
Lecture 4
• Homework

– Hw 1 and 2 will be reoped after class for every body. New deadline 4/20
– Hw 3 and 4 online (Nima is lead)

• Pod-cast lecture on-line

• Final projects
– Nima will register groups next week. Email/tell Nima.
– Give proposal in week 5
– See last years topic on webpage. Choose your own or 

• Linear regression 3.0-3.3+ SVD

• Next lectures: 
– I posted a rough plan. 
– It is flexible though so please come with suggestions



Projects

• 3-4 person groups
• Deliverables: Poster & Report & main code (plus proposal, midterm slide)
• Topics your own or chose form suggested topics
• Week 3 groups due to TA Nima (if you don’t have a group, ask in week 2 and 

we can help). 
• Week 5 proposal due. TAs and Peter can approve. 
• Proposal: One page: Title, A large paragraph, data, weblinks, references. 
• Something physical
• Week ~7 Midterm slides? Likely presented to a subgroup of class.
• Week 10/11 (likely 5pm 6 June Jacobs Hall lobby) final poster session? 
• Report due Saturday 16 June.



Mark’s Probability and Data homework



Mark’s Probability and Data homework



Linear regression: Linear Basis Function Models (1)
Generally

• where fj(x) are known as basis functions.
• Typically, f0(x) = 1, so that w0 acts as a bias.
• Simplest case is linear basis functions: fd(x) = xd.

http://playground.tensorflow.org/

http://playground.tensorflow.org/


Maximum Likelihood and Least Squares (3)
Computing the gradient and setting it to zero yields

Solving for w,  

where
The Moore-Penrose 
pseudo-inverse,       .



Least mean squares: An alternative approach for big datasets

This is “on-line“ learning. It is efficient if the dataset is redundant and simple to 
implement.
• It is called stochastic gradient descent if the training cases are picked 

randomly.
• Care must be taken with the learning rate to prevent divergent 

oscillations. Rate must decrease with tau to get a good fit.
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Regularized least squares
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The squared weights penalty is mathematically compatible with 
the squared error function, giving a closed form for the optimal 
weights:

identity matrix



A picture of the effect of the regularizer
• The overall cost function is the sum of 

two parabolic bowls. 
• The sum is also a parabolic bowl.
• The combined minimum lies on the line 

between the minimum of the squared 
error and the origin.

• The L2 regularizer just shrinks the 
weights.



Other regularizers
• We do not need to use the squared error, provided we are willing to do more 

computation.
• Other powers of the weights can be used.



The lasso: penalizing the absolute values of the weights

• Finding the minimum requires quadratic programming but its still 
unique because the cost function is convex (a bowl plus an inverted 
pyramid)

• As lambda increases, many weights go to exactly zero. 
– This is great for interpretation, and it is also prevents overfitting.
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Geometrical view of the lasso compared with a penalty on 
the squared weights

Notice w1=0 at the 
optimum



Minimizing the absolute error

• This minimization involves solving a linear programming problem.
• It corresponds to maximum likelihood estimation if the output noise 

is modeled by a Laplacian instead of a Gaussian.
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The bias-variance trade-off
(a figment of the frequentists lack of imagination?)

• Imagine a training set drawn at random from a whole set of training 
sets. 

• The squared loss can be decomposed into a
– Bias = systematic error in the model’s estimates
– Variance = noise in the estimates cause by sampling noise in the 

training set. 
• There is also  additional loss due to noisy target values. 

– We eliminate this extra, irreducible loss from the math by using 
the average target values (i.e. the unknown, noise-free values)
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“Bias” term is the squared error of the  average, 
over training datasets D, of the estimates.

Bias: average between prediction  and desired.

“Variance” term: variance over training datasets D, 
of the model estimate.

The bias-variance decomposition



Regularization parameter affects the bias and variance terms

low bias
high bias

low variancehigh variance
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True model
average

20 realizations



An example of the bias-variance trade-off



Beating the bias-variance trade-off
• Reduce the variance term by averaging lots of models trained on 

different datasets. 
– Seems silly. For lots of different datasets it is better to combine 

them into one big training set.
• With more training data there will be much less variance.

• Weird idea: We can create different datasets by bootstrap sampling 
of our single training dataset. 
– This is called “bagging” and it works surprisingly well.

• If we have enough computation its better doing it Bayesian: 
– Combine the predictions of many models using the posterior 

probability of each parameter vector as the combination weight.



Bayesian Linear Regression (1)
Define a conjugate prior over w

•Combining this with the likelihood function and using  results for 
marginal and conditional Gaussian distributions, gives the posterior 

• A common simpler prior

• Which gives



From lecture 3:
Bayes for linear model

! = #$ + & &~N(*, ,&) y~N(#$, ,&) prior: $~N(*, ,$)
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Interpretation of solution

Draw it 

Sequential, conjugate prior

! " # ~! # " ! " ~N &", () N *, (" ~+ ",, (!
Covariance (,-. = &0()-.& + (2-.



Likelihood, prior/posterior Bishop Fig 3.7

With no data we sample lines 
from the prior.

With 20 data points, the prior 
has little effect

! = #0 + #1' + ( 0,0.2
Data generated with. w0=-0.3, w1=0.5



Predictive Distribution 
Predict t for new values of x by integrating over w (Giving the marginal 
distribution of t):

• where

training data

precision of output noise
precision of prior



• Just use ML solution

• Prior predictive



Predictive distribution for noisy sinusoidal data modeled by  
linear combining 9 radial basis functions.



A way to see the covariance of predictions for different values of x
We sample models at random from the posterior and show the 
mean  of each model’s predictions



Equivalent Kernel BISHOP 3.3.3

The predictive mean can be written

This is a weighted sum of the training data target values, tn.

Equivalent kernel or 
smoother matrix.



Equivalent Kernel (2)

Weight of tn depends on distance between x and xn; 
nearby xn carry more weight.



Equivalent Kernel (4)
• The kernel as a covariance function: consider

• We can avoid the use of basis functions and define the kernel function 
directly, leading to  Gaussian Processes (Chapter 6).

• No need to determine weights.

• Like all kernel functions, the equivalent kernel can be expressed as an 
inner product:
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