Curve Fitting Re-visited, Bishop1.2.5

y(z, w) ,

T

p(tlwo, W, 8) = N (ty(zo, w), 371




Maximum Likelihood Bishop 1.2.5

e Model

 Likelihood

e differentiation



Maximum Likelihood
pA|x, w, 3) = HN (taly(zn, w), 871) . (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the

form
3 N N
Inp(t|x, w, 5) = 5 Z (Zr, W) —tn}° + 5} Ing— b In(27).  (1.62)
1 1 2
=N > {y(@n, W) — tn}’ (1.63)
n=1

Giving estimates of W and beta, we can predict

p(t|z, W, Aun) = N (ty (@, W), By, ) -

(1.64)



Predictive Distribution

p(t‘xa WML, /6ML> — N (t‘y(ﬂﬁ, WML)? /61\_/[%1)




MAP: A Step towards Bayes 1.2.5

p(w|a) = N(w|0,a'T) = (%)(MH)/Q exp {—%WTW}

p(wlx,t, a, B) o< p(t|x, w, 5)p(w|a)

84

- 3
BE(w) = B nz::l{y(:cn,w) —tn}? + EWTW

Determine WyrA P by minimizing regularized sum-of-squares error, E(W)

Regularized sum of squares



Important quantity in
 coding theory
* statistical physics
* machine learning

Entropy 1.6
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Differential Entropy

Put bins of width ¢ along the real line
iiino { Zp(:ci)Alnp(xi)} = — /p(:c) In p(x)dx
For fixed OQdifferentiaI entropy maximized when

in which case
p(z) = N (z|p,0°)

Hlz] = % {1+ In(270”)} .



The Kullback-Leibler Divergence

P true distribution, q is approximating distribution

KLGlo) = ~ [poomatdax— (- [ 560 1px) ix)
_ —/p(x)ln{%} dx

KL(pllq) ~ %Z —Inq(x,|0) + Inp(x,)}

KL(pl/q) = 0 KL(p|/q) # KL(q||p)



Decision Theory

Inference step
Determine either p(t|x) or p(x,t).

Decision step
For given x, determine optimal t.



Minimum Misclassification Rate

p(mistake) = p(x € Rq,Co) + p(x € Re,(Cq)

_ /R e Ca) e+ | px.ci)ax

R



Mixtures of Gaussians (Bishop 2.3.9)

Old Faithful geyser:
The time between eruptions has a bimodal distribution, with the mean interval being either 65

or 91 minutes, and is dependent on the length of the prior eruption. Within a margin of error of
+10 minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less
than 2 Y/, minutes, or 91 minutes after an eruption lasting more than 2 1/, minutes.

100 - v v - 100
R0t R0t
60 | 60 |
oy

Single Gaussian Mixture of two Gaussians


https://en.wikipedia.org/wiki/Bimodal_distribution

Mixtures of Gaussians (Bishop 2.3.9)

Combine simple models »(z)y
into a complex model:

p(0) = > TN (Kl B

k=1 ' '
Component

Mixing coefficient
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Mixtures of Gaussians (Bishop 2.3.9)




Mixtures of Gaussians (Bishop 2.3.9)

* Determining parameters 7, 1, and X using maximum log likelihood

N

N (K
In p(X|7, @, ) = Z In < ZﬂkN(Xn|uk, k) ¢
n=1 \ k=1 y

\ J
I

Log of a sum; no closed form maximum.
* Solution: use standard, iterative, numeric optimization methods or the

expectation maximization algorithm (Chapter 9).



Homework



Parametric Distributions

Basic building blocks: p(X‘ 9)
Need to determine Ogiven {Xl, “ . ,XN}
Representation: 9*orp(9}

Recall Curve Fitting

p(t]z,x,t) = / p(t]z, w)p(wlx, t) dw

We focus on Gaussians!




The Gaussian Distribution

N(z|p, o?)

Nalu,0?) = — eXp{—Q%(:c—W}

(27702)1/2 a

N, %) = s i e { 50 w8 - ) |



Central Limit Theorem

*The distribution of the sum of N i.i.d. random variables becomes increasingly
Gaussian as N grows.

*Example: N uniform [0,1] random variables.




Geometry of the Multivariate Gaussian
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5132‘

Moments of the Multivariate Gaussian (2)

Exx'] = pp’ + =

covix] =E [(x —E[x))(x —E[x])'] ==

A Gaussian requires D*(D-1)/2 +D parameters.
Often we use D +D or
Just D+1 parameters.

