






Kernels

Information unchanged, but now we 
have a linear classifier on the 
transformed points.

With the kernel trick, we just need kernel
! ", $ = &(")) &($)

Say I want to predict whether a house on the real-estate market will sell today
or not:
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We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
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The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:
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Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.
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So we showed that k is an inner product for n = 2 because we found a feature
space corresponding to it.

For n = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

�(x) = (x(1)2, x(1)x(2), ..., x(3)2), and �(z) = (z(1)2, z(1)z(2), ..., z(3)2),

h�(x),�(z)iR9 = hx, zi
2
R3.

That’s nice.

We can even add a constant, so that k is the inner product plus a constant
squared.

Example 4:
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and in n = 3 dimensions, one possible feature map is:

�(x) = [x(1)2, x(1)x(2), ..., x(3)2,
p

2cx(1),
p

2cx(2),
p

2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d � 2

k(x, z) = (xT
z+ c)d,
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Dual representation, Sec 6.2
Primal	problem: min

.
/(.)
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The kernel is K = >>G

Dual representation is : min
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Prediction
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7 M6N(96 , 9)



Dual representation, Sec 6.2

• Often a is sparse (… Support vector machