
Sparse processing / Compressed sensing

Model : y = Ax + n , x is sparse

=

N × 1
measurements

N ×M

M × 1
sparse signal

+

1

• Problem : Solve for x

• Basis pursuit, LASSO (convex objective function)

• Matching pursuit (greedy method)

• Sparse Bayesian Learning (non-convex objective function)
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The unconstrained -LASSO- formulation

Constrained formulation of the `1-norm minimization problem:

bx`1(✏) = arg min
x2CN

kxk1 subject to ky � Axk2  ✏

Unconstrained formulation in the form of least squares optimization
with an `1-norm regularizer:

bxLASSO(µ) = arg min
x2CN

ky � Axk2
2 + µkxk1

For every ✏ exists a µ so that the two formulations are equivalent

A. Xenaki (DTU/SIO) Paper F 42/40

Regularization parameter :  µ
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Bayesian interpretation of unconstrained LASSO

Bayes rule :

Maximum a posteriori (MAP) estimate :
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Bayesian interpretation of unconstrained LASSO

Gaussian likelihood :

Laplace Prior :

MAP estimate :
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Bayesian interpretation of unconstrained LASSO

MAP estimate :
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Prior and Posterior densities (Ex. Murphy)
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Sparse Bayesian Learning (SBL)

Model : y = Ax + n

Prior : x ∼ N (x; 0,Γ)

Γ = diag(γ1, . . . , γM )

Likelihood : p(y|x) = N (y;Ax, σ2IN )

=

N × 1
measurements

N ×M

M × 1
sparse signal

+

1

Evidence :

SBL solution :

M.E.Tipping, ”Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research,
June 2001.
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SBL overview

• SBL solution : Γ̂ = arg min
Γ

{
log |Σy|+ yHΣ−1

y y
}

• SBL objective function is non-convex

• Optimization solution is non-unique

• Fixed point update using derivatives, works in practice

• Γ = diag(γ1, . . . , γM )

Update rule : γnewm = γoldm

||yHΣ−1
y am||22

aH
mΣ−1

y am

Σy = σ2IN + AΓAH

• Multi snapshot extension : same Γ across snapshots
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SBL overview

• Posterior : xpost = ΓAHΣ−1
y y

• At convergence, γm → 0 for most γm

• Γ controls sparsity, E(|xm|2) = γm

• Different ways to show that SBL gives sparse output

• Automatic determination of sparsity

• Also provides noise estimate σ2

9 / 17



Applications to acoustics - Beamforming

• Beamforming

• Direction of arrivals (DOAs) SwellEx 96 data 
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SBL - Beamforming example

• N = 20 sensors, uniform linear array
• Discretize angle space: {−90 : 1 : 90}, M = 181
• Dictionary A : columns consist of steering vectors
• K = 3 sources, DOAs, [−20,−15, 75]◦, [12, 22, 20] dB
• M � N > K
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SBL - Acoustic hydrophone data processing (from Kai)

CBF

SBL

Eigenrays

Ship of Opportunity
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Problem with Degrees of Freedom 

•  As the number of snapshots (=observations) increases, so does the 
number of unknown complex source amplitudes 

 
•  PROBLEM: LASSO for multiple snapshots estimates the realizations of 

the random complex source amplitudes. 

•  However, we would be satisfied if we just estimated their power 
 

  γm = E{ |xml|2 } 
 
•  Note that γm does not depend on snapshot index l. 

Thus SBL is much faster than LASSO for more snapshots.
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Example CPU Time 
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SBL nearly independent on snapshots 
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Matching Pursuit

Model : y = Ax + n , x is sparse

=

N × 1
measurements

N ×M

M × 1
sparse signal

+

1

• Greedy search method
• Select column that is most aligned with the current residual

15 / 17



16 / 17



y If the magnitudes of the non-zero elements in x0 are highly 
scaled, then the canonical sparse recovery problem 
should be easier. 

y The (approximate) Jeffreys distribution produces 
sufficiently scaled coefficients such that best solution can 
always be easily computed. 

Amplitude Distribution 

x0x0

For strongly scaled coefficients, Matching Pursuit (or
Orthogonal MP) works better. It picks one coefficient at a time. 
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