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ents

Cody hom
ew

ork em
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Due M
onday and W

ednesday before class 
Em

ail m
e, if just attending  as that w

ay you can look at hom
ew

ork.
Piazza to com

e

Podcast m
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ork eventually.
Introduction to M

L, lecture 20 ;-)

Grade
last year (A+ 19, A 20, A-13, B+ 7, S  1, W

 1)

Today: 
•

Gaussian 1.2
•

Decision theory 1.5
•

Inform
ation theory 1.6

•
Hom

ew
ork

•
Gaussian 2.3

M
onday

Gaussian 2.3, Non param
etric 1.5, Linear m

odels for regression 3

 



Curve Fitting Re-visited, Bishop1.2.5



M
axim

um
 Likelihood Bishop 1.2.5

•
M

odel

•
Likelihood

•
differentiation
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Figure
1.16

S
chem

atic
illustration

of
a

G
aus-

sian
conditionaldistribution

for
t

given
x

given
by

(1.60),in
w

hich
the

m
ean

is
given

by
the

polyno-
m

ial
function

y
(x

,w
),

and
the

precision
is

given
by

the
param

eter
β

,
w

hich
is

related
to

the
vari-

ance
by

β
−

1
=

σ
2.

t

x
x

0

2σ
y(x

0 ,w
)

y(x
,w

)

p(t|x
0 ,w

,β)

W
e

now
use

the
training

data
{x

,t}
to

determ
ine

the
values

of
the

unknow
n

param
eters

w
and

β
by

m
axim

um
likelihood.

If
the

data
are

assum
ed

to
be

draw
n

independently
from

the
distribution

(1.60),then
the

likelihood
function

is
given

by

p(t|x
,w

,β)
=

N∏n
=

1 N
(tn |y(x

n
,w

),β
−

1 )
.

(1.61)

A
s

w
e

did
in

the
case

of
the

sim
ple

G
aussian

distribution
earlier,itis

convenientto
m

axim
ize

the
logarithm

of
the

likelihood
function.

Substituting
for

the
form

of
the

G
aussian

distribution,given
by

(1.46),w
e

obtain
the

log
likelihood

function
in

the
formln

p(t|x
,w

,β)
=

−
β2

N
∑n

=
1 {y(x

n
,w

)−
tn }

2
+

N2
ln

β
−

N2
ln(2π).

(1.62)

C
onsiderfirstthe

determ
ination

ofthe
m

axim
um

likelihood
solution

forthe
polyno-

m
ial

coefficients,
w

hich
w

ill
be

denoted
by

w
M

L .
T

hese
are

determ
ined

by
m

axi-
m

izing
(1.62)

w
ith

respect
to

w
.

For
this

purpose,w
e

can
om

it
the

last
tw

o
term

s
on

the
right-hand

side
of

(1.62)
because

they
do

not
depend

on
w

.
A

lso,
w

e
note

that
scaling

the
log

likelihood
by

a
positive

constant
coefficient

does
not

alter
the

location
of

the
m

axim
um

w
ith

respect
to

w
,

and
so

w
e

can
replace

the
coefficient

β
/2

w
ith

1/2.Finally,instead
ofm

axim
izing

the
log

likelihood,w
e

can
equivalently

m
inim

ize
the

negative
log

likelihood.W
e

therefore
see

thatm
axim

izing
likelihood

is
equivalent,so

far
as

determ
ining

w
is

concerned,to
m

inim
izing

the
sum

-of-squares
error

function
defined

by
(1.2).T

hus
the

sum
-of-squares

errorfunction
has

arisen
as

a
consequence

of
m

axim
izing

likelihood
under

the
assum

ption
of

a
G

aussian
noise

distribution.
W

e
can

also
use

m
axim

um
likelihood

to
determ

ine
the

precision
param

eter
β

of
the

G
aussian

conditionaldistribution.M
axim

izing
(1.62)w

ith
respectto

β
gives

1β
M

L
=

1N

N
∑n

=
1 {y(x

n
,w

M
L )−

tn }
2
.

