Lecture 5 : Sparse Models

Homework 3 discussion (Nima)

Sparse Models Lecture
- Reading : Murphy, Chapter 13.1, 13.3, 13.6.1
- Reading : Peter Knee, Chapter 2

Paolo Gabriel (TA) : Neural Brain Control

After class
- Project groups
- Installation Tensorflow, Python, Jupyter



Homework 3 : Fisher Discriminant






Sparse model

* Linear regression (with sparsity constraints)

 Slide 4 from Lecture 4

Linear regression: Linear Basis Function Models (1)

Generally M1
Yoo, w) = ) wio;(x) =W p(x)
j=0

* where ¢;(x) are known as basis functions. _ o\ o 0|

e Typically, ¢o(x) =1, so that wy acts as a bias. ° 4
* Simplest case is linear basis functions: ¢4(x) = x4. -7

0 , 1
M
B 9 M _ j
y(x,w) = wo + w1z + woz” + ... +wyx” = w;T
Jj=0



Sparse model

Model : y = Ax +n, X IS sparse
L]
. = +
N x 1 N x M
measurements

M x 1

sparse signal

 y:measurements, A dictionary

* n:noise, X : sparse weights

« Dictionary (A) — either from physical models or learned from data
(dictionary learning)



Sparse processing

Linear regression (with sparsity constraints)
— An underdetermined system of equations has many solutions
— Ultilizing x is sparse it can often be solved
— This depends on the structure of A (RIP — Restricted Isometry Property)

Various sparse algorithms
— Convex optimization (Basis pursuit / LASSO / L, regularization)
— Greedy search (Matching pursuit / OMP)
— Bayesian analysis (Sparse Bayesian learning / SBL)

Low-dimensional understanding of high-dimensional data sets

Also referred to as compressive sensing (CS)



Different applications, but the same algorithm

Model : y = Ax +n, X IS sparse
H
I
H
H
N x 1 N x M

measurements

Mx1

sparse signal

Frequency signal DFT matrix Time-signal
Compressed-Image Random matrix Pixel-image
Array signals Beam weight Source-location

Reflection sequence Time delay Layer-reflector



CS approach to geophysical data analysis

CS of Earthquakes
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CS Sound speed estimation
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CS matched field

Detection performance for two sources
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Sparse signals /compressive signals are important

We don’t need to sample at the Nyquist rate

Many signals are sparse, but are solved them under non-sparse
assumptions

— Beamforming

— Fourier transform

— Layered structure

Inverse methods are inherently sparse: We seek the simplest way to
describe the data

All this requires new developments
- Mathematical theory
- New algorithms (interior point solvers, convex optimization)
- Signal processing
- New applications/demonstrations



Sparse Recovery

We try to find the sparsest solution which explains our noisy
measurements

L,-norm

Here, the Ly-norm is a shorthand notation for counting the number of
non-zero elements in x.
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Sparse Recovery using L,-norm

Underdetermined problem

y=Ax, M<N

Prior information

x: K-sparse, K < N

x4

N
l Ixllo =) Luzo =K
n=1

n

Not really a norm: [|ax|lo = [|xllo # |al[xIlo

There are onlv few sources with unknown locations and amplitudes

L,-norm solution involves exhaustive search

Combinatorial complexity, not computationally feasible



L -norm

1/p

M
Ixll,=| Yix, V| for p>0
m=1

» Classic choices for p are 1, 2, and «.

« We will misuse notation and allow also p = 0.



L -norm (graphical representation)

Iy p 1/p
I+, =| k.|
m=1

equal-norm
.~~~ contour

osp<1 p=1 p>1



Solutions for sparse recovery

Exhaustive search
- L, regularization, not computationally feasible

Convex optimization
- Basis pursuit / LASSO / L, regularization

Greedy search
- Matching pursuit / Orthogonal matching pursuit (OMP)

Bayesian analysis
- Sparse Bayesian Learning / SBL

Regularized least squares
- L, regularization, reference solution, not actually sparse



Regularized least squares

E(w)= 3 (v, . W) =1, + 2wl

n=1

The squared weights penalty is mathematically compatible with
the squared error function, giving a closed form for the optimal
weights:

w = QI+XI X)) XT¢

A picture of the effect of the regularizer

. 24 * The overall cost function is the sum of
Slide 8/9, Lecture 4 two parabolic bowls.

