. Announcements
Cody homework emailed.

Due Monday and Wednesday before class
Email me, if just attending as that way you can look at homework.
Piazza to come

Podcast might work eventually.
Introduction to ML, lecture 20 ;-)

Grade last year (A+ 19, A 20, A-13,B+7,S 1, W 1)

Today:

* Gaussian 1.2
 Decision theory 1.5

* Information theory 1.6
* Homework

* (Gaussian 2.3

Monday
Gaussian 2.3, Non parametric 1.5, Linear models for regression 3



Curve Fitting Re-visited, Bishop1.2.5
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Maximum Likelihood Bishop 1.2.5
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Maximum Likelihood

N
px,w,8) = | [NV (taly(zn, w),37"). (1.61)
n=1

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the

form
N
Inp(t|x, w, 3) = |m W {y(xp, w) —t,}° + W:& - WEN@. (1.62)
1 1 ,
vl W {y(zn, W) — tn}° . (1.63)

Giving estimates of W and beta, we can predict

p(t|lz, W, Sur) = N (¢y(z, wwuw), Bu,) - (1.64)



Predictive Distribution

p(t|z, Wi, Bur) = N (ty(z, waw), B )




MAP: A Step towards Bayes 1.2.5

p(wla) = N(w|0,a 1) = AWVANE.:\N exp ﬁlmi%iw
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Determine Wi\ AP by minimizing regularized sum-of-squares error, @As\.v

Regularized sum of squares



Entropy 1.6

Hlz] = — ) p(x)log, p()

Important quantity in
 coding theory
e statistical physics
* machine learning
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Differential Entropy

Put bins of width ¢ along the real line

A—0

lim {3 pla)Alnp(a) { = — [ pla)np(a) do

For fixed Qwﬁmﬂmszm_ entropy maximized when

in which case
p(z) = N (z|p, o)

Hz] = w {1+ In(2r0%)) .



The Kullback-Leibler Divergence

P true distribution, q is approximating distribution

KLGlo) = ~ [ o) naedx - (= [ p001npex) dx)

e CEE
Jror

N
1
Lpll) = 37 D (- naxl0) + lnp(xn))

KL(pllq) = 0 KL(p|lq) # KL(q|p)



Decision Theory

Inference step
Determine either p(t|x) or p(x,t).

Decision step
For given x, determine optimal t.



Minimum Misclassification Rate

p(mistake) =




Mixtures of Gaussians (Bishop 2.3.9)

Old Faithful geyser:

The time between eruptions has a bimodal distribution, with the mean interval being either 65
or 91 minutes, and is dependent on the length of the prior eruption. Within a margin of error of
+10 minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less

than 2 Y/, minutes, or 91 minutes after an eruption lasting more than 2 Y/, minutes.
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Single Gaussian Mixture of two Gaussians



Mixtures of Gaussians (Bishop 2.3.9)

*Combine simple models »(z),
into a complex model:
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Mixtures of Gaussians (Bishop 2.3.9)




Mixtures of Gaussians (Bishop 2.3.9)

* Determining parameters m, i, and 2 using maximum log likelihood

N K
_SﬁAx_ﬂ.gtg Muv — MUM—S Mﬁw.\/\\@hi_txﬁ Mu\av
n=1 k=1 h

\ ]
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Log of a sum; no closed form maximum.
* Solution: use standard, iterative, numeric optimization methods or the

expectation maximization algorithm (Chapter 9).



Homework



Parametric Distributions

Basic building blocks: @AVL %v
Need to determine %m?m: A_munf c .. QNZH__V
Representation: %*o_‘muA%v

Recall Curve Fitting

p(t]z,x,t) = \ p(t]z, w)p(wlx, t) dw

We focus on Gaussians!



The Gaussian Distribution

N(z|p, 0?)
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Central Limit Theorem

*The distribution of the sum of N i.i.d. random variables becomes increasingly
Gaussian as N grows.

*Example: N uniform [0,1] random variables.




Geometry of the Multivariate Gaussian

Y2
yi =u; (X — p) 9
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&wb

Moments of the Multivariate Gaussian (2)

Elxx'] = pu' + 3

covix] =E [(x —E[x])(x —E[x))'] == h\\ﬂﬂ/&l&
g
A

A Gaussian requires D*(D-1)/2 +D parameters. ~
Often we use D +D or -G

— —

Just D+1 parameters.
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P(Xalxp) = N (Xa|ttajp) Yeatp)
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\NwAvmm: um@v Qumo
N g Sac)

Tp =— 0.7

@Aagu@.m_v

10

p(xy|zy = 0.7)

P(Ta)

i

0.5

0.5



Maximum Likelihood for the Gaussian (1)

Giveni.i.d.data X = ANT - “NZVH , the log likelihood function is given by
N
Inp(X|p,X) = |@ In(27) — m In |33 — W MUANS — %&%MUIHANS — )
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Maximum Likelihood for the Gaussian

* Set the derivative of the log likelihood function to zero,

2
%, _
®|_5@AN_FMV = M p> H(xp — p)=0
: H n=1

* and solve to obtain

| N
= — Xy,
e Similarly Hmw 2:an

N
1
2ML = N MUAx: — parr) (X — )
n=1



