Lecture 5 : Sparse Models

- Homework 3 discussion (Nima)
- Sparse Models Lecture
 - Reading : Murphy, Chapter 13.1, 13.3, 13.6.1
 - Reading : Peter Knee, Chapter 2
- Paolo Gabriel (TA) : Neural Brain Control
- After class
 - Project groups
 - Installation Tensorflow, Python, Jupyter

Homework 3 : Fisher Discriminant

Sparse model

- Linear regression (with sparsity constraints)
- Slide 4 from Lecture 4

Linear regression: Linear Basis Function Models (1)

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- where $\phi_j(x)$ are known as *basis functions*.
- Typically, $\phi_0(x) = 1$, so that w_0 acts as a bias.
- Simplest case is linear basis functions: $\phi_d(x) = x_d$. -1

Sparse model

Model : $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$, \mathbf{x} is sparse

- y : measurements, A : dictionary
- n : noise, x : sparse weights
- Dictionary (A) either from physical models or learned from data (dictionary learning)

Sparse processing

- Linear regression (with sparsity constraints)
 - An underdetermined system of equations has many solutions
 - Utilizing x is sparse it can often be solved
 - This depends on the structure of A (RIP Restricted Isometry Property)
- Various sparse algorithms
 - Convex optimization (Basis pursuit / LASSO / L₁ regularization)
 - Greedy search (Matching pursuit / OMP)
 - Bayesian analysis (Sparse Bayesian learning / SBL)
- Low-dimensional understanding of high-dimensional data sets
- Also referred to as compressive sensing (CS)

Different applications, but the same algorithm

Model : $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$, \mathbf{x} is sparse

У	Α	x
Frequency signal	DFT matrix	Time-signal
Compressed-Image	Random matrix	Pixel-image
Array signals	Beam weight	Source-location
Reflection sequence	Time delay	Layer-reflector

CS approach to geophysical data analysis

Sparse signals /compressive signals are important

- We don't need to sample at the Nyquist rate
- Many signals are sparse, but are solved them under non-sparse assumptions
 - Beamforming
 - Fourier transform
 - Layered structure
- Inverse methods are inherently sparse: We seek the simplest way to describe the data
- All this requires **new developments**
 - Mathematical theory
 - New algorithms (interior point solvers, convex optimization)
 - Signal processing
 - New applications/demonstrations

Sparse Recovery

- We try to find the sparsest solution which explains our noisy measurements
- L₀-norm

• Here, the L₀-norm is a shorthand notation for counting the number of non-zero elements in x.

Sparse Recovery using L₀-norm

Underdetermined problem

$$\mathbf{y} = \mathbf{A}\mathbf{x}, \quad M < N$$

Prior information

x: K-sparse, $K \ll N$

There are only few sources with unknown locations and amplitudes

- L₀-norm solution involves exhaustive search
- Combinatorial complexity, not computationally feasible

$$||x||_{p} = \left(\sum_{m=1}^{M} |x_{m}|^{p}\right)^{1/p} \text{ for } p > 0$$

- Classic choices for p are 1, 2, and ∞ .
- We will misuse notation and allow also p = 0.

L_p-norm (graphical representation)

$$\|x\|_p = \left(\sum_{m=1}^M |x_m|^p\right)^{1/p}$$

Solutions for sparse recovery

- Exhaustive search
 - L₀ regularization, not computationally feasible
- Convex optimization
 - Basis pursuit / LASSO / L₁ regularization
- Greedy search
 - Matching pursuit / Orthogonal matching pursuit (OMP)
- Bayesian analysis
 - Sparse Bayesian Learning / SBL
- Regularized least squares
 - L₂ regularization, reference solution, not actually sparse

Regularized least squares

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ y(\mathbf{x}_n, \mathbf{w}) - t_n \}^2 + \frac{\lambda}{2} \| \mathbf{w} \|^2$$

The squared weights penalty is mathematically compatible with the squared error function, giving a closed form for the optimal weights:

$$\mathbf{w}^* = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

A picture of the effect of the regularizer

- Slide 8/9, Lecture 4
- Regularized least squares solution
- Solution not sparse

- The overall cost function is the sum of two parabolic bowls.
- The sum is also a parabolic bowl.
- The combined minimum lies on the line between the minimum of the squared error and the origin.
- The L2 regularizer just **shrinks** the weights.

