Lecture 4

Homework
— Hw 1 and 2 will be reoped after class for every body. New deadline 4/20
— Hw 3 and 4 online (Nima is lead)

Pod-cast lecture on-line

Final projects
— Nima will register groups next week. Email/tell Nima.
— Give proposal in week 5
— See last years topic on webpage. Choose your own or

Linear regression 3.0-3.3+ SVD

Next lectures:
— | posted a rough plan.
— It is flexible though so please come with suggestions

Projects

3-4 person groups
Deliverables: Poster & Report & main code (plus proposal, midterm slide)
Topics your own or chose form suggested topics

Week 3 groups due to TA Nima (if you don’t have a group, ask in week 2 and
we can help).

Week 5 proposal due. TAs and Peter can approve.

Proposal: One page: Title, A large paragraph, data, weblinks, references.
Something physical

Week ~7 Midterm slides? Likely presented to a subgroup of class.

Week 10/11 (likely 5pm 6 June Jacobs Hall lobby) final poster session?
Report due Saturday 16 June.

Mark’s Probability and Data homework

Mark’s Probability and Data homework

Linear regression: Linear Basis Function Models (1)

Generally M1
T
yeow) = 3 wig(x) =wlex) [
j=0 c 7

* where ¢;(x) are known as basis functions. 0_° o\ © o
* Typically, ¢p(x) = 1, so that wy acts as a bias. ° 5
* Simplest case is linear basis functions: ¢4(x) = x4. -t °

0 z 1

M
y(z, W) = wo + w4+ wex? + ... +wyr™ = E w;z?

http://playground.tensorflow.org/

J=0

http://playground.tensorflow.org/

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

Solving for w,

Vwlnp(tiw,3) =3 Z {t, — W d(xn)} P(x,)" = 0.

|

The Moore-Penrose

where

((bo(Xl) $1(x1)
Po(x2) ¢1(x2)

\ do(xn) é1(xn)

| _1 1
- (<I>T<I>> Tt

pseudo-inverse, o

dr—1(x1)
dnr—1(x2) \

rr_1(xn) |

Least mean squares: An alternative approach for big datasets

WT-I—I _ WT . 77 VEn(z-)

weights after 1 t o
seeing training learning squared error derivatives

case tau+1 rate w.r.t. the weights on the
training case at time tau.

This is “on-line” learning. It is efficient if the dataset is redundant and simple to
implement.

It is called stochastic gradient descent if the training cases are picked
randomly.

Care must be taken with the learning rate to prevent divergent
oscillations. Rate must decrease with tau to get a good fit.

Regularized least squares
~ 1 X 2 A
Ew) =33 (v, w)=1,17 + J[wl

The squared weights penalty is mathematically compatible with
the squared error function, giving a closed form for the optimal
weights:

%k

w = A1+ X' X xXT ¢

identin matrix

A picture of the effect of the regularizer

AR
\

The overall cost function is the sum of
two parabolic bowls.

The sum is also a parabolic bowl.

The combined minimum lies on the line
between the minimum of the squared
error and the origin.

The L2 regularizer just shrinks the
weights.

Other regularizers

* We do not need to use the squared error, provided we are willing to do more
computation.

* Other powers of the weights can be used.

The lasso: penalizing the absolute values of the weights

Ew)= 12006, W=, + 23 |w;|

Finding the minimum requires quadratic programming but its still

unigue because the cost function is convex (a bowl plus an inverted
pyramid)

As lambda increases, many weights go to exactly zero.
— This is great for interpretation, and it is also prevents overfitting.

Geometrical view of the lasso compared with a penalty on
the squared weights

W2 5 w2 a

(© ©
P
N

) o

Notice w1=0 at the
optimum

Minimizing the absolute error
min Z\ t—wlx |
over w n n
n

* This minimization involves solving a linear programming problem.

* It corresponds to maximum likelihood estimation if the output noise
is modeled by a Laplacian instead of a Gaussian.

—d |tn_yn|

p(tn ‘yn) = ae
_lng(tn ‘yn) — _a|tn_yn |+COnSZL

The bias-variance trade-off
(a figment of the frequentists lack of imagination?)

* Imagine a training set drawn at random from a whole set of training
sets.
 The squared loss can be decomposed into a
— Bias = systematic error in the model’s estimates
— Variance = noise in the estimates cause by sampling noise in the
training set.
 There is also additional loss due to noisy target values.

