
Lecture 3
• Homework

• Gaussian, Bishop 2.3
• Non-parametric, Bishop 2.5
• Linear regression 3.0-3.2

• Pod-cast lecture on-line

• Next lectures: 
– I posted a rough plan. 
– It is flexible though so please come with suggestions



Mark’s KL homework



Mark’s KL homework



Bayes for linear model
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Bayes’ Theorem for Gaussian Variables
• Given

• we have

• where



Contribution of the Nth data point, xN

Sequential Estimation

correction given xNcorrection weight
old estimate



Bayesian Inference for the Gaussian Bishop2.3.6
Assume s2 is known. Given i.i.d. data
the likelihood function for µ is given by

• This has a Gaussian shape as a function of µ (but it is not a distribution 
over µ).



Bayesian Inference for the Gaussian Bishop2.3.6
• Combined with a Gaussian prior over µ,

• this gives the posterior



Bayesian Inference for the Gaussian (3)
• Example:                                       for N = 0, 1, 2 and 10.

Prior



Bayesian Inference for the Gaussian (4)
Sequential Estimation

The posterior obtained after observing N-1 data points becomes the prior 
when we observe the Nth data point.

Conjugate prior: posterior and prior are in the same family. The prior is called 
a conjugate prior for the likelihood function.



Nonparametric Methods (1) Bishop 2.5
• Parametric distribution models (… Gaussian) are restricted to specific 

forms, which may not always be suitable; for example, consider 
modelling a multimodal distribution with a single, unimodal model.

• Nonparametric approaches make few assumptions about the overall 
shape of the distribution being modelled.

• 1000 parameters versus 10 parameters

• Nonparametric models (not histograms) requires storing and 
computing with the entire data set. 

• Parametric models, once fitted, are much more efficient in terms of 
storage and computation.



Nonparametric Methods (2)

Histogram methods partition the data 
space into distinct bins with widths ¢i and 
count the number of observations, ni, in 
each bin.

• Often, the same width is used for all 
bins, Di = D.

• D acts as a smoothing parameter.
• In a D-dimensional space, using M bins 

in each dimension will require MD bins! 
=> it only work for marginals.



Nonparametric Methods (3)

•Assume observations drawn from a 
density p(x) and consider a small region R
containing x such that

•The probability that K out of N
observations lie inside R is  Bin(KjN,P ) and 
if N is large

If the volume of R, V, is sufficiently 
small, p(x) is approximately 
constant over R and

Thus

V  small, yet K>0, therefore N 
large?



Nonparametric Methods (4)

Kernel Density Estimation: fix V, estimate K from the 
data. Let R be a hypercube centred on x and define the 
kernel function (Parzen window)

• It follows  that 

• and hence



Nonparametric Methods (5)

To avoid discontinuities in p(x), 
use a smooth kernel, e.g. a 
Gaussian

Any kernel such that

will work.
h acts as a smoother.



Nonparametric Methods (6)
Nearest Neighbour Density 
Estimation: fix K, estimate V
from the data. Consider a 
hypersphere centred on x and 
let it grow to a volume, V ?, 
that includes K of the given N 
data points. Then

K acts as a smoother.



K-Nearest-Neighbours for Classification (1)
• Given a data set with Nk data points from class Ck and                          

,  we have

• and correspondingly

• Since                           , Bayes’ theorem gives

K = 1
K = 3



K-Nearest-Neighbours for Classification (3)

• K acts as a smother
• For                , the error rate of the nearest-neighbour (K=1) classifier is never more 
than twice the optimal error (from the true conditional class distributions).



Linear regression: Linear Basis Function Models (1)
Generally

• where fj(x) are known as basis functions.
• Typically, f0(x) = 1, so that w0 acts as a bias.
• Simplest case is linear basis functions: fd(x) = xd.

http://playground.tensorflow.org/

http://playground.tensorflow.org/


Some types of basis function in 1-D

Sigmoids Gaussians                Polynomials

Sigmoid and Gaussian basis functions can also be used in multilayer 
neural networks, but neural networks learn the parameters of the basis 
functions. This is more powerful but also harder and messier.



Two types of linear model that are equivalent with respect to 
learning

• The first and second model has the same number of adaptive 
coefficients as the number of basis functions +1.

• Once we have replaced the data by basis functions outputs, fitting 
the second model is exactly the same the first model.
– No need to clutter math with basis functions

)(...)()()(

...)(

22110

22110

xwxxwx,

xwwx,

F=+++=

=+++=
T

T

wwwy

xwxwwy

ff

bias



Maximum Likelihood and Least Squares (1)

• Assume observations from a deterministic function with added 
Gaussian noise:

• or,

• Given observed inputs,                            , and targets                       , 
we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)
Taking the logarithm, we get

Where the sum-of-squares error is



Maximum Likelihood and Least Squares (3)
Computing the gradient and setting it to zero yields

Solving for w,  

where
The Moore-Penrose 
pseudo-inverse,       .



Maximum Likelihood and Least Squares (4)
Maximizing with respect to the bias, w0, alone, 

We can also maximize with respect to b, giving



Geometry of Least Squares
Consider

S is spanned by                    

wML minimizes the distance between 
t and its orthogonal projection on S, 
i.e. y.

N-dimensional
M-dimensional