(1.63)

1.2.P
robability

T
heory

29

Figure
1.16

S
chem

atic
illustration

of
a

G
aus-

sian
conditionaldistribution

for
t

given
x

given
by

(1.60),in
w

hich
the

m
ean

is
given

by
the

polyno-
m

ial
function

y
(x

,w
),

and
the

precision
is

given
by

the
param

eter
β

,
w

hich
is

related
to

the
vari-

ance
by

β
−

1
=

σ
2.

t

x
x

0

2σ
y(x

0 ,w
)

y(x
,w

)

p(t|x
0 ,w

,β)

W
e

now
use

the
training

data
{x

,t}
to

determ
ine

the
values

of
the

unknow
n

param
eters

w
and

β
by

m
axim

um
likelihood.

If
the

data
are

assum
ed

to
be

draw
n

independently
from

the
distribution

(1.60),then
the

likelihood
function

is
given

by

p(t|x
,w

,β)
=

N∏n
=

1 N
(tn |y(x

n
,w

),β
−

1 )
.

(1.61)

A
s

w
e

did
in

the
case

of
the

sim
ple

G
aussian

distribution
earlier,itis

convenientto
m

axim
ize

the
logarithm

of
the

likelihood
function.

Substituting
for

the
form

of
the

G
aussian

distribution,given
by

(1.46),w
e

obtain
the

log
likelihood

function
in

the
formln

p(t|x
,w

,β)
=

−
β2

N
∑n

=
1 {y(x

n
,w

)−
tn }

2
+

N2
ln

β
−

N2
ln(2π).

(1.62)

C
onsiderfirstthe

determ
ination

ofthe
m

axim
um

likelihood
solution

forthe
polyno-

m
ial

coefficients,
w

hich
w

ill
be

denoted
by

w
M

L .
T

hese
are

determ
ined

by
m

axi-
m

izing
(1.62)

w
ith

respect
to

w
.

For
this

purpose,w
e

can
om

it
the

last
tw

o
term

s
on

the
right-hand

side
of

(1.62)
because

they
do

not
depend

on
w

.
A

lso,
w

e
note

that
scaling

the
log

likelihood
by

a
positive

constant
coefficient

does
not

alter
the

location
of

the
m

axim
um

w
ith

respect
to

w
,

and
so

w
e

can
replace

the
coefficient

β
/2

w
ith

1/2.Finally,instead
ofm

axim
izing

the
log

likelihood,w
e

can
equivalently

m
inim

ize
the

negative
log

likelihood.W
e

therefore
see

thatm
axim

izing
likelihood

is
equivalent,so

far
as

determ
ining

w
is

concerned,to
m

inim
izing

the
sum

-of-squares
error

function
defined

by
(1.2).T

hus
the

sum
-of-squares

errorfunction
has

arisen
as

a
consequence

of
m

axim
izing

likelihood
under

the
assum

ption
of

a
G

aussian
noise

distribution.
W

e
can

also
use

m
axim

um
likelihood

to
determ

ine
the

precision
param

eter
β

of
the

G
aussian

conditionaldistribution.M
axim

izing
(1.62)w

ith
respectto

β
gives

1β
M

L
=

1N

N
∑n

=
1 {y(x

n
,w

M
L )−

tn }
2
.

(1.63)

30
1.IN

T
R

O
D

U
C

T
IO

N

A
gain

w
e

can
firstdeterm

ine
the

param
etervectorw

M
L

governing
the

m
ean

and
sub-

sequently
use

this
to

find
the

precision
β

M
L

as
w

as
the

case
for

the
sim

ple
G

aussian
distribution.

Section
1.2.4

H
aving

determ
ined

the
param

eters
w

and
β

,w
e

can
now

m
ake

predictions
for

new
values

of
x.

