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What is “linear” classification?
Classification is intrinsically non-linear

It puts non-identical things in the same class, so a difference in input vector
sometimes causes zero change in the answer

“Linear classification” means that the part that adapts is linear
The adaptive part is followed by a fixed non-linearity.
It may be preceded by a fixed non-linearity (e.g. nonlinear basis functions).

y(x) = wlx+ W, Decision = f(y(x))

adaptive linear function t
fixed non-linear function




Representing the target values for classification

For two classes, we use a single valued output that has target
values 1 for the “positive” class and 0 (or -1) for the other class

For probabillistic class labels the target value can then be
P(t=1) and the model output can also represent P(y=1).

For N classes we often use a vector of N target values
containing a single 1 for the correct class and zeros elsewhere.

For probabilistic labels we can then use a vector of class
probabilities as the target vector.



Three approaches to classification

Use discriminant functions directly without probabilities:

Convert input vector into real values. A simple operation (like
thresholding) can get the class.

Choose real values to maximize the useable information about the
class label that is in the real value.

Infer conditional class probabilities:  p(class = C}, | x)

Compute the conditional probability of each class.
Then make a decision that minimizes some loss function

Compare the probability of the input under separate, class-
specific, generative models.
E.g. fit a multivariate Gaussian to the input vectors of each
class and see which Gaussian makes a test data vector most
probable. (Is this the best bet?)



pod 2] Discriminant functions

y <0 R, The planar decision surface
in data-space for the simple

linear discriminant function:

W X—I—WOZO

X on plane => y=0 =>

Distance from plane



Discriminant functions for N>2 classes
One possibility is to use N two-way discriminant functions.

Each function discriminates one class from the rest.

Another possibility is to use N(N-1)/2 two-way discriminant
functions

Each function discriminates between two particular classes.
Both these methods have problems

not Co TWO—Way prefe rences

More than one good need not be transitive!
answer



A simple solution (4.1.2)

Use N discriminant functions,
and pick the max. Y, V;, Vi -

R.
This is guaranteed to give consistent ¢ !
convex decision regions if y is linear. R
Ry
Ye(Xg)>y;(xy) and y(xp)>y;(Xg) o
s o

implies ( for positive ) that R X

ilax +(1-a)xz)>y(ax +(1-a)x;)

Decision boundary?



Maximum Likelihood and Least Squares (from

lecture 3)

Computing the gradient and setting it to zero yields

Vw 1np(t|W, /6) =0 Z {tn — WT¢(Xn)} ¢(Xn)T = 0.

Solving for w,

where

The Moore-Penrose

| _1 1
Wt — (<I>T<I>) Tt

(cbo(xl) ¢1(X1)
¢0(X2) ¢1(X2)

\ do(xn) é1(xn)

pseudo-inverse, 3

drr—1(x1)
dr—1(x2) \

¢M—KXN)/



LSQ for classification

Each class Cj. is described by its own linear model so that

Yi(X) = Wi X + wo (4.13)
where £k = 1,..., K. We can conveniently group these together using vector nota-
tion so that .

y(x) = W'x (4.14)

Consider a training set {x,,, t,},n =1 ...N
Define Xand T

LSQ solution:
W= (X"X)"'X"T = XIT (4.16)
And prediction

y(x) = WIx = TT (XT )T X, (4.17)



Using “least squares” for classification

It does not work as well as better methods, but it is easy:
It reduces classification to least squares regression.

logistic regression

|least squares
[regression




PCA don’t work well

Scatter plot of data-set
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picture showing the advantage of Fisher’s linear
discriminant

6 -2 2 6

When projected onto the line Fisher chooses a direction that makes
joining the class means, the the projected classes much tighter,
classes are not well separated. even though their projected means are

less far apart.



Math of Fisher’s linear discriminants

What linear transformation is best for y = WTX
discrimination?

The projection onto the vector separating

the class means seems sensible: W oc m, —Iy

[
[]
S}
|
S

But we also want small variance within each 7

class: neC
Sy = Z (yn o mZ)
ne&E C2
2
Fisher’s objective function is: B (m2 — ml) 4_betW€en
J(w) = —
S| TS2  —within



More math of Fisher’s linear discriminants

> T
(my —my) W Spw

JW) = —5—— =7
Sl ‘|‘S2 W SWW

Sp=(m;—m;) (m, _ml)T

Sy = > (x,—m)) (x,—m)" + > (x,-my)(x,—m,)

neC; neC,

Optimal solution: W o S;V1 (m, —m;)
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We have probalistic classification!

class conditional densities p(xjc)
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Probabilistic Generative Models for Discrimination
(Bishop p 196)

Use a generative model of the input vectors for each class,
and see which model makes a test input vector most probable.

