Projects
3-4 person groups

Deliverables: Poster, Report & main code (plus proposal, midterm slide)
Topics: your own or chose form suggested topics / kaggle
Week 3 groups due to TA Nima. Rearrangement might be needed.

May 2 proposal due. TAs and Peter can approve.

Proposal: One page: Title, A large paragraph, data, weblinks, references.
Something physical and data oriented.

May ~16 Midterm slides. Likely presented in 4 subgroups (3TA+Peter).
5pm 6 June Jacobs Hall lobby, final poster session. Snacks

Poster, Report & main code. Report due Saturday 16 June.
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Logistic regression (page 205)

When there are only two classes we can model the conditional
probability of the positive class as

1

p(C|x)=c(Ww x+wy)  where (o(z)=
1+exp(—z)

If we use the right error function, something nice happens:
gradient of the logistic and the gradient of the error function
cancel each other:
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The natural error function for the logistic
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Using the chain rule to get the error derivatives

Logistic regression (Bishop 205)
p(Cilx) = o(W'x)

Observations {x, 4 T )
Likelihood 2,28 . €Ie, '
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Softmax function

K clusses p A/ toser veH e a

For the case of K > 2 classes, we have

~ p(x|Cx)p(Cy)
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Cross-entropy or “softmax” function for multi-class classification

e’
The output units use a non-local non-linearity: Vi = Z Z;
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A special case of softmax for two classes

So the logistic is just a special case © max without

redundant parameters:
Adding the same constant to both z1 and z0 has no effect.

The over-parameterization of the softmax is because the
probabilities must add to 1.
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43.3 Iterative reweighted least squares

In the case of the\linear regression models discussed in Chapter 3, the maxi-
mum likelihood solutiod\ on the assumption of a Gaussian noise model, Jfads to a
closed-form solution. Thi\ was a consequence of the quadratic depegd€nce of the
log likelihood function on Ne parameter vector w. For logistic gpfression, there
is no longer a closed-form soNation, due to the nonlinearity of logistic sigmoid
function. However, the departiNe from a quadratic form is pdt substantial. To be
precise, the error function is concdye, as we shall see shortlyfand hence has a unique
minimum. Furthermore, the error { Zed by an efficient iterative
technique based on the Newton-Raph) 1zation scheme, which uses a
local quadratic approximation to the lox likelih unction. The Newton-Raphson
update, for minimizing a function E(w),\ e form (Fletcher, 1987; Bishop and
Nabney, 2008)

wl‘ new) _ w(nl«”

“IWWE(w). (4.92)

where H is the Hessian matrix whosg/£lements Xomprise the second derivatives of
E(w) with respect to the componepfs of w.

Let us first of all apply the/Newton-Raphson hod to the linear regression
model (3.3) with the sum-of-sgfiares error function (3.1 N, The gradient and Hessian
of this error function are giyén by
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Lecture 8: Backpropagation
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Number of parameters

e t=w!x N measurement, M parameters

— How large a w can we determine?

N

e t=q@(w,x)

— How large a w can we determine?

vN

« Consider a neural network, with one hidden layer, each

layer having N=M=100 nodes

— How large is W?

— How many observations is needed to estimate W? lto éga iy
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Why we need backpropagation
* Networks without hidden units are very limited in the input-
output mappings they can model.
— More layers of linear units do not help. Its still linear.

— Fixed output non-linearities are not enough

« We need multiple layers of adaptive non-linear hidden units,
giving a universal approximator. But how to train such nets?

— We need an efficient way of adapting all the weights, not just
the last layer. Learning the weights going into hidden units is

equivalent to learning features.
— Nobody is telling us directly what hidden units should do.
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Learning by perturbing weights

Randomly perturb one weight. If it improves
performance save the change.

— Very inefficient. We need to do multiple
forward passes on a representative set
of training data to change one weight.

— Towards the end of learning, large weight
perturbations will nearly always make

things worse. input units hidden units |
Randomly perturb all weights in parallel and O O utput units
correlate the performance gain with the weight
changes. O
Not any better. We need lots of trials to
“see” the effect of changing a weight O

through the noise created by all the others.

Learning the hidden to output
weights is easy. Learning the

input to hidden weights is hard.



The idea behind backpropagation

Don’t know what the hidden units should be, but we can compute
how fast the error changes as we change a hidden activity.

— Instead of using desired activities to train the hidden units,
use error derivatives w.r.t. hidden activities.

— Each hidden activity affect many output units and have many
separate effects on the error.

— Error derivatives for all the hidden units is computed
efficiently.

— Once we have the error derivatives for the hidden activities,
its easy to get the error derivatives for the weights going into
a hidden unit.
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