* The sum is also a parabolic bowl.

Regularized least ¢ The combined minimum lies on the line
squares solution between the minimum of the squared
error and the origin.

Solution not sparse w* * The L2 regularizer just shrinks the

weights.
|/ "




Basis Pursuit / LASSO / L, regularization

The L,-norm minimization is not convex and requires combinatorial
search making it computationally impractical

We make the problem convex by substituting the L,-norm in place of
the L,-norm

min |l x Il subjectto Ax—-bll,<¢&

X

This can also be formulated as



The unconstrained -LASSO- formulation

Constrained formulation of the ¢;-norm minimization problem:

Xy, (€) = arg min||x||1 subject to ||y — Ax|[> < e
xeCN

Unconstrained formulation in the form of least squares optimization
with an /;-norm regularizer:

X asso(p) = argmin ||y — Ax||5 + p/[x]|1
xeCN

For every € exists a 1 so that the two formulations are equivalent

Regqularization parameter : L




Basis Pursuit / LASSO / L, regularization

* Why is it OK to substitute the L,-norm for the L,-norm?

 What are the conditions such that the two problems have the same
solution?

« Restricted Isometry Property (RIP)

(I =ds)llull2 < [Asullz < (14 05)llull2
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Geometrical view (Figure from Bishop)

Geometrical view of the lasso compared with a penalty
on the squared weights

W2 a w2 g

L, regularization L, regularization



Regularization parameter selection

The objective function of the LASSO problem:

L(x, 1) = [ly — Ax|[3 + pl|x[|1

Regularization parameter : W

Sparsity depends on W
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L, regularization

Regularization Path (Figure from Murphy)

L, regularization
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Applications

MEG/EEG/MRI source location (earthquake location)
Channel equalization

Compressive sampling (beyond Nyquist sampling)
Compressive cameral Maxwell’s egs.
Beamforming
Fathometer
Geoacoustic inversion
Sequential estimation
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Beamforming / DOA estimation

DOA estimation with sensor arrays

Vi = 2 :Xnej%’rrmsiné’n
n

' me [1,---, M]: sensor
ne(l,---,N]: look direction
-45 y — Ax

p.(r.t) = x; ej((.l)t-klr) p,(r.t) = X, ej((x)t-kzl')
A=lay, -, apn]
x € C, 0 €[-90°,90°] .

(27 1 sin 6,
2 d, — —[ej)‘ !
k = —Tﬂ sin ), A:wavelength VM

'27(' .
LrvsinOp1 T
’e/>\ M "]

Y

The DOA estimation is formulated as a linear problem



Direction of arrival estimation

Plane waves from a source/interferer
impinging on an array/antenna

True DOA is sparse in the angle domain

e:{o) aoaolaoa"' 30302a03"' ’0}




Conventional beamforming
Plane wave weight vector w; = [1,e~*sin(6i) ... e=uN=1)sin(61)]T

B(9) = [w"(6)b]?
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Conventional beamforming
Equivalent to solving the #; problem with A = [wy,--- ,wy], M > N.

min ||x||2 subject to Ax=Db
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A is an overcomplete dictionary of candidate DOA vectors. Columns
span —90° to 90° in steps of 1° (M = 181).



/1 minimization
In contrast /; minimization provides a sparse solution with exact recovery:

min ||x||1 subject to Ax=b
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Columns of A span —90° to 90° in steps of 1° (M = 181).



Additional Resources

FhEre : Compressed
Holger Rauhut - Se n Si n g
AMatherr_latlcal T sl
Introduction to Redundant
Compressive

P %m

Representations

@ Birkhauser