C172‘ C172‘




P(Xalxp) = N(Xa‘y’awv Z3a|b)

Ea|b
“’a|b

Ty

05}

A;; = Yaa

— ST, Sba
Dalb {Acatty — Aan(xp — pp) }

Heg — Ac:;Aab (X6 — 1)
to + Zap Sy, (Xp — 1)

Tp — 0.7

p(xaa .'L'b)

0.5

10

Partitioned Conditionals and Marginals, page 89

p(Xa, Xb) de

(Xa|Ma> Baa)

P(Xq) /
N
p(xalwb = 0-7) /\
p(x,)
0.5 |



Maximum Likelihood for the Gaussian (1)
Giveni..d.data X — (X:l: . ’XN),Tche log likelihood function is given by

N
ND N 1 _
Inp(X|p, %) = ——=1In(27) — - In[2| - 5 > (xn— )" (xpn — )
n=1

0 _\T
a—Aln|A| = (A7) (C.28)
iTr (AB) =B" (C.24)
0A o '
0 0A

o (A7) = —A*%A*1 (C.21)



Maximum Likelihood for the Gaussian (2)

* Set the derivative of the log likelihood function to zero,

0

o Inp(X|p, > Z ) —0
* and solve to obtain
e Similarly B = nz::lxn'
;N
ML = 7 Z — poun) (%o — pgn) -

n=1



Bayes’ Theorem for Gaussian Variables

Given p(x) = N (X|,u,, A_l)
plylx) = N (ylAx+b,L")
we have
ply) = N(y|[Ap+b L'+ AATTAT)
p(xly) = NEZ{A'L(y —b)+Apu},X)

where » — (A+ATLA)!



Sequential Estimation

Contribution of the N*™ data point, x,

(N) 1
“’ML - N Xn

|—> correction given Xy

> correction weight
> old estimate




Bayesian Inference for the Gaussian (1)

e Assume c?is known. Given i.i.d. data X — {5171, o ’ggN}
the likelihood function for u is given by

p(x|u)

];[lp(xnm) — (27T012)N/2 exXp {% Z:l(xn — U)Q} :

* This has a Gaussian shape as a function of u (but it is not a distribution
over p).



Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over L,

p(k) :N(u\uo,ag) -

* this gives the posterior

p(p|x) oc p(x|m)p(ps).

* Completing the square over u, we see that p(u\x) =N (M‘MN, o3 )

N
2 2 N
o Noj 1
UN = Nag _|_02,U0 + WMMM HML = N;fﬂn
L1 N
o3 o5 o2

N=0 N —x

KN HO HML




Bayesian Inference for the Gaussian (4)

 Example: forN=0, 1, 2 and 10.

p(p|x) = N (ulpn, o)




Bayesian Inference for the Gaussian (5)

e Sequential Estimation

p(plx) o< p(p)p(x|w)
N—1
= {p(u) 11 p(fvnu)} p(z )

x N (plpun-1,0%_1) p(xN]|p)

 The posterior obtained after observing N { 1 data points becomes the prior
when we observe the Nt data point.



*NON PARAMETRIC



Nonparametric Methods (1)

Parametric distribution models are restricted to specific forms, which may
not always be suitable; for example, consider modelling a multimodal
distribution with a single, unimodal model.

Nonparametric approaches make few assumptions about the overall
shape of the distribution being modelled.

1000 parameter versus 10 parameter



Nonparametric Methods (2)

Histogram methods partition the data
space into distinct bins with widths ¢,
and count the number of
observations, n;, in each bin.

Uz

~ NA,

Pi

e Often, the same width is used for
all bins, A; = A.

* A acts as a smoothing parameter.

* Ina D-dimensional space, using M
bins in each dimension will require
MP bins!



Nonparametric Methods (3)

*Assume observations drawn from a
density p(x) and consider a small
region R containing x such that

P = /R p(x) dx.

*The probability that K out of N
observations lie inside R is Bin(KjN,P
) and if N is large

K~ NP.

If the volume of R, V, is sufficiently
small, p(x) is approximately
constant over R and

P~ p(x)V
Thus
K
p(x) = NV

V small, yet K>0, therefore N large?