B
ecause

w
e

now
have

a
probabilistic

m
odel,these

are
expressed

in
term

s
of

the
predictive

distribution
that

gives
the

probability
distribution

over
t,

rather
than

sim
ply

a
point

estim
ate,

and
is

obtained
by

substituting
the

m
axim

um
likelihood

param
eters

into
(1.60)to

give

p(t|x
,w

M
L ,β

M
L )

=
N

(t|y(x
,w

M
L ),β

−
1

M
L )

.
(1.64)

N
ow

letus
take

a
step

tow
ards

a
m

ore
B

ayesian
approach

and
introduce

a
prior

distribution
over

the
polynom

ial
coefficients

w
.

For
sim

plicity,
let

us
consider

a
G

aussian
distribution

ofthe
form

p(w
|α

)
=

N
(w

|0
,α

−
1I)

=
(

α2π

)
(M

+
1
)/

2exp
{
−

α2
w

Tw
}

(1.65)

w
here

α
is

the
precision

ofthe
distribution,and

M
+

1
is

the
totalnum

berofelem
ents

in
the

vector
w

for
an

M
th

order
polynom

ial.
V

ariables
such

as
α

,
w

hich
control

the
distribution

of
m

odel
param

eters,
are

called
hyperparam

eters.
U

sing
B

ayes’
theorem

,the
posterior

distribution
for

w
is

proportionalto
the

productof
the

prior
distribution

and
the

likelihood
function

p(w
|x

,t,α
,β)∝

p(t|x
,w

,β)p(w
|α

).
(1.66)

W
e

can
now

determ
ine

w
by

finding
the

m
ost

probable
value

of
w

given
the

data,
in

other
w

ords
by

m
axim

izing
the

posterior
distribution.

T
his

technique
is

called
m

axim
um

posterior,
or

sim
ply

M
A

P
.

Taking
the

negative
logarithm

of
(1.66)

and
com

bining
w

ith
(1.62)

and
(1.65),

w
e

find
that

the
m

axim
um

of
the

posterior
is

given
by

the
m

inim
um

ofβ2

N
∑n

=
1 {y(x

n
,w

)−
tn }

2
+

α2
w

Tw
.

(1.67)

T
hus

w
e

see
thatm

axim
izing

the
posterior

distribution
is

equivalentto
m

inim
izing

the
regularized

sum
-of-squares

error
function

encountered
earlier

in
the

form
(1.4),

w
ith

a
regularization

param
etergiven

by
λ

=
α
/β

.

1.2.6
B

ayesian
curve

fitting
A

lthough
w

e
have

included
a

prior
distribution

p(w
|α

),w
e

are
so

far
stillm

ak-
ing

a
pointestim

ate
ofw

and
so

this
does

notyetam
ountto

a
B

ayesian
treatm

ent.In
a

fully
B

ayesian
approach,w

e
should

consistently
apply

the
sum

and
productrules

of
probability,w

hich
requires,as

w
e

shallsee
shortly,thatw

e
integrate

over
allval-

ues
of

w
.

Such
m

arginalizations
lie

at
the

heart
of

B
ayesian

m
ethods

for
pattern

recognition. Giving estim
ates of W

 and beta, w
e can predict



Predictive Distribution



M
AP: A Step tow

ards Bayes 1.2.5

Determ
ine               by m

inim
izing regularized sum

-of-squares error,             .

Regularized sum
 of squares



Entropy 1.6

Im
portant quantity in
•coding theory
•statistical physics
•m

achine learning



Differential Entropy
Put bins of w

idth ¢
along the real line

For fixed      differential entropy m
axim

ized w
hen

in w
hich case



The Kullback-Leibler Divergence

P true distribution, q is approxim
ating distribution



Decision Theory
Inference step

Determ
ine either            or           .

Decision step
For given x, determ

ine optim
al t.



