
Projects
• 3-4 person groups
• Deliverables: Poster, Report & main code (plus proposal, midterm slide)
• Topics: your own or chose form suggested topics / kaggle
• Week 3 groups due to TA Nima. Rearrangement might be needed.

• May 2 proposal due. TAs and Peter can approve.
• Proposal: One page: Title, A large paragraph, data, weblinks, references.
• Something physical and data oriented.
• May ~16 Midterm slides. Likely presented in 4 subgroups (3TA+Peter).
• 5pm 6 June Jacobs Hall lobby, final poster session. Snacks

• Poster, Report & main code. Report due Saturday 16 June.

Logistic regression (page 205)

When there are only two classes we can model the conditional
probability of the positive class as

If we use the right error function, something nice happens: The
gradient of the logistic and the gradient of the error function
cancel each other:

)exp(1
1

)()()|(01 z
zwherewCp T

-+
=+= ss xwx

nn

N

n
n tyEpE xwwtw)()(),|(ln)(

1
-=Ñ-= å

=

The natural error function for the logistic

Fitting logistic model using
maximum likelihood, requires
minimizing the negative log
probability of the correct answer
summed over the training set.

)1(

1
1

)1(ln)1(ln

)|(ln

1

1

nn

nn

n

n

n

n

n

n

nn

N

n
nn

N

n
nn

yy
ty

y
t

y
t

y
E

ytyt

ytpE

-
-

=

-
-

+-=
¶
¶

--+-=

-=

å

å

=

=

error derivative on
training case n

if t =1 if t =0

Using the chain rule to get the error derivatives

nnn
n

n

n

n

nn

nn
n

n

nn

nn

n

n

n
n

n
T

n

tyz
dz
dy

y
EE

yy
dz
dy

yy
ty

y
E

zwz

x
ww

x
w

xw

)(

)1(,
)1(

,0

-=
¶
¶

¶
¶

=
¶
¶

-=
-
-

=
¶
¶

=
¶
¶

+=

Softmax function

198 4. LINEAR MODELS FOR CLASSIFICATION

Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
− 1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = − 1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

198 4. LINEAR MODELS FOR CLASSIFICATION

Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
− 1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = − 1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

Cross-entropy or “softmax” function for multi-class classification

ii
j i

j

ji

j
j
j

ii
i

i

j

z

z

i

ty
z
y

y
E

z
E

ytE

yy
z
y

e

ey
j

i

-=
¶

¶

¶
¶

=
¶
¶

-=

-=
¶
¶

=

å

å

å

ln

)(1

The output units use a non-local non-linearity:

The natural cost function is the negative log prob
of the right answer

output units

z

y

z

y

z

y
1

1 2

2 3

3
target value

A special case of softmax for two classes

So the logistic is just a special case of softmax without
redundant parameters:

Adding the same constant to both z1 and z0 has no effect.
The over-parameterization of the softmax is because the
probabilities must add to 1.

)(1
0101

1

1
1

zzzz

z

eee
ey --+

=
+

=

Lecture 8: Backpropagation

Number of parameters
• " = $%& ,N measurement, M parameters

– How large a w can we determine?

• " = '($, &)
– How large a w can we determine?

• Consider a neural network, with one hidden layer, each
layer having N=M=100 nodes
– How large is W?
– How many observations is needed to estimate W?

Why we need backpropagation
• Networks without hidden units are very limited in the input-

output mappings they can model.
– More layers of linear units do not help. Its still linear.
– Fixed output non-linearities are not enough

• We need multiple layers of adaptive non-linear hidden units,
giving a universal approximator. But how to train such nets?
– We need an efficient way of adapting all the weights, not just

the last layer. Learning the weights going into hidden units is
equivalent to learning features.

– Nobody is telling us directly what hidden units should do.

Learning by perturbing weights
Randomly perturb one weight. If it improves
performance save the change.

– Very inefficient. We need to do multiple
forward passes on a representative set
of training data to change one weight.

– Towards the end of learning, large weight
perturbations will nearly always make
things worse.

Randomly perturb all weights in parallel and
correlate the performance gain with the weight
changes.

Not any better. We need lots of trials to
“see” the effect of changing a weight
through the noise created by all the others.

Learning the hidden to output
weights is easy. Learning the
input to hidden weights is hard.

hidden units
output units

input units

The idea behind backpropagation

Don’t know what the hidden units should be, but we can compute
how fast the error changes as we change a hidden activity.

– Instead of using desired activities to train the hidden units,
use error derivatives w.r.t. hidden activities.

– Each hidden activity affect many output units and have many
separate effects on the error.

– Error derivatives for all the hidden units is computed
efficiently.

– Once we have the error derivatives for the hidden activities,
its easy to get the error derivatives for the weights going into
a hidden unit.