The posterior probability of class 1 is:

p(C))p(x| Cy) _ 1
p(C)p(x|C)+p(Co)p(x|Cy)  1+e7F

p(C|x) =

p(C)px|C) | PG [%)
p(Co)p(x|Cyh) 1-p(C|x)
1

z is called the logit and is
given by the log odds

where z = In




An example for continuous inputs

Assume input vectors for each class are Gaussian, all classes

have the same covariance matrix.

normalizing inverse covariance matrix
constant ‘

' 1 T -1
p(x|C) =a expp L (x—p) =7 (x—my)|
For two classes, C, and C,, the posterior is a logistic:
P(Cy %)= o (W X+ wp)

w=2""(n —po)
p(Cy)
p(Cop)

1 Ts-1 1 Ts-1
Wo=—5M Z M +oRpX py +In



. <P<x|cl>P<cl>)
P(x|Cy)P(C)



The role of the inverse covariance matrix

If the Gaussian is spherical no need to worry _ vy

W =2 —
about the covariance matrix. (= o)
So, start by transforming the data space to gives the same value

make the Gaussian spherical
This is called “whitening” the data.
It pre-multiplies by the matrix square

for wlix as:

1 1

root of the inverse covariance matrix. War = 2P —X Ppg
In transformed space, the weight vector is 1
the difference between transformed means. and Xofp = Y 2x

gives for Wgﬁrxaﬁ



The posterior when the covariance matrices are different for
different classes (Bishop Fig )
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The decision surface is planar when
the covariance matrices are the same
and quadratic when not.



Bernoulli distribution

Random variable x € {0,1}
Coin flipping: heads=1, tails=0

p(z = 1jp) =
Bernoulli Distribution  Bern(z|p) = p%(1—p)'™?
Elz] = p
varle] = p(l - p)

ML for Bernoulli
Given: D = {5131, ...,ZN}, m heads (1), N —m tails (0)

N
p(D|p) = H panlp) = T[] w1 — p)t=—*
n=1

N
Inp(D|pu) = Zlnp T |p) = Z{xnlnu—l—(l—xn)ln(l—u)}

n=1

1 N m
,UJML:N?;Z'WJ:N



The logistic function

The output is a smooth function _wixa
of the inputs and the weights. Z=W X7 W
1
y=o(z)=—
T 1+e
0 0
0.5 ow; OX;
dy
0 | 0 Y (1-»)
0 ‘ 1

Its odd to express it
in terms of y.



Logistic regression (Bishop 205)

p(Ci|x) = o(W'x)

Observations

Likelihood

y =o(w'x)
p(ylx,w) =

p(T|x,w) =

Log-likelihood
Ey, = —In(p(T|x,w))=
Minimize -log like
Derivative
VwEy =



Logistic regression (page 205)

When there are only two classes we can model the conditional
probability of the positive class as

1
1+exp(—z)

p(C|x)=c(Ww x+wy)  where o(z)=

If we use the right error function, something nice happens: The
gradient of the logistic and the gradient of the error function
cancel each other:

N
Ew)=—Inp(t|w),  VEW)=Y (3, ~t,)x,
n=1



The natural error function for the logistic

N
Fitting logistic model using E = _Z Inp(¢,|y,)

maximum likelihood, requires n=I

minimizing the negative log N

probability of the correct answer ~ _ . .
summed over the training set. zt”l In Vn F (1 t’”’)ln (1 y”)

"1 T

if t =1 if t =0
OE, _ 1, N 1-1,
error derivative on V, =1,

training case n



Using the chain rule to get the error derivatives

_ T 5Zn
Zn =W Xn +Wo,

=X

&W n

aEn n_tn dn
— Y ) Y = Vn (l_yn)

n

ok, OF, dy, oz,
oW oy, dz, OW

— (yn _tn)xn



Softmax function

For the case of K > 2 classes, we have

p(x|Cx)p(Ck)
> p(x|C;)p(Cy)

_ _opla) (4.62)

Zj exp(a;)

P(Ck %)

ap = lnp(X‘Ck)p(Ck). (463)



Cross-entropy or “softmax” function for multi-class classification

The output units use a non- yi= e’
local non-linearity: ’ Y e
J
Yi Yo % output Ay =)
units . =y (1-y;
l
1 22 “3 target value
|
The natural cost function is the L= —ij Iny;
negative log prob of the right answer J
The steepness of E exactly balances O _ Z OE ayf y; —t,
the flatness of the softmax. 0z ay; Oz



A special case of softmax for two classes

el ]
Y= — (o
el +e%  1+e 1770

So the logistic is just a special case that avoids using
redundant parameters:

Adding the same constant to both z1 and z0 has no effect.

The over-parameterization of the softmax is because the
probabilities must add to 1.