M
inim

um
 M

isclassification Rate



M
ixtures of Gaussians (Bishop 2.3.9)

Single Gaussian
M

ixture of tw
o Gaussians

Old Faithful geyser:
The tim

e betw
een eruptions has a

bim
odal distribution, w

ith the m
ean interval being either 65 

or 91 m
inutes, and is dependent on the length of the prior eruption. W

ithin a m
argin of error of 

±10 m
inutes, O

ld Faithful w
ill erupt either 65 m

inutes after an eruption lasting less 
than

 2
1⁄2 m

inutes, or 91 m
inutes after an eruption lasting m

ore than
 2

1⁄2 m
inutes.



M
ixtures of Gaussians (Bishop 2.3.9)

•Com
bine sim

ple m
odels 

into a com
plex m

odel:

Com
ponent

M
ixing coefficient

K=3



M
ixtures of Gaussians (Bishop 2.3.9)



M
ixtures of Gaussians (Bishop 2.3.9)

•
Determ

ining param
eters p, µ, and S

using m
axim

um
 log likelihood

•
Solution: use standard, iterative, num

eric optim
ization m

ethods or the 
expectation m

axim
ization

algorithm
 (Chapter 9). 

Log of a sum
; no closed form

 m
axim

um
.



Hom
ew

ork



Param
etric Distributions

Basic building blocks:
Need to determ

ine     given 
Representation:        or           ?

Recall Curve Fitting

W
e focus on Gaussians!



The Gaussian Distribution



Central Lim
it Theorem

 
•The distribution of the sum

 of N
i.i.d. random

 variables becom
es increasingly 

Gaussian as N
grow

s.
•Exam

ple: N
uniform

 [0,1]random
 variables.



Geom
etry of the M

ultivariate Gaussian



M
om

ents of the M
ultivariate Gaussian (2)

A Gaussian requires D*(D-1)/2 +D param
eters.

Often w
e use D +D or 

Just D+1 param
eters.



Partitioned Conditionals and M
arginals,  page 89



M
axim

um
 Likelihood for the Gaussian (1)

Given i.i.d. data                                             , the log likelihood function is given by
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Sim
ilarly

∂∂x
(A

B
)

=
∂A∂x

B
+

A
∂B∂x

.
(C

.20)

T
he

derivative
ofthe

inverse
ofa

m
atrix

can
be

expressed
as

∂∂
x

(A
−

1 )
=

−
A

−
1
∂A∂

x
A

−
1

(C
.21)

as
can

be
show

n
by

differentiating
the

equation
A

−
1A

=
I

using
(C

.20)
and

then
rightm

ultiplying
by

A
−

1.A
lso

∂∂
x

ln
|A

|=
Tr (

A
−

1
∂A∂

x

)
(C

.22)

w
hich

w
e

shallprove
later.Ifw

e
choose

x
to

be
one

ofthe
elem

ents
ofA

,w
e

have

∂

∂
A

ij Tr(A
B

)
=

B
j
i

(C
.23)

as
can

be
seen

by
w

riting
outthe

m
atrices

using
index

notation.
W

e
can

w
rite

this
resultm

ore
com

pactly
in

the
form∂∂A

Tr(A
B

)
=

B
T
.

(C
.24)

W
ith

this
notation,w

e
have

the
follow

ing
properties

∂∂A
Tr (A

TB
)

=
B

(C
.25)

∂∂A
Tr(A

)
=

I
(C

.26)

∂∂A
Tr(A

B
A

T)
=

A
(B

+
B

T)
(C

.27)

w
hich

can
again

be
proven

by
w

riting
outthe

m
atrix

indices.W
e

also
have

∂∂A
ln
|A

|=
(A

−
1 )

T
(C

.28)

w
hich

follow
s

from
(C

.22)and
(C

.26).

E
igenvector

E
quation

Fora
square

m
atrix

A
ofsize

M
×

M
,the

eigenvectorequation
is

defined
by

A
u

i =
λ

i u
i

(C
.29)
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M
axim

um
 Likelihood for the Gaussian 

•
Set the derivative of  the log likelihood function to zero,

•
and solve to obtain

•
Sim

ilarly


