
Projects
• 3-4 person groups
• Deliverables: Poster, Report & main code (plus proposal, midterm slide)
• Topics: your own or chose form suggested topics / kaggle
• Week 3 groups due to TA Nima. Rearrangement might be needed.

• May 2 proposal due. TAs and Peter can approve.
• Proposal: One page: Title, A large paragraph, data, weblinks, references.
• Something physical and data oriented.
• May ~16 Midterm slides. Likely presented in 4 subgroups (3TA+Peter).
• 5pm 6 June Jacobs Hall lobby, final poster session. Snacks

• Poster, Report & main code. Report due Saturday 16 June.

Final Report
Poster on June 6 from each group is mandatory. Upload poster as well.

For the Final project (Due Saturday 16 June). Delivery Dropbox request <2GB (details to follow).:
Deliver a code:
• Assume we have reasonable compilers installed (we use Mac OsX)
• Give instructions if any additional software should be installed.
• You can ask us to download a dataset. Or include it in this submission
• Don’t include all developed codes. Just key elements.
• We should not have to reprogram your code.

Report
• The report should include all the following sections: Summary -> Introduction->Physical and Mathematical

framework->Results.
• Summary is a combination of an abstract and conclusion.
• Plagiarism is not acceptable! When citing use “ “ for quotes and citations for relevant papers.
• Don’t write anything you don’t understand.
• Everyone in the group should understand everything that is written. If we do not understand a section during

grading we should be able to ask any member of the group to clarify. You can delegate the writing, but not
the understanding.

• Use citations. Any concepts which are not fully explained should have a citation with an explanation.
• Please be concise. Equations are good. Figures essential. Write as though your report is to be published in

a scientific journal.
• Last year’s reports are on class website. Especially good projects 2,11,12,13,

Lecture 8: Backpropagation

A difference in notation
• For networks with multiple hidden layers Bishop uses an

explicit extra index to denote the layer.
• The lecture notes use a simpler notation in which the index

denotes the layer implicitly.
y is the output of a unit in any layer
x is the summed input to a unit in any layer
The index indicates which layer a unit is in.

yjyi xj
i j

Non-linear neurons with smooth derivatives

• For backpropagation, we need
neurons that have well-behaved
derivatives.
– Typically they use the logistic

function
– The output is a smooth function

of inputs and weights.

)1(

1

1

jj
j

j

ij
i

j
i

ij

j

j
j

ij
i

ijj

yy
dx

dy

w
y

x
y

w

x

x
e

y

wybx

-=

=
¶

¶
=

¶

¶

-
+

=

+= å

0.5

0
0

1

jx

jy

Backpropagation
• J nodes
• Observations !"
• Predictions #"
• Energy function $ =
• '(

')*
=

• '(
'+*

=

• '(
',-*

=

• '(
')-

= ∑"/

• '(
'+-

=

yjyi xj
i j

TensorFlow and Matlab training

Gradient results
Maybe from tensorflow with ocean acoustics data

Gradients
!"#$ = !" − '∇)

• Batch
–)(!") = ∑-.)-(!")

• Stochastic gradient descent:
– Pick just one data sample n (of N)
– !"#$ = !" − '∇)-(!")
– Less sensitive to global minima

• Momentum
– !"#$ = !" − '∇) + 0(!" − !"1$)

• Avoid Overfitting (regularization, dropout, early stopping)

• 100’s PhD thesis on how to optimize. Always backpropagation.

ICASSP 2018 Plenary

ICASSP 2018 Plenary

ICASSP 2018 Plenary

ICASSP 2018 Plenary

ICASSP 2018 Plenary

Lecture 9: Kernels

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

Basis expansion
Kernel trick

Basis expansion

LSQ for classification

184 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.

Ri

Rj

Rk

xA

xB

x̂

where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = w T
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)

Consider a training set {"#, $#}, ' = 1…N
Define X and T

4.1. Discriminant Functions 185

where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃ k = (wk0, w T

k)T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃ T

k x̃ is largest.
We now determine the parameter matrix W̃ by minimizing a sum-of-squares

error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision

LSQ solution:

And prediction

4.1. Discriminant Functions 185

where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃ k = (wk0, w T

k)T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃ T

k x̃ is largest.
We now determine the parameter matrix W̃ by minimizing a sum-of-squares

error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision

Dual representation, Sec 6.2
Primal	problem: min. /(.)

/ =
3

4
∑6
7 .896 − ;6

2+ =

4
. 2 = >.− ? 4

4+ =

4
. 2

Solution . = >@? = (>8> + BCD)
EF>8?

= >8(>>G + BCH)
E3? = >8(I + BCH)

E3? = >8J

The kernel is K = >>G

Dual representation is : min
J

/(J)

/ =
3

4
∑6
7 .896 − ;6

2+ =

4
. 2 = IJ − ? 4

4+ =

4
J8IJ

Prediction
L = .89 = J8>9 = ∑6

7 M696
89 = ∑6

7 M6N(96 , 9)

Dual representation, Sec 6.2

• Often a is sparse (… Support vector machines)
• We don’t need to know x or ! " . $%&' '() *)+,)-

. / = */ − ' 22+
3
2/

5*/

Prediction
6 = 75" = /58" = ∑:; <:":5" = ∑:; <:=(": , ")

Gaussian Kernels

Gaussian Kernels

Commonly used kernels

)(tanh),(

),(

)1.(),(

22 2/||||

d

s

-=

=

+=

--

x.yyx

yx

yxyx

yx

kK

eK

K pPolynomial:

Gaussian
radial basis
function

Neural net:

For the neural network kernel, there is one “hidden unit” per support vector,
so the process of fitting the maximum margin hyperplane decides how many
hidden units to use. Also, it may violate Mercer’s condition.

Parameters
that the user
must choose

Kernels

Information unchanged, but now we
have a linear classifier on the
transformed points.

With the kernel trick, we just need kernel
! ", $ = &(")) &($)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

So we showed that k is an inner product for n = 2 because we found a feature
space corresponding to it.

For n = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

�(x) = (x(1)2, x(1)x(2), ..., x(3)2), and �(z) = (z(1)2, z(1)z(2), ..., z(3)2),

h�(x),�(z)iR9 = hx, zi
2
R3.

That’s nice.

We can even add a constant, so that k is the inner product plus a constant
squared.

Example 4:

k(x, z) = (xT
z+ c)2 =

nX

j=1

x
(j)
z
(j) + c

!
nX

`=1

x
(`)
z
(`) + c

!

=
nX

j=1

nX

`=1

x
(j)
x
(`)
z
(j)
z
(`) + 2c

nX

j=1

x
(j)
z
(j) + c

2

=
nX

j,`=1

(x(j)x(`))(z(j)z(`)) +
nX

j=1

(
p

2cx(j))(
p

2cz(j)) + c
2
,

and in n = 3 dimensions, one possible feature map is:

�(x) = [x(1)2, x(1)x(2), ..., x(3)2,
p

2cx(1),
p

2cx(2),
p

2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d � 2

k(x, z) = (xT
z+ c)d,

4

Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, each of the three statements

x = A\b

x = pinv(A)*b

x = inv(A'*A)*A'*b

theoretically computes the same least-squares solution x, although
the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not
unique. There are many vectors x that minimize

norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where r is the rank of A. The solution computed by x = pinv(A)*b is the
minimal norm solution because it minimizes norm(x). An attempt to compute a solution
with x = inv(A'*A)*A'*b fails because A'*A is singular.

Nice slide, But why?