— We eliminate this extra, irreducible loss from the math by using
the average target values (i.e. the unknown, noise-free values)

9 Order Polynomial

M =9

The bias-variance decomposition

model estimate average

for testcase n target
trained on dataset value for “Bias” term is the squared error of the average,
D testcase N gyer training datasets D, of the estimates.
1 / Bias: average between prediction and desired.
: - 2 : - 12
iD=, = (%, D)),, =1}
e . . .
<. > means + {y(Xn;D) — < y(Xn ; D) >D}
expectation over D D

t

“Variance” term: variance over training datasets D,
of the model estimate.

Regularization parameter affects the bias and variance terms

high variance low variance

20 realizations

True model - : :
average °f oo

high bias
low bias

An example of the bias-variance trade-off

0.15
(bias)’
0.12 F variance
(bias)2 + variance
0.09 test error
0.06
0.03
0
-3 -2 —1 0 1

Beating the bias-variance trade-off

Reduce the variance term by averaging lots of models trained on
different datasets.

— Seems silly. For lots of different datasets it is better to combine
them into one big training set.
* With more training data there will be much less variance.

Weird idea: We can create different datasets by bootstrap sampling
of our single training dataset.

— This is called “bagging” and it works surprisingly well.
If we have enough computation its better doing it Bayesian:

— Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.

Bayesian Linear Regression (1)

Define a conjugate prior over w
p(w) = N (w|myg, Sp).

*Combining this with the likelihood function and using results for
marginal and conditional Gaussian distributions, gives the posterior

p(wlt) = N(w|my, Sy) my = Sy (Sglm0+5<1>"ft)
Sy' = Spl+pe'e.

e A common simpler prior

p(w) = N(w|0,a™'T)

* Which gives
my = [Sy®lt

Sy = al+p®'d.

From lecture 3:

Bayes for linear model
y = AJLC/+ n n~N(0, C,) y~N(4x, C,) prior: x~N(0, Cy)

p(xly)~p(y|x)p(x)~N(xp, C,) mean x, = C,LATCLly

@ T rn) — Colleristg -C5'=A"Ci'A+ Gy
- -l
= --—<3-ﬂk)"(”(j ﬂx) ,_.;Lk‘ax

Ve
: _
XT T,
r *"r"r
— T = ~
G =R 4, '4+£)} T

Interpretation of solution

my = OSy®'t
Sy = al+pe'®.
Draw it

Sequential, conjugate prior

p(x|y)~p(¥|x)p(x)~N(Ax, C,) N(0,C,)~N(x,,C,)
Covariance C,' =A4"C;'A+ C;?

likelihood

Likelihood, prior/posterior Bishop Fig 3.7
y =wy,+w.;x + N(0,0.2)
Data generated with. wy=-0.3, w,=0.5

prior/posterior

data space

1

With no data we sample lines
from the prior.

With 20 data points, the prior
has little effect

Predictive Distribution

Predict t for new values of x by integrating over w (Giving the marginal
distribution of t):

p(tlt, o, B) = / p(tlw, B)p(wlt, a, B) dw
T| — N(tmEé(x), 0% (x))

training data

precision of prior
precision of output noise

my = OSy®'t

* where Sy’ = ol+p32'®.

p(tt, 0, B) = / p(tlw, B)p(wlt, o,) dw

= N(tlmye(x), oy (x))

e Just use ML solution

Prior predictive

Predictive distribution for noisy sinusoidal data modeled by
linear combining 9 radial basis functions.

0751

0.5

0.25

A way to see the covariance of predictions for different values of x

We sample models at random from the posterior and show the
mean of each model’s predictions

t / / P " \ \ 7
“1} \\ i -1f
. / -
0 - 1
1r 1t
t t
Or ot
—1F 1t

Equivalent Kernel BisHop 3.3.3

The predictive mean can be written

y(x,my) = m%qb() = Bop(x) " SyP 't

= Zﬂqb)T SNB(xn)t
n=1

LI

N
_ Z Equivalent kernel or
1 smoother matrix.

This is a weighted sum of the training data target values, t,,.

Equivalent Kernel (2)

Weight of t,, depends on distance between x and x,;
nearby x,, carry more weight.

Equivalent Kernel (4)

The kernel as a covariance function: consider
covly(x),y(x)] = covip(x) w,w'p(x')
= ¢(x)'Sno(x') = 87 k(x,X).

We can avoid the use of basis functions and define the kernel function
directly, leading to Gaussian Processes (Chapter 6).

No need to determine weights.

Like all kernel functions, the equivalent kernel can be expressed as an
inner product:

k(x,2) = ¥(x) "9 (z)
P(x) = 8287 p(x)

XX! =
X'X =

wis = (XTX)"1Xy=

Wreg = (A + XTX)"1Xy =

