Data

Domain expertise

Fidelity/
Robustness

Adaptability

Interpretability

Perceived

Importance.

First principles Vs
Small data

High reliance on domain
expertise

Universal link can handle non-
linear complex relations

Complex and time consuming
derivation to use new relations

Parameters are physical!

SIO SP

Data driven

‘Big data to train

Results with little domain
knowledge

Limited by the range of values
spanned by training data

Rapidly adapt to new problems

Physically agnostic, limited by
the rigidity of the functional form

Peter Google




Machine learning versus knowledge based
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Supervised learning

TR CALEWE T Wy Wl W Wk B

Supervised y=w'x

Training set {(x,y1), (x2,y2), (x3,y3)}
We are given the two classes.
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Unsupervised learning

old faithful data

Training set {(x{, x3), (x%,x5), (x3, x3)}



Unsupervised learning

Unsupervised machine learning is inferring a function to
describe hidden structure from "unlabeled" data (a classification
or categorization is not included in the observations). Since the
examples given to the learner are unlabeled, there is no
evaluation of the accuracy of the structure that is output by the
relevant algorithm—which is one way of distinguishing
unsupervised learning from supervised learning.

We are not interested in prediction

Supervised learning: all classification and regression.
Y =W'X

Prediction is important. =
/[]/L/ 17 (0



Unsupervised learning

« Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

« But techniques for unsupervised learning are of growing
importance in several fields:

— subgroups of breast cancer patients grouped MQene expression
measurements,

— groups of shoppers characterized by their browsing and purchase
histories,

— movies grouped by the ratings assigned by movie viewers.

«/ It is often easier to obtain unlabeled data — from a lab
instrument or a computer — than labeled data, which can
require human intervention.

— For example it is difficult to automatically assess the overall sentiment of
a movie review: is it favorable or not?



Kmeans
* Input: Points x.,...,xy € RP; integer K_
* Output: “Centers”, or representatives, \y,..., Jx € RP
 Output also z,,...,zy € R¥

Goal: Minimize average squared distance between points and
their nearest representatives:

e cost(Uq, ..., Ug) = ZTA{:l m}“”ﬁn — {‘,J”

o

. The centers carve RP up into k

.. ) convex regions: ;'s region consists
© Q)

of points for which it is the closest
center.




K-means

N K
ZZrn@Hxn — il 9.1)

n=1 k=1

Solving forr,,

e

Z {1 if k = arg min, [|x,, — p,]|°
'nk = .

0 otherwise.

Differentiating for p, 2~

—

v P
QZrnk(xn — ) =0
n=1

which we can easily solve for p;, to give

Z T'nkXn

@?JA/

(9.2)

(9.3)

9.4)
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. . 2 1000
1 if k = argmin, [[x, — p,]|
T =

;" 0 otherwise. !
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Z T'nkXn
K = == :
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Old Faithful, Kmeans from Murphy

File Edit View Insert Tools Desktop Window Help

Ddde M AKAU9EK- 32 0E O

, old faithful data_——  \

sile Edit View Insert Tools Desktop Window Help

lJgdde h RGP EAL- 2 0E O

iteration 3, error 0.7929

2 -15 -1 -0.5 0 0.5 1 15

File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help
Dade h ARO0PLEA- 3 08 @O DEade h A0 LEL-3 08 o @O
. iteration 1, error 5.4062 2 iteration 2, error 1.8911
154 ! 151 lelp
[ ]
1t 1t =
0.5r 0.5F B
0r or
05+ 051
-1r -1r
Is
151 151 B
®
-2r 2r
-25 . -2.5 . . : +
-2 -1.5 -1 0.5 0.5 1.5 - -1.5 -1 0.5 0 0.5 1 1.5
File Edit View Insert Tools Desktop Window Help | File Edit View Insert Tools Desktop Window Help ~
DEade h AAO9RA-3 0E O DEade h AR RA-3 0E oD

iteration 4, error 0.2935

0.5

iteration 5, error 0.2918

1.5



Example

R PR The progress of the K-means algorithm with K=3.
) e Top left: The observations are shown.