Nonparametric Methods (4)

*Kernel Density Estimation: fix V, estimate K from the
data. Let R be a hypercube centred on x and define the
kernel function (Parzen window)

. ]., \(xz—xm)/h\él/Q, iI].,...,D,
E((x = xn)/h) = { 0, otherwise.

e |t follows that

N X —
. Kzlk<

1 N 1 X — X,
)and hence p(x NZ—D ( )



Nonparametric Methods (5)

°To avoid discontinuities in
p(x), use a smooth kernel, .

h = 0.005
e. g a Gau55|an
N l\n L v
Z 27Th2 D/2 50 1
=l , h=0.07
e [ I /\
2h2 e——— et '
0 0.5 1
Th—02 '
*Any kernel such that
k(u) > 0, () b S '
0 0.5 1
/k(u)du = 1 h acts as a smoother.

*will work.



Nonparametric Methods (6)

*Nearest Neighbour
Density Estimation: fix K,
estimate V from the data.
Consider a hypersphere
centred on x and let it
grow to a volume, V7, that
includes K of the given N
data points. Then

K 0 0.5 1
p(x) = N+ K acts as a smoother.




Nonparametric Methods (7)

Nonparametric models (not histograms) requires storing and computing
with the entire data set.

Parametric models, once fitted, are much more efficient in terms of
storage and computation.



K-Nearest-Neighbours for Classification (1)

* Given a data set with N, data points from class C, and
>+ Nt = N we have

K
Px) = Ny
* and correspondingly

* Since p(C.) = Ni/N, Bayes’ theorem gives

~ p(x[Cr)p(Cr)  Ki
plCilx) = p(x) K




K-Nearest-Neighbours for Classification (2)
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K-Nearest-Neighbours for Classification (3)

K=] K =3 K=&l
2 . 2 : 2
.o L .o L .. L
e §oe .f.. g ° e oo .!'0 g o ® §oo .,“ g o
Widrg T
1 = 1 = 1 2
@ LY ) E (Y ) X
® » L J » ® .
. D ; P Loy . b
5 :. -.o s 5 :. ..o s 5 :! ..o :
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» K acts as a smother
* For N — o0, the error rate of the 1-nearest-neighbour classifier is never more than

twice the optimal error (obtained from the true conditional class distributions).



OLD



Bayesian Inference for the Gaussian (6)

* Now assume u is known. The likelihood function for A=1/c2is given by

N
A
N/2 A Ry
p(x|\) = H/\f:cn\u, LY exp{ 2;(% ) }
* Thishasa Gamma shape as a function of A.
* The Gamma distribution:
Gam(Al|a,b) = I(a) b\ texp(—bA\)  E[\] = % var|\ l%

2 2 - 2

a=0.1 ai= a=4d4

b=0.1 b=1 b=26
0 — : 0



Bayesian Inference for the Gaussian (8)

* Now we combine a Gamma prior, Gam()\‘aO’ bo)
with the likelihood function for A to obtain

2

n=1

N
A
p(Alx) oc A% TIAN Z exp {_50/\ —5 2 (@ - M>2}

Gam(A|an, bn)

* which we recognize as with
N
any = ag-+ D)
N
1 N
bN — b0—|—§Z($n—M)Q :bO+§Ol%4L'

n=1



Bayesian Inference for the Gaussian (9)

* If both uand A are unknown, the joint likelihood function is given by

* We need a prior with the same functional dependence on p and A.



Bayesian Inference for the Gaussian (10)

* The Gaussian-gamma distribution

p(p, A) = N (plpo, (BX)~1)Gam(A|a, b)
B

X exp {—7@& — uo)z} X" exp {—bA}

\ J J
| |

* Quadraticin p. * Gamma distribution over A.
e Linearin A. * Indepnendent of u.
2

Alp




Bayesian Inference for the Gaussian (12)

Multivariate conjugate priors
1 unknown, A known: p(u) Gaussian.
A unknown, p known: p(A) Wishart,

1
W(AIW,v) = B|A|V=P=D/2exp <—§TI“(W_1A)) .

A and p unknown: p(u, A) Gaussian-Wishart,

Py Alprg, B, W, v) = N(p|pg, (BA) ™) W(A|W, v)



Partitioned Gaussian Distributions



Maximum Likelihood for the Gaussian (3)

Under the true distribution

Elpy] = w

N —1

Hence define

N
Z — por)( HML)T-



Moments of the Multivariate Gaussian (1)

(zw;D \2\11/2 /eXp{_%(X_“)Tz_l(x—u)}xdx
1
)

! [
m) D72 [/ /exp{—§z )3 z}(z+p)dz

thanks to anti-symmetry of z

Elx] = p



