
Homework

Homework

Lecture 7: Linear Classification Methods

Final projects?
Groups
Topics
Proposal week 5
Lecture 20 is poster session, Jacobs Hall Lobby,
snacks
Final report 15 June.

What is “linear” classification?
Classification is intrinsically non-linear

It puts non-identical things in the same class, so a difference in input vector
sometimes causes zero change in the answer

“Linear classification” means that the part that adapts is linear
The adaptive part is followed by a fixed non-linearity.
It may be preceded by a fixed non-linearity (e.g. nonlinear basis functions).

))((,)(0 xxwx yfDecisionwy T =+=

fixed non-linear function
adaptive linear function

0.5

0
0

1

z

y

Representing the target values for classification
For two classes, we use a single valued output that has target
values 1 for the “positive” class and 0 (or -1) for the other class

For probabilistic class labels the target value can then be
P(t=1) and the model output can also represent P(y=1).

For N classes we often use a vector of N target values
containing a single 1 for the correct class and zeros elsewhere.

For probabilistic labels we can then use a vector of class
probabilities as the target vector.

Three approaches to classification
Use discriminant functions directly without probabilities:

Convert input vector into real values. A simple operation (like
thresholding) can get the class.

Choose real values to maximize the useable information about the
class label that is in the real value.

Infer conditional class probabilities:
Compute the conditional probability of each class.

Then make a decision that minimizes some loss function
Compare the probability of the input under separate, class-
specific, generative models.

E.g. fit a multivariate Gaussian to the input vectors of each
class and see which Gaussian makes a test data vector most
probable. (Is this the best bet?)

)|(xkCclassp =

The planar decision surface
in data-space for the simple
linear discriminant function:

00 ³+ wTxw

X on plane => y=0 =>

Distance from plane

Discriminant functions

Discriminant functions for N>2 classes
One possibility is to use N two-way discriminant functions.

Each function discriminates one class from the rest.
Another possibility is to use N(N-1)/2 two-way discriminant
functions

Each function discriminates between two particular classes.
Both these methods have problems

More than one good
answer

Two-way preferences
need not be transitive!

A simple solution (4.1.2)
Use N discriminant functions,
and pick the max.

This is guaranteed to give consistent and
convex decision regions if y is linear.

() ()BAjBAk

BjBkAjAk

yy
thatpositiveforimplies

yyandyy

xxxx

xxxx

)1()1(
)(

)()()()(

aaaa
a

-+>-+

>>

...,, kji yyy

Decision boundary?

Maximum Likelihood and Least Squares (from
lecture 3)

Computing the gradient and setting it to zero yields

Solving for w,

where

The Moore-Penrose
pseudo-inverse, .

LSQ for classification

184 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.

Ri

Rj

Rk

xA

xB

x̂

where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = w T
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)

Consider a training set {"#, $#}, ' = 1…N
Define X and T

4.1. Discriminant Functions 185

where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃ k = (wk0, w T

k)T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃ T

k x̃ is largest.
We now determine the parameter matrix W̃ by minimizing a sum-of-squares

error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision

LSQ solution:

And prediction

4.1. Discriminant Functions 185

where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃ k = (wk0, w T

k)T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃ T

k x̃ is largest.
We now determine the parameter matrix W̃ by minimizing a sum-of-squares

error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision

Using “least squares” for classification
It does not work as well as better methods, but it is easy:

It reduces classification to least squares regression.

logistic regression
least squares
regression

PCA don’t work well

picture showing the advantage of Fisher’s linear
discriminant

When projected onto the line
joining the class means, the
classes are not well separated.

Fisher chooses a direction that makes
the projected classes much tighter,
even though their projected means are
less far apart.

Math of Fisher’s linear discriminants

What linear transformation is best for
discrimination?
The projection onto the vector separating
the class means seems sensible:

But we also want small variance within each
class:

Fisher’s objective function is:

xwTy =

12 mmw -µ

)(

)(

2
2
2

1
2
1

2

1

mys

mys

Cn
n

Cn
n

-=

-=

å

å

e

e

2
2

2
1

2
12)()(
ss
mmJ
+
-

=w
between

within

)(:

)()()()(

)()(

)()(

12
1

2211

1212

2
2

2
1

2
12

21

mmSw

mxmxmxmxS

mmmmS

wSw
wSw

w

-µ

--+--=

--=

=
+
-

=

-

ÎÎ
åå

W

Cn

T
nn

Cn

T
nnW

T
B

W
T

B
T

solutionOptimal

ss
mmJ

More math of Fisher’s linear discriminants

We have probalistic classification!

Probabilistic Generative Models for Discrimination
(Bishop p 196)

Use a generative model of the input vectors for each class,
and see which model makes a test input vector most probable.
The posterior probability of class 1 is:

)|(1
)|(ln

)|()(
)|()(ln

1
1

)|()()|()(
)|()()|(

1

1

00

11

0011

11
1

x
x

x
x

xx
x

x

Cp
Cp

CpCp
CpCpzwhere

eCpCpCpCp
CpCpCp z

-
==

+
=

+
= -

z is called the logit and is
given by the log odds

An example for continuous inputs
Assume input vectors for each class are Gaussian, all classes
have the same covariance matrix.

For two classes, C1 and C0, the posterior is a logistic:

{ })()(exp)|(1
2
1

k
T

kk aCp µxµxx -S--= -

)(
)(ln

)(

)()|(

0

1
0

1
02

1
1

1
12

1
0

01
1

01

Cp
Cpw

wCp

TT

T

++-=

-=

+=

--

-

µΣµµΣµ

µµΣw

xwx s

inverse covariance matrixnormalizing
constant

! = #$ % &|() % ()
% &|(* % (*

The role of the inverse covariance matrix

If the Gaussian is spherical no need to worry
about the covariance matrix.
So, start by transforming the data space to
make the Gaussian spherical

This is called “whitening” the data.
It pre-multiplies by the matrix square
root of the inverse covariance matrix.

In transformed space, the weight vector is
the difference between transformed means.

aff
T
aff

aff

aff

T

forgives

and

asfor

valuesamethegives

xw

xΣx

µΣµΣw

xw

µµΣw

2
1

2
1

2
1

01

01
1

:

)(

-

--

=

-=

-= -

The posterior when the covariance matrices are different for
different classes (Bishop Fig)

The decision surface is planar when
the covariance matrices are the same
and quadratic when not.

Bernoulli distribution
Random variable ! ∈ 0,1
Coin flipping: heads=1, tails=0

Bernoulli Distribution

ML for Bernoulli
Given:

The logistic function
The output is a smooth function
of the inputs and the weights.

)1(

)(
1

1
0

yy
dz
dy

w
x
z

x
w
z

ze
zy

wz

i
i

i
i

T

-=

=
¶
¶

=
¶
¶

-+
==

+=

s

xw

0.5

0
0

1

z

y

Its odd to express it
in terms of y.

Logistic regression (Bishop 205)
! "# $ = &(()$)
Observations
Likelihood
2 = &(()$)

! 2 $,(=

! 4 $,(=

Log-likelihood

Minimize	–log	like
Derivative

∇(C(=

C(= −EF(! 4 $,()=

Logistic regression (page 205)

When there are only two classes we can model the conditional
probability of the positive class as

If we use the right error function, something nice happens: The
gradient of the logistic and the gradient of the error function
cancel each other:

)exp(1
1

)()()|(01 z
zwherewCp T

-+
=+= ss xwx

nn

N

n
n tyEpE xwwtw)()(),|(ln)(

1
-=Ñ-= å

=