@ " e Top center: In Step 1 of the algorithm, each observation is
R i randomly assigned to a cluster.

) S UG e Top right: In Step 2(a), the cluster centroids are computed.
These are shown as large colored disks. Initially the
fteration 1, Step 20 Hteration 2, Step 2a Final Results centroids are almost completely overlapping because the

initial cluster assignments were chosen at random.

Q o e Bottom left: In Step 2(b), each observation is assigned to

. the nearest centroid.

T S R P e Bottom center: Step 2(a) is once again performed, leading

KIS : 2 @i o

TR S ) to new cluster centroids.

3
L Y
ol s
L Y

e Bottom right: The results obtained after 10 iterations.

Likely From Hastie book



Different starting values
~. T &

K-means clustering performed six times on the data from
previous figure with K = 3, each time with a different random
assignment of the observations in Step 1 of the K-means

a{. ‘. s algorithm.
':t:"i’":. .".: Above each plot is the value of the objective (4).
¢ _'-':‘..:' : Three different local optima were obtained, one of which

resulted in a smaller value of the objective and provides better

= ( 235-8/ Q separation between the clusters.

e s Those labeled in red all achieved the same best solution, with
et 2% . | an objective value of 235.8
o

Likely From Hastie book



Vector Quantization VQ

ece

Murphy book Fig 11.12 vqdemo.m

Each pixel x; is represented
By codebook of K entries &

Edit View Insert Tools Desktop Window Help
Ide b AR OB

EnCOde(xi)zargmin”xi _ .uk” M
N -k =

Consider N=64k observations, of
D=1 (b/w) dimension, C=8 bit

NC=513k

| File Edit View Insert Tools Desktop Window Help
Ddde h A0 EA-3 0E o O

50 100 150 200 250 300

~| File Edit View Insert Tools Desktop Window Help
Deads v A209E<L-0 08 @

50 100 150 200 250 300

Nlog, K+KC bits is needed
K=4 gives 128k a factor 4.




Mixtures of Gaussians (1)

Old Faithful geyser:

The time between eruptions has a bimodal distribution, with the mean interval being either 65 or 91
minutes, and is dependent on the length of the prior eruption. Within a margin of error of +10
minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less than 2 ', minutes, or
91 minutes after an eruption lasting more than 2 ', minutes.

100 . . . . 100
80 0
60 60
o | 6

Single Gaussian Mixture of two Gaussians



Mixtures of Gaussians (2)

Combine simple models p(z)a
into a complex model:

- J

p(x) = p_mN (x|py, Zi)

[ Component

Mixing coefficient

K K=




Mixtures of Gaussians (3)

e 1
N,
0.5 N 05
[/\. °2
0.5 0.3
of —— 0




 (Gaussian mixture
- p(x) = Xx TN (x; W, i)

>

7 meden
« Latent variable: 2:[ K

— Un-observed
— Often hidden

* Here p(zy) = my

(. )
Z

. 2) PR
X H o b))

EM) N iidﬁ with latent {z}




XéQ /{4& §C‘z

p(xlz; = 1) = N(x; py, Zg) = &7
' (%
p(XlZ) TU(X%{ g) % P 12 ) A/cg'/{nlgz)?‘(
P(X,2)=p(r/2) ,p(z) P(2,=1) = _
‘t 2) )T x
p(x)= ZFsz) _ ZPG‘/’Z)WZ) 2 Nl )Z)T‘e
/\/(x;

Responsibiliies  Beasges “ =)
¥z =plac =110 = PXI2=0E) 1, Mg 2
ZPCX/f)p(Z—/) i”/\/\/
d ()C//‘SJ. 3.‘\)




Mixture of Gaussians
Mixtures of Gaussians

K
= N (x|, Zi).

k=1

Expressed with latent variable z

K
Zp p(x[z) = > N (X, Zp)
k=1

Posterior probability: responsibility

P(Zk = 1)p(x|zx = 1)

Y(zk) = plar = 1]x) =
ZP Jp(x|z; =1)

