units to use. Also, it may violate Mercer’s condition.



Kernels

We might want to consider something more complicated than a linear model:

Example 1: [z, 2?)] — ® ([x(l),x(z)]) = [az<1)2,x(2)2,x(1)x(2)]

Information unchanged, but now we 1)
have a linear classifier on the T

transformed points.

With the kernel trick, we just need kernel Input Space Feature Space

k(a,b) = ®(a)’ ®(b)



Example 4:

k(x,z) = (x'z+¢) = <Z W 20) C) ( RPN c)
l

= z;;x —|—QCZZC
= i(az(') +Z N(V2c2D) +
j0=1

and in n = 3 dimensions, one possible feature map is:
d(x) = [x<1)2,:1:(1)x(2), o 292 V22 V202 20 c|

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.



Solving a Rank-Deficient System

If A is m-by-n with m > n and full rank n, each of the three statements
x =A\b

WA Nice slide, But why?

theoretically computes the same least-squares solution x, although
the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not
unique. There are many vectors x that minimize

norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where ris the rank of A. The solution computed by x = pinv(A)*b is the
minimal norm solution because it minimizes norm(x). An attempt to compute a solution
with x = inv(A"™A)*A"™Db fails because A™*A is singular.



