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Maximum Likelihood Bishop 1.2.5

• Model

• Likelihood

• differentiation



Maximum Likelihood
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.
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We now use the training data {x , t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x ,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x ,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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Again we can first determine the parameter vector w ML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x, w ML, βML) = N
(
t|y(x, w ML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w . For simplicity, let us consider a
Gaussian distribution of the form

p(w |α) = N (w |0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
w Tw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w |x, t, α, β) ∝ p(t|x, w , β)p(w |α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn, w ) − tn}2 +
α

2
w Tw . (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w |α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w . Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.

Giving estimates of W and beta, we can predict



Predictive Distribution



MAP: A Step towards Bayes 1.2.5

Determine               by minimizing regularized sum-of-squares error,             .

Regularized sum of squares



Entropy 1.6

Important quantity in
• coding theory
• statistical physics
•machine learning



Differential Entropy
Put bins of width ¢ along the real line

For fixed     differential entropy maximized when

in which case



The Kullback-Leibler Divergence

P true distribution, q is approximating distribution



Decision Theory
Inference step

Determine either            or           .

Decision step
For given x, determine optimal t.



Minimum Misclassification Rate



Mixtures of Gaussians (Bishop 2.3.9)

Single Gaussian Mixture of two Gaussians

Old Faithful geyser:
The time between eruptions has a bimodal distribution, with the mean interval being either 65 
or 91 minutes, and is dependent on the length of the prior eruption. Within a margin of error of 
±10 minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less 
than  2 1⁄2 minutes, or 91 minutes after an eruption lasting more than  2 1⁄2 minutes.

https://en.wikipedia.org/wiki/Bimodal_distribution


Mixtures of Gaussians (Bishop 2.3.9)

•Combine simple models 
into a complex model:

Component
Mixing coefficient

K=3



Mixtures of Gaussians (Bishop 2.3.9)



Mixtures of Gaussians (Bishop 2.3.9)
• Determining parameters p, µ, and S using maximum log likelihood

• Solution: use standard, iterative, numeric optimization methods or the 
expectation maximization algorithm (Chapter 9). 

Log of a sum; no closed form maximum.



Homework



Parametric Distributions
Basic building blocks:

Need to determine     given 
Representation:        or           ?

Recall Curve Fitting

We focus on Gaussians!



The Gaussian Distribution



Central Limit Theorem 
•The distribution of the sum of N i.i.d. random variables becomes increasingly 
Gaussian as N grows.
•Example: N uniform [0,1] random variables.



Geometry of the Multivariate Gaussian



Moments of the Multivariate Gaussian (2)

A Gaussian requires D*(D-1)/2 +D parameters.
Often we use D +D or 
Just D+1 parameters.



Partitioned Conditionals and Marginals,  page 89



Maximum Likelihood for the Gaussian (1)
Given i.i.d. data                                             , the log likelihood function is given by

698 C. PROPERTIES OF MATRICES

Similarly
∂

∂x
(AB) =

∂A
∂x

B + A
∂B
∂x

. (C.20)

The derivative of the inverse of a matrix can be expressed as

∂

∂x

(
A−1

)
= −A−1 ∂A

∂x
A−1 (C.21)

as can be shown by differentiating the equation A−1A = I using (C.20) and then
right multiplying by A−1. Also

∂

∂x
ln |A| = Tr

(
A−1 ∂A

∂x

)
(C.22)

which we shall prove later. If we choose x to be one of the elements of A, we have

∂

∂Aij
Tr (AB) = Bji (C.23)

as can be seen by writing out the matrices using index notation. We can write this
result more compactly in the form

∂

∂A
Tr (AB) = BT. (C.24)

With this notation, we have the following properties

∂

∂A
Tr

(
ATB

)
= B (C.25)

∂

∂A
Tr(A) = I (C.26)

∂

∂A
Tr(ABAT) = A(B + BT) (C.27)

which can again be proven by writing out the matrix indices. We also have

∂

∂A
ln |A| =

(
A−1

)T
(C.28)

which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrix A of size M × M , the eigenvector equation is defined by

Aui = λiui (C.29)
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Maximum Likelihood for the Gaussian (2)
• Set the derivative of  the log likelihood function to zero,

• and solve to obtain

• Similarly



Bayes’ Theorem for Gaussian Variables
• Given

• we have

• where



Contribution of the Nth data point, xN

Sequential Estimation

correction given xN
correction weight
old estimate



Bayesian Inference for the Gaussian (1)
• Assume s2 is known. Given i.i.d. data

the likelihood function for µ is given by

• This has a Gaussian shape as a function of µ (but it is not a distribution 
over µ).



