
Lecture 5 : Sparse Models 

•  Homework 3 discussion (Nima) 

•  Sparse Models Lecture 
-  Reading : Murphy, Chapter 13.1, 13.3, 13.6.1 
-  Reading : Peter Knee, Chapter 2 

•  Paolo Gabriel (TA) : Neural Brain Control 

•  After class 
-  Project groups (Nima) 
-  Installation Tensorflow, Python, Jupyter (TAs) 

 



Homework 3 : Fisher Discriminant  





Sparse model 

•  Linear regression (with sparsity constraints) 

•  Slide 4 from Lecture 4 



Sparse model 

•  y : measurements,  A : dictionary 
•  n : noise,   x : sparse weights 
•  Dictionary (A) � either from physical models or learned from data 

(dictionary learning) 



•  Linear regression (with sparsity constraints) 
–  An underdetermined system of equations has many solutions 
–  Utilizing x is sparse it can often be solved 

–  This depends on the structure of A (RIP – Restricted Isometry Property) 

•  Various sparse algorithms  
–  Convex optimization (Basis pursuit / LASSO / L1 regularization) 
–  Greedy search (Matching pursuit / OMP) 
–  Bayesian analysis (Sparse Bayesian learning / SBL) 

•  Low-dimensional understanding of high-dimensional data sets 

•  Also referred to as compressive sensing (CS) 

Sparse processing 



Different applications, but the same algorithm 

y	 A	 x	

Frequency	signal		 DFT	matrix	 Time-signal	

Compressed-Image	 Random	matrix	 Pixel-image	

	Array	signals		 Beam	weight		 Source-location	

Reflection	sequence		 Time	delay		 Layer-reflector	
	



CS approach to geophysical data analysis

CS of Earthquakes

Yao, GRL 2011, PNAS 2013

Sequential CS

Mecklenbrauker, TSP 2013

a) Sequential h0=0.5
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b) Sequential h0=0.05
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CS beamforming

Xenaki, JASA 2014, 2015
Gerstoft JASA 2015

CS fathometer

Yardim, JASA 2014

CS Sound speed estimation

Bianco, JASA 2016 Gemba, JASA 2016

CS matched field



Sparse signals /compressive signals are important 

•  We don’t need to sample at the Nyquist rate 

•  Many signals are sparse, but are solved under non-sparse 
assumptions 
–  Beamforming 
–  Fourier transform 
–  Layered structure 

•  Inverse methods are inherently sparse: We seek the simplest way to 
describe the data 

•  All this requires new developments 
-  Mathematical theory 
-  New algorithms (interior point solvers, convex optimization) 
-  Signal processing 
-  New applications/demonstrations 
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Sparse Recovery 

•  We try to find the sparsest solution which explains our noisy 
measurements 

•  L0-norm 

•  Here, the L0-norm is a shorthand notation for counting the number of 
non-zero elements in x.  



Sparse representation of the DOA estimation problem

Underdetermined problem

y = Ax, M < N

Prior information

x: K-sparse, K ⌧ N

xn

n

kxk0 =
NX

n=1

1xn 6=0 = K

Not really a norm: kaxk0 = kxk0 6= |a|kxk0

There are only few sources with unknown locations and amplitudes

A. Xenaki (DTU/SIO) 11 / 40

Sparse Recovery using L0-norm 

•  L0-norm solution involves exhaustive search 

•  Combinatorial complexity, not computationally feasible 
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Lp-norm  

•  Classic choices for p are 1, 2, and ∞. 

•  We will misuse notation and allow also p = 0. 

|| x ||p= | xm |p
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Lp-norm (graphical representation)	
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Solutions for sparse recovery 

•  Exhaustive search 
-  L0 regularization, not computationally feasible 

•  Convex optimization 
-  L1 regularization / Basis pursuit / LASSO 

•  Greedy search  
-  Matching pursuit  / Orthogonal matching pursuit (OMP) 

•  Bayesian analysis  
-  Sparse Bayesian Learning (SBL) 

•  Regularized least squares 
-  L2 regularization, reference solution, not actually sparse 



•  Slides 8/9, Lecture 4 

•  Regularized least 
squares solution 

•  Solution not sparse 



Basis Pursuit / LASSO / L1 regularization 

•  The L0-norm minimization is not convex and requires combinatorial 
search making it computationally impractical 

•  We make the problem convex by substituting the L1-norm in place of 
the L0-norm 

•  This can also be formulated as 

min
x

|| x ||1 subject to ||Ax−b ||2< ε



The unconstrained -LASSO- formulation

Constrained formulation of the `1-norm minimization problem:

bx`1(✏) = argmin
x2CN

kxk1 subject to ky � Axk2  ✏

Unconstrained formulation in the form of least squares optimization
with an `1-norm regularizer:

bxLASSO(µ) = argmin
x2CN

ky � Axk22 + µkxk1

For every ✏ exists a µ so that the two formulations are equivalent

A. Xenaki (DTU/SIO) Paper F 42/40

Regularization parameter :  µ
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•  Why is it OK to substitute the L1-norm for the L0-norm? 

•  What are the conditions such that the two problems have the same 
solution? 

•  Restricted Isometry Property (RIP) 

Basis Pursuit / LASSO / L1 regularization 

min
x

|| x ||0
subject to || Ax − b ||2< ε

min
x
|| x ||1

subject to || Ax −b ||2< ε



Geometrical view (Figure from Bishop) 

L2 regularization L1 regularization 



Regularization parameter selection

The objective function of the LASSO problem:

L(x, µ) = ky � Axk22 + µkxk1

is minimized if
0 2 @xL(x, µ)

where the subgradient is

@xL(x, µ) = 2AH (Ax� y) + µ@xkxk1

thus, the global minimum is attained if

µ�1r 2 @xkxk1, r = 2AH (y � Abx)

A. Xenaki (DTU/SIO) Paper F 45/40

•  Regularization parameter :  

•  Sparsity depends on  

•       large, x = 0 

•       small, non-sparse 

µ

µ

µ

µ



Regularization Path (Figure from Murphy) 

L2 regularization L1 regularization 

1/µ1/µ

•  As regularization parameter µ is decreased, more and more 
weights become active 

•  Thus µ controls sparsity of solutions 



Applications 

•  MEG/EEG/MRI source location (earthquake location) 
•  Channel equalization 
•  Compressive sampling (beyond Nyquist sampling) 
•  Compressive camera! 

•  Beamforming 
•  Fathometer 
•  Geoacoustic inversion 
•  Sequential estimation 



Beamforming / DOA estimation  











Additional	Resources	


