Projects

« Chandrasekar, Arun Kumar, Group 17
* Nearly all group have submitted a proposal
« May 21: Each person gives one slide, 15 min/group.



Data

Domain expertise

Fidelity/
Robustness

Adaptability

Interpretability

Percelved

Importance.

First principles VS
Small data

High reliance on domain
expertise

Universal link can handle non-
linear complex relations

Complex and time consuming
derivation to use new relations

Parameters are physical!

SIO SP

Data driven
Big data to train

Results with little domain
knowledge

Limited by the range of values
spanned by training data

Rapidly adapt to new problems

Physically agnostic, limited by
the rigidity of the functional form

Peter Google



Machine learning versus knowledge based
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Machine Learning

(Physical model augmented
by Data-driven model)
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model of physical

Physical/Knowledge Base
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Training set {(x!, y1), (x?,y2), (x3,y3)}

We are given the two classes.
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Unsupervised learning

Unsupervised machine learning is inferring a function to
describe hidden structure from "unlabeled" data (a classification
or categorization is not included in the observations). Since the
examples given to the learner are unlabeled, there is no
evaluation of the accuracy of the structure that is output by the
relevant algorithm—which is one way of distinguishing
unsupervised learning from supervised learning.

We are not interested in prediction

Supervised learning: all classification and regression.
Y =wW'X
Prediction is important.


https://en.wikipedia.org/wiki/Supervised_learning

Unsupervised learning

» Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

« But techniques for unsupervised learning are of growing
importance in several fields:

— subgroups of breast cancer patients grouped by their gene expression
measurements,

— groups of shoppers characterized by their browsing and purchase
histories,

— movies grouped by the ratings assigned by movie viewers.

* |tis often easier to obtain unlabeled data — from a lab
iInstrument or a computer — than labeled data, which can
require human intervention.

— For example it is difficult to automatically assess the overall sentiment of
a movie review: is it favorable or not?



Kmeans
* Input: Points x,,...,.X\ € RP; integer K
* Output: “Centers”, or representatives, U4,..., dx € RP
« Output also z,,...,z, € RK
Goal: Minimize average squared distance between points and
their nearest representatives:

o cost(Uy, ..., Ug) = Xm=1 rnjin”xn - /"J'H

. The centers carve RP up into k
..* . convex regions: :uj's.re-gion consists
. of points for which it is the closest

° center.




K-means
N K
ernk“xn — llkaz
n=1 k=1

Solving forr,,

{1 if k = argmin; ||x, —
Fnk =

0 otherwise.

Differentiating for p,

N
QZrnk(xn — ) =0
n=1

which we can easily solve for p;. to give

1y

(9.1)

(9.2)

(9.3)

9.4)
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Old Faithful, Kmeans from Murphy

File Edit View Insert Tools Desktop Window Help O | e e o R | e . = E
. N =~ = ile it View Insert Tools eskto indow e ile it View Insert Tools eskto indow e
NEdL® h RAOUDEALA- 2 0E uD - - P P - - oF .
DEdde h AQAUPDEN-2 08 o @ Nadde h ARG RA- 2 0B o O
old faithful data
2 T T T T T " 5 iteration 1, error 5.4062 5 iteration 2, error 1.8911
1.5} ] 1 A ’ -
| 1.5} ] 1.5} . lel
1t T 1 ' ' 4
. 1F . R 1t - | | _m}
0.5 e : | B
.o 0.5} . . 0.5f . 1
o . P— g xX .
. . . ot . ] ot . 4
. b N .
-05F . . . 1 e .
-05 [ “x 1 -05 <% 1
A+ - R
. Al ( | Al : _
o W e !
-151 1 Is
151 1 151 1 B
2t . ] ®
2t - 2t .
25 | | | | | E
-2 -1.5 -1 0.5 0 0.5 1.5 -2.5 * + : * . -2.5 * : : . .
A -2 -15 -1 0.5 0 0.5 18 -2 -15 -1 0.5 0 0.5 {5
file Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help : File Edit View Insert Tools Desktop Window Help ¥
1ods B ALU9EA-3 0E nD NEEdS b AL0VDEL- 3 0B a @ DEEde h ALOPEL- G 0E uD
2 . Rerstion 3, emor0-1928 ) iteration 4, error 0.2935 ) iteration 5, error 0.2918
1.5} T 15} 1 1.5} i T
1t . 1 1t . 1 o . 1
0.5 [ 7 0_5 L . J 0_5 L . 4
I x 1 of 1 ot X y 1
051 o N % o g 05t )\, ’ . | 05t " .. . |
=1 X 1 -1 T 1| i
) 1 A5t - a5t 1
20 1 2t 1 2} 1
-2.5 : * + * * . . . L . . A . . L
-2.5 -2.5
2 1.5 - 0.5 0 05 1.5 2 1.5 - 0.5 0 05 15 2 1.5 - 0.5 0 05 15




Data Step 1 Iteration 1, Step 2a
o®
o . .
) Ll
'.0.0"”‘: o .
oo on? . ] ]
o o .
. . °
.
. .ﬂ. . 2
. ¢ < . @\.
gt o e o b
/] o °* opo b opo “ofy o4
° ° 0: ) N3 98 ® cugi® o
° .o LA 3 ° °©
0..‘00 e®® ] X
]
o 0 )

Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results

©..