Bayesian Inference for the Gaussian (2)
• Combined with a Gaussian prior over µ,

• this gives the posterior

• Completing the square over µ, we see that



Bayesian Inference for the Gaussian (4)
• Example:                                       for N = 0, 1, 2 and 10.

Prior



Bayesian Inference for the Gaussian (5)
• Sequential Estimation

• The posterior obtained after observing N { 1 data points becomes the prior 
when we observe the Nth data point.



•NON PARAMETRIC



Nonparametric Methods (1)
• Parametric distribution models are restricted to specific forms, which may 

not always be suitable; for example, consider modelling a multimodal 
distribution with a single, unimodal model.

• Nonparametric approaches make few assumptions about the overall 
shape of the distribution being modelled.

• 1000 parameter versus 10 parameter



Nonparametric Methods (2)

Histogram methods partition the data 
space into distinct bins with widths ¢i
and count the number of 
observations, ni, in each bin.

• Often, the same width is used for 
all bins, Di = D.

• D acts as a smoothing parameter.
• In a D-dimensional space, using M

bins in each dimension will require 
MD bins!



Nonparametric Methods (3)

•Assume observations drawn from a 
density p(x) and consider a small 
region R containing x such that

•The probability that K out of N
observations lie inside R is  Bin(KjN,P
) and if N is large

If the volume of R, V, is sufficiently 
small, p(x) is approximately 
constant over R and

Thus

V small, yet K>0, therefore N large?



Nonparametric Methods (4)

•Kernel Density Estimation: fix V, estimate K from the 
data. Let R be a hypercube centred on x and define the 
kernel function (Parzen window)

• It follows  that 

• and hence



Nonparametric Methods (5)

•To avoid discontinuities in 
p(x), use a smooth kernel, 
e.g. a Gaussian

•Any kernel such that

•will work.

h acts as a smoother.



Nonparametric Methods (6)

•Nearest Neighbour 
Density Estimation: fix K, 
estimate V from the data. 
Consider a hypersphere 
centred on x and let it 
grow to a volume, V ?, that 
includes K of the given N 
data points. Then

K acts as a smoother.



Nonparametric Methods (7)
• Nonparametric models (not histograms) requires storing and computing 

with the entire data set. 
• Parametric models, once fitted, are much more efficient in terms of 

storage and computation.



K-Nearest-Neighbours for Classification (1)
• Given a data set with Nk data points from class Ck and                          

,  we have

• and correspondingly

• Since                       , Bayes’ theorem gives



K-Nearest-Neighbours for Classification (2)

K = 1K = 3



K-Nearest-Neighbours for Classification (3)

• K acts as a smother
• For                , the error rate of the 1-nearest-neighbour classifier is never more than 
twice the optimal error (obtained from the true conditional class distributions).



OLD



Bayesian Inference for the Gaussian (6)
• Now assume µ is known. The likelihood function for l=1/s2 is given by

• This has a Gamma shape as a function of l.

• The Gamma distribution:



Bayesian Inference for the Gaussian (8)
• Now we combine a Gamma prior,                         ,

with the likelihood function for l to obtain

• which we recognize as                                                     with 



Bayesian Inference for the Gaussian (9)
• If both µ and l are unknown, the joint likelihood function is given by

• We need a prior with the same functional dependence on µ and l.



Bayesian Inference for the Gaussian (10)
• The Gaussian-gamma distribution

• Quadratic in µ.
• Linear in l.

• Gamma distribution over l.
• Independent of µ. 

µ0=0, b=2, a=5, b=6



Bayesian Inference for the Gaussian (12)

• Multivariate conjugate priors
• µ unknown, L known: p(µ) Gaussian.
• L unknown, µ known: p(L) Wishart,

• L and µ unknown: p(µ, L) Gaussian-Wishart,



Partitioned Gaussian Distributions



Maximum Likelihood for the Gaussian (3)

Under the true distribution

Hence define 



Moments of the Multivariate Gaussian (1)

thanks to anti-symmetry of z 