Zi @ _ WkN(X\Mk; k)

Xn, Z ﬂ-j X ‘ u]
pr—

p(z)p(x|]z) Niid {xn}Dwith latent {z}




D
Max Likelihood < 5

o p(x) = Xk TN (¥ e, Zi) X:Z N/
e N observations X X,
* 1r1[p(X|n', U, Z)] — HN ln[zlk{ T[kN(xn; :ukizk)]

Unps)= oo | Z%=/
L aﬁn a'&): ¢+ A(En"‘ _/)
—_— \-
S |
& Ea%r*"@ - 2,5y
‘L /

., )
Z

T e—ro
[
Xn
p(x) " =

N iid {x.} with latent {z,}




. 1. Initialize the means p,, covariances 3 and mixing coefficients 7y, and
E M G a u SS M |X evaluate the initial value of the log likelihood.
2. E step. Evaluate the responsibilities using the current parameter values

WkN(anuk, i)

Zm (xn|pt;, Z5)

3. M step. Re-estimate the parameters using the current responsibilities

— V(Znk) = (9.23)

1
— = N—kZ’y(znk)xn (9.24)
" n=1

new new

N
1
> T o= EZV(an)(Xn ™) (x — ™) (9.25)
n=1

N
> e = Ok (9.26)
2 T N

where

Ne =Y (k). (9.27)

4. Evaluate the log likelihood

Inp(X|p, 2, 7) = Zln{ZﬂkN xnmk,zk)} (9.28)
n=1

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.



Given a joint distribution p(X, Z|80) over observed variables X and latent vari-
G ene ral E M ables Z, governed by parameters @, the goal is to maximize the likelihood func-
tion p(X|@) with respect to 6.

1. Choose an initial setting for the parameters 6°'“.
2. E step Evaluate p(Z|X, 6°'9).

3. M step Evaluate 6"" given by

6" = arg max Q(6, 6°'9) (9.32)
(7]
where
Q(6,0°") = > " p(Z[X,0°) Inp(X, Z|6). 9.33)
Z

4. Check for convergence of either the log likelihood or the parameter values.
If the convergence criterion is not satisfied, then let

0°'! — 6" (9.34)

and return to step 2.



EM in general

p(X|6) = Zp (X,Z6). (9.69)

Inp(X|0) = L(q,0) + KL(qllp) (9.70)
where we have defined
p(X,Z|0)
L(q,0) = 7)1 9.71
(¢,0) ZZ:Q( ) n{ +(Z) 9.71)
p(Z[X, 0)}
= — 7)1 9.72
alp =~ azm{ "7 ©.72)
Inp(X,Z|0) =1np(Z|X,0)+ Inp(X|0) (9.73)

L(q,0)

Q(6,6°) + const

> p(ZX,6°) Inp(X, Z|6)

- Zp(Z’X7 GOId) hlp(Z‘X, OOId)

(9.74)



Gaussian Mixtures

2 .® 2
0 . ° o =:o~ 0
P h’e *°
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Kmeans and EM (9.3.2)

1 1
p(x|py, ) = @roi exp {—ZHX — ukHZ} . (9.41)

Whereby the responsibilities

7 oxp {—[Ixn — pyl2/26}
. | _ (9.42)
) = S e (- w2 | =

Becomes delta functions. 4, = x,,
And the E#{ means approach the Kmeans

N

1
My =~ > Y(znn)Xn 9.17)
N 27




Hierarchical Clustering

e K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

o Hierarchical clustering is an alternative approach which

does not require that we commit to a particular choice of
K.

e In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.



Hierarchical Clustering Algorithm

The approach in words:

Start with each point in its own cluster.

Identify the closest two clusters and merge them.
Repeat.

Ends when all points are in a single cluster.

Dendrogram




An Example

45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.



Example

45 observations ggncratcd in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will !
seek to cluster the observations in order to discover the classes e [Left: Dendrogram obtained from hierarchically clustering
from the data. the data from previous slide, with complete linkage and

Euclidean distance.

e (Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in different colors.

e Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in different colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure
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