!:'j:s s

Likely From Hastie book

Example

The progress of the K-means algorithm with K=3.

Top left: The observations are shown.

Top center: In Step 1 of the algorithm, each observation is
randomly assigned to a cluster.

Top right: In Step 2(a), the cluster centroids are computed.
These are shown as large colored disks. Initially the
centroids are almost completely overlapping because the
initial cluster assignments were chosen at random.

Bottom left: In Step 2(b), each observation is assigned to
the nearest centroid.

Bottom center: Step 2(a) is once again performed, leading
to new cluster centroids.

Bottom right: The results obtained after 10 iterations.



Different starting values

235.8 235.8

- K-means clustering performed six times on the data from
'::f,' . previous figure with K = 3, each time with a different random
. AT assignment of the observations in Step 1 of the K-means
Doeet . Joee . algorithm.
:i;:fb. :i;:f‘-‘- -'i; Above each plot is the value of the objective (4).
: .-;' - : .-;' - ¢ -:" : Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better
2358 2358 separation between the clusters.
s s Those labeled in red all achieved the same best solution, with
: :.';’ ':f.' . :.'." . | an objective value of 235.8
"s, °s. . en
353 WA
?

Likely From Hastie book



Vector Quantization VQ
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Consider N=64k observations, of
D=1 (b/w) dimension, C=8 bit

NC=513k

Nlog, K+KC bits is needed
K=4 gives 128k a factor 4.



Mixtures of Gaussians (1)

Old Faithful geyser:

The time between eruptions has a bimodal distribution, with the mean interval being either 65 or 91
minutes, and is dependent on the length of the prior eruption. Within a margin of error of £10

minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less than 2 %, minutes, or
91 minutes after an eruption lasting more than 2 '/, minutes.

100 - - - - 100
R0t R0t
60 | 60 |
oy

Single Gaussian Mixture of two Gaussians


https://en.wikipedia.org/wiki/Bimodal_distribution

Mixtures of Gaussians (2)

Combine simple models p(x)a
iInto a complex model:

p(0) = > TN (Kl B

k=1
Component

Mixing coefficient

K K=
Vk :m, >0 Zﬂ'k:1
k=1



Mixtures of Gaussians (3)




 (Gaussian mixture
- p(x) = YR TN (x; g, Zie)

 Latent variable:

— Un-observed
— Often hidden

« Here p(z,) = my

Z
Z T e—
Xn
X 4 D)

p(z)p(x|]z) N iid{Tj} with latent {z}




p(x|zy = 1) = N(x; pg, L)
p(x|z)=

p(x,z)=

p(x)=

Responsibilities
y(zx) = p(zx = 1]|x) =



Mixture of Gaussians
 Mixtures of Gaussians

K
= mN (x|, ).
k=1
« EXxpressed with latent variable z
= p(2)p(xlz) = Y mN (x| )
z k=1

* Posterior probability: responsibility

p(zk = 1)p(x|z = 1)

Y(zk) = plar = 1x) =
ZP X|ZJ =1)

i m _ WkN(XWk; )
N

o(z)p(x|lz)  Niid {x.} with latent {zn}




Max Likelihood

o p(x) =Xk TN (x; g, Zg)

N observations X

o In[p(X|m, 1, 2)] = [Iy In[X5 N (X tirr k)]

T o—

Bo—

)
Z

n
Xni

N iid {x } with latent {z}
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. 1. Initialize the means p;, covariances 3; and mixing coefficients 7, and
E M G a U SS M IX evaluate the initial value of the log likelihood.
2. E step. Evaluate the responsibilities using the current parameter values

Wk:/\/(xn!uk, k)

Z% (%015, %)

3. M step. Re-estimate the parameters using the current responsibilities

Y(Znk) = (9.23)

new 1
piey = MZW(an)xn (9.24)
sy — N,ﬁz“”k (xn — B3) (X — ™) (9.25)
N,
mt = 5 (9.26)
where N
Ne = 7(zn). (9.27)
n=1

4. Evaluate the log likelihood

Inp(X|p, =, ) = Zln{ZwkN(xnuk,Zk)} (9.28)
n=1

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.



G ene ral E M Given a joint distribution p(X, Z|@) over observed variables X and latent vari-
ables Z, governed by parameters 0, the goal is to maximize the likelihood func-
tion p(X|@) with respect to 6.

1. Choose an initial setting for the parameters 6°'.
2. E step Evaluate p(Z|X, 8°'9).

3. M step Evaluate 8"°" given by

6"°Y = arg max Q(6, °'9) (9.32)
0
where
Q(6,6°") = > " p(ZIX,6°") Inp(X, Z|). (9.33)
Z

4. Check for convergence of either the log likelihood or the parameter values.
If the convergence criterion is not satisfied, then let

6°'¢ — g (9.34)

and return to step 2.



