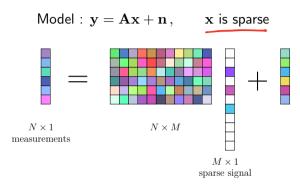
Sparse processing / Compressed sensing



- ullet Problem : Solve for ${f x}$
- ✓ Basis pursuit, LASSO (convex objective function)
 - Matching pursuit (greedy method)
 - Sparse Bayesian Learning (non-convex objective function)

The unconstrained -LASSO- formulation

Constrained formulation of the ℓ_1 -norm minimization problem:

$$\widehat{\mathbf{x}}_{\ell_1}(\epsilon) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{C}^N} \lVert \mathbf{x} \rVert_1 \text{ subject to } \lVert \mathbf{y} - \mathbf{A} \mathbf{x} \rVert_2 \leq \epsilon$$

Unconstrained formulation in the form of least squares optimization with an ℓ_1 -norm regularizer:

$$\widehat{\mathbf{x}}_{\mathsf{LASSO}}(\mu) = \arg\min_{\mathbf{y} \in \mathbb{R}^N} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \mu \|\mathbf{x}\|_1$$

For every ϵ exists a μ so that the two formulations are equivalent

Regularization parameter : μ

Bayesian interpretation of unconstrained LASSO

Y=Ax+n; Prior: P(x); Likelihood P(Y|x).

Bayes rule:

Posterior:
$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Evidence: P(y)

Maximum a posteriori (MAP) estimate :

$$\hat{x} = \underset{x}{\text{arg max }} P(x|y)$$

$$= \underset{x}{\text{arg max }} [\log P(x|y)]$$

$$\hat{x} = \underset{x}{\text{arg max }} [\log P(y|x) + \log P(x)]$$

Bayesian interpretation of unconstrained LASSO

Log:

$$= C_1 \cdot \exp\left(\frac{114-A\times11^2}{\sigma^2}\right)$$

MAP estimate: $\log P(Y|X) = K_1 - \frac{\|Y - AX\|^2}{2}$

 $\log P(x) = ke - \frac{||x||_1}{||x||_2}$

Laplace Prior:

$$P(x) = c_2 exp(-\frac{||x||_1}{y})$$

$$o = N$$

4/17

Bayesian interpretation of unconstrained LASSO

Bayesian interpretation of unconstrained LASSO

$$\hat{x}_{MAP} = \underset{x}{arg} \max \left[\log P(y|x) + \log P(x) \right].$$

MAP estimate:
$$= \underset{x}{arg} \min \left[\frac{||y - Ax||^2}{||x||^2} + \frac{||x||}{||x||} \right]$$

MAP estimate: = arg max [
$$\frac{11y - Ax11^2}{5^2} + \frac{11x11}{y}$$
]

$$x = arg min \left[\frac{11y - Ax11^2}{5^2} + \frac{y}{y} \right]$$

$$x = arg min \left[\frac{11y - Ax11^2}{y} + \frac{y}{y} \right]$$

$$= arg min \left[\frac{11y - Ax11^2}{y} + \frac{y}{y} \right]$$

$$= arg min \left[\frac{11y - Ax11^2}{y} + \frac{y}{y} \right]$$

Prior and Posterior densities (Ex. Murphy)

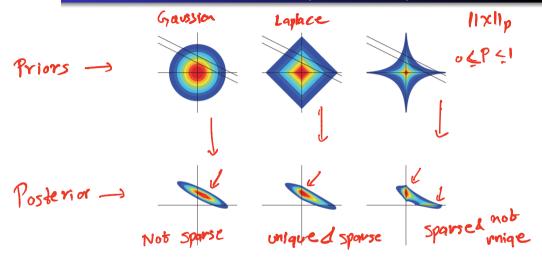


Figure 13.17 Top: plot of log *prior* for three different distributions with unit variance: Gaussian, Laplace and exponential power. Bottom: plot of log *posterior* after observing a single observation, corresponding to a single linear constraint. The precision of this observation is shown by the diagonal lines in the top figure. In the case of the Gaussian prior, the posterior is unimodal and symmetric. In the case of the Laplace prior, the posterior is unimodal and asymmetric (skewed). In the case of the exponential prior, the posterior is bimodal. Based on Figure 1 of (Seeger 2008). Figure generated by sparsePostPlot, written by Florian Steinke.

Sparse Bayesian Learning (SBL)

Model:
$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

Prior: $\mathbf{x} \sim \mathcal{N}(\mathbf{x}; 0, \mathbf{\Gamma})$
 $\mathbf{\Gamma} = \operatorname{diag}(\gamma_1, \dots, \gamma_M)$

Likelihood: $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}; \mathbf{A}\mathbf{x}, \sigma^2 \mathbf{I}_N)$

Evidence: $p(\mathbf{y}) = \int_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$
 $= \mathcal{N}(\gamma; 0, \Sigma_{\gamma})$

SBL solution:

 $\mathbf{\Gamma} = \arg \max p(\gamma)$

M.E.Tipping, "Sparse Bayesian learning and the relevance vector machine," Journal of Machine Learning Research, June 2001.