Basis Pursuit / LASSO / L₁ regularization

- The L₀-norm minimization is not convex and requires combinatorial search making it computationally impractical
- We make the problem convex by substituting the L_1 -norm in place of the L_0 -norm

$$\min_{x} \| \mathbf{x} \|_{1} \qquad \text{subject to } \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{2} < \varepsilon$$

• This can also be formulated as

The unconstrained -LASSO- formulation

Constrained formulation of the ℓ_1 -norm minimization problem:

$$\widehat{\mathbf{x}}_{\ell_1}(\epsilon) = \underset{\mathbf{x} \in \mathbb{C}^N}{\arg\min} \|\mathbf{x}\|_1 \text{ subject to } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

Unconstrained formulation in the form of least squares optimization with an ℓ_1 -norm regularizer:

$$\widehat{\mathbf{x}}_{\mathsf{LASSO}}(\mu) = \underset{\mathbf{x} \in \mathbb{C}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}\|_{1}$$

For every ϵ exists a μ so that the two formulations are equivalent

Regularization parameter : $\boldsymbol{\mu}$

Basis Pursuit / LASSO / L₁ regularization

- Why is it OK to substitute the L_1 -norm for the L_0 -norm?
- What are the conditions such that the two problems have the same solution?

$$\begin{array}{l} \min_{x} \| x \|_{1} \\
\text{subject to } \| Ax - b \|_{2} < \varepsilon
\end{array}$$

 $\begin{array}{l}
\min_{x} \| x \|_{0} \\
\text{subject to } \| Ax - b \|_{2} < \varepsilon
\end{array}$

• Restricted Isometry Property (RIP)

$$(1 - \delta_s) \| \boldsymbol{u} \|_2 \le \| \boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{u} \|_2 \le (1 + \delta_s) \| \boldsymbol{u} \|_2$$

Geometrical view (Figure from Bishop)

L₂ regularization

L₁ regularization

Regularization parameter selection

The objective function of the LASSO problem:

$$L(\mathbf{x},\mu) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \mu \|\mathbf{x}\|_1$$

- Regularization parameter : μ
- Sparsity depends on $\boldsymbol{\mu}$
- µ large, x = 0
- μ small, non-sparse

Regularization Path (Figure from Murphy)

- As regularization parameter $\boldsymbol{\mu}$ is decreased, more and more weights become active
- Thus μ controls sparsity of solutions

Applications

- MEG/EEG/MRI source location (earthquake location)
- Channel equalization
- Compressive sampling (beyond Nyquist sampling)
- Compressive camera!
- Beamforming
- Fathometer
- Geoacoustic inversion
- Sequential estimation

Beamforming / DOA estimation

DOA estimation with sensor arrays

The DOA estimation is formulated as a linear problem

Direction of arrival estimation

Plane waves from a source/interferer impinging on an array/antenna True DOA is sparse in the angle domain $\mathbf{\Theta} = \{0, \dots, 0, \theta_1, 0, \dots, 0, \theta_2, 0, \dots, 0\}$

Conventional beamforming Plane wave weight vector $\mathbf{w}_i = [1, e^{-\imath \sin(\theta_i)}, \cdots, e^{-\imath(N-1)\sin(\theta_i)}]^T$

 $\mathcal{B}(\theta) = |\mathbf{w}^{H}(\theta)\mathbf{b}|^{2}$

Conventional beamforming Equivalent to solving the ℓ_2 problem with $\mathbf{A} = [\mathbf{w}_1, \cdots, \mathbf{w}_M], M > N$.

min $\|\mathbf{x}\|_2$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

ℓ_1 minimization

In contrast ℓ_1 minimization provides a sparse solution with exact recovery:

min $\|\mathbf{x}\|_1$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

Additional Resources

Applied and Numerical Harmonic Analysis

Simon Foucart Holger Rauhut

A Mathematical Introduction to Compressive Sensing

🕅 Birkhäuser