EM in general

p(X|0) = Zp (X,Z]9). (9.69)

Inp(X|0) = L(q,0) + KL(q||p) (9.70)

where we have defined

£(g,8) = Y q(Z)ln {p (};(’ZZ)‘H) 9.71)
KLl = - a@m{2EZOL 0.7
Inp(X,Z|0) =Inp(Z|X, 0) + In p(X|0) (9.73)

L(g,0) = > p(Z|X,0°)Inp(X,Z[6) — Y p(Z|X,6°)Inp(Z|X,6°)

= Q(0,0°?) + const (9.74)



Gaussian Mixtures




Hierarchical Clustering

e K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

e Hierarchical clustering is an alternative approach which

does not require that we commit to a particular choice of
K.

e In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.



Hierarchical Clustering Algorithm

The approach in words:
e Start with each point in its own cluster.
e Identify the closest two clusters and merge them.
e Repeat.
e Ends when all points are in a single cluster.

Dendrogram
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An Example
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45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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45 observations ggnerated in 2-dimensional space. In reality ]
there are three distinct classes, shown in separate colors.

However, we will treat these class labels as unknown and will \ \

seek to cluster the observations in order to discover the classes e Left: Dendrogram obtained from hierarchically clustering

from the data. the data from previous slide, with complete linkage and
Euclidean distance.

e (enter: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in different colors.

e Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in different colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure



‘NOT USED



K-means clustering

NOT
INTERESTING ’

A simulated data set with 150 observations in 2-dimensional
space. Panels show the results of applying K-means clustering
with different values of K, the number of clusters. The color of
each observation indicates the cluster to which it was assigned
using the K-means clustering algorithm. Note that there is no
ordering of the clusters, so the cluster coloring is arbitrary.
These cluster labels were not used in clustering; instead, they
are the outputs of the clustering procedure.



Properties of the Algorithm

e This algorithm is guaranteed to decrease the value of the
objective (4) at each step. Why? Note that

S‘ S‘xm ajzg —QS‘S‘ZI%] xkj )

zzEij 1 1€Cy, 1=1

where Zp; = |Ck:| D _icc, Tij 1s the mean for feature j in
cluster CY.

e however it is not guaranteed to give the global minimum.
Why not?



K-Means Clustering Algorithm

. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for
the observations.

. Iterate until the cluster assignments stop changing:

2.1 For each of the K clusters, compute the cluster centroud.
The kth cluster centroid is the vector of the p feature means
for the observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is
closest (where closest is defined using Fuclidean distance).



Clustering

Clustering refers to a very broad set of techniques for
finding subgroups, or clusters, in a data set.

We seek a partition of the data into distinct groups so that
the observations within each group are quite similar to
each other,

It make this concrete, we must define what it means for
two or more observations to be similar or different.

Indeed, this is often a domain-specific consideration that
must be made based on knowledge of the data being
studied.



Mixture of Experts

expert predictions, fixed mixing weights=0 gating functions, fixed mixing weights=0
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Figure 11.6 (a) Some data fit with three separate regression lines. (b) Gating functions for three different
“experts”. (c) The conditionally weighted average of the three expert predictions. Figure generated by
mixexpDemo.



* The key idea is that each expert focus on predicting the right
answer for cases where they are already doing better than
other experts.

A picture of why averaging is bad

- Y, = d y—i
1

target
Average of all the

Do we really want to other predictors
move the output of

predictor i away from

the target value?



{X,Z}.Complete, {X}. Incomplete, responsibilities
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Hierarchical Clustering

e K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

e Hierarchical clustering is an alternative approach which

does not require that we commit to a particular choice of
K.

e In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.



Hierarchical Clustering Algorithm

The approach in words:
e Start with each point in its own cluster.
e Identify the closest two clusters and merge them.
e Repeat.
e Ends when all points are in a single cluster.
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An Example
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45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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45 observations ggnerated in 2-dimensional space. In reality ]
there are three distinct classes, shown in separate colors.

However, we will treat these class labels as unknown and will \ \

seek to cluster the observations in order to discover the classes e Left: Dendrogram obtained from hierarchically clustering

from the data. the data from previous slide, with complete linkage and
Euclidean distance.

e (enter: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in different colors.

e Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in different colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure



KL(ql|p)

L(q,0) Inp(X|0)

£(q,6°%)

Inp(X[6°)

KL(q||p)

N I

L(q,6™")

Inp(X|0™)




Mixture of Experts

forwards problem expert predictions
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Figure 1.8 (a) Some data from a simple forwards model. (b) Some data from the inverse model, fit
with a mixture of 3 linear regressions. Training points are color coded by their responsibilities. (c) The
predictive mean (red cross) and mode (black square). Based on Figures 5.20 and 5.21 of (Bishop 2006b).
Figure generated by mixexpDemoOneToMany.



Two clustering methods

e In K -means clustering, we seek to partition the
observations into a pre-specified number of clusters.

e In hierarchical clustering, we do not know in advance how
many clusters we want; in fact, we end up with a tree-like
visual representation of the observations, called a
dendrogram, that allows us to view at once the clusterings
obtained for each possible number of clusters, from 1 to n.