SBL overview

• SBL solution :
$$\hat{\mathbf{\Gamma}} = \operatorname*{arg\ min}_{\mathbf{\Gamma}} \left\{ \log |\mathbf{\Sigma}_{\mathbf{y}}| + \mathbf{y}^H \mathbf{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y} \right\}$$

- SBL objective function is non-convex
- Optimization solution is non-unique
- Fixed point update using derivatives, works in practice

•
$$\Gamma = \mathsf{diag}(\gamma_1, \ldots, \gamma_M)$$

$$\mathbf{\Gamma} = \operatorname{diag}(\gamma_1, \dots, \gamma_M)$$

$$\mathbf{\Gamma} = \operatorname{diag}(\gamma_1, \dots, \gamma_M)$$

$$\mathbf{U} = \mathbf{\Gamma} = \mathbf{\Gamma$$

• Multi snapshot extension : same Γ across snapshots

 $\Gamma = diag(r_1 ... r_n)$

SBL overview

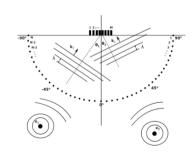
mean

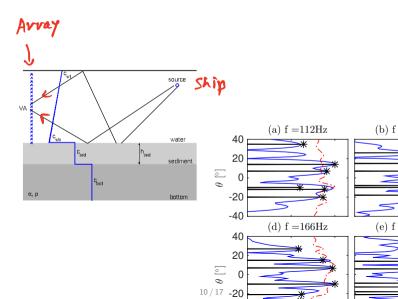
- Posterior : $\mathbf{x}_{\mathsf{post}} = \mathbf{\Gamma} \mathbf{A}^H \mathbf{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y}$
- \bullet At convergence, $\gamma_m \to 0$ for most γ_m
- Γ controls sparsity, $\mathsf{E}(|x_m|^2) = \gamma_m$

- Different ways to show that SBL gives sparse output
- Automatic determination of sparsity
- Also provides noise estimate σ^2

Applications to acoustics - Beamforming

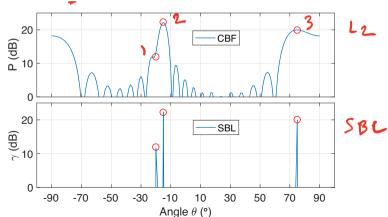
- Beamforming
- Direction of arrivals (DOAs)



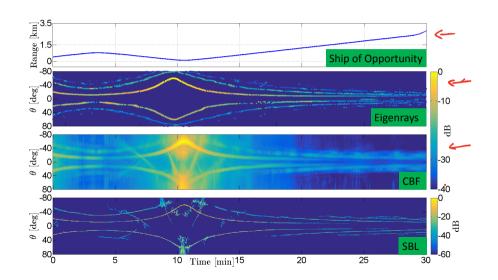


SBL - Beamforming example

- N = 20 sensors, uniform linear array
- Discretize angle space: $\{-90:1:90\},\,M=181$
- Dictionary A : columns consist of steering vectors
- • K = 3 sources, DOAs, $[-20, -15, 75]^{\circ}$, $[12, 22, 20]~\mathrm{dB}$
- *M* ≫ *N* > *K* ≈ 3



SBL - Acoustic hydrophone data processing (from Kai)



Problem with Degrees of Freedom

- PROBLEM: LASSO for multiple snapshots estimates the realizations of the random complex source amplitudes.
- However, we would be satisfied if we just estimated their power

$$\gamma_m = \mathbb{E}\{|x_{ml}|^2\}$$

$$5BL \quad \gamma = \mathbb{E}(|x^2|)$$

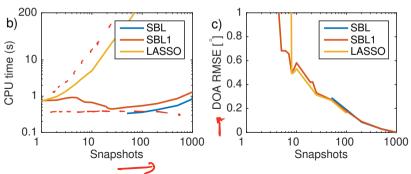
Note that γ_m does not depend on snapshot index l.

Thus SBL is much faster than LASSO for more snapshots.

Example CPU Time

LASSO use CVX, CPU∝L²

SBL nearly independent on snapshots



Matching Pursuit

Model:
$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$
, \mathbf{x} is sparse $\begin{bmatrix} \mathbf{A}\mathbf{n}, \mathbf{Y} \end{bmatrix}$

$$= \begin{bmatrix} \mathbf{N} \times \mathbf{1} \\ \mathbf{m} \end{bmatrix}$$

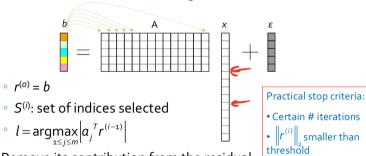
$$= \begin{bmatrix} \mathbf{N} \times \mathbf{1} \\ \mathbf{M} \times \mathbf{1} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{N} \times \mathbf{1} \\ \mathbf{M} \end{bmatrix}$$

- Greedy search method
- Select column that is most aligned with the current residual

Greedy Search Method: Matching Pursuit

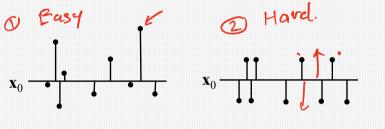
Select a column that is most aligned with the current residual



- Remove its contribution from the residual
 - Update $S^{(i)}$: If $l \notin S^{(i-1)}$, $S^{(i)} = S^{(i-1)} \bigcup \{l\}$. Or, keep $S^{(i)}$ the same
 - Update $r^{(i)}$: $r^{(i)} = P_{a_i}^{\perp} r^{(i-1)} = r^{(i-1)} \alpha_i \alpha_i^T r^{(i-1)}$

Amplitude Distribution

• If the magnitudes of the non-zero elements in \mathbf{x}_0 are highly scaled, then the canonical sparse recovery problem should be easier.



For strongly scaled coefficients, Matching Pursuit (or Orthogonal MP) works better. It picks one coefficient at a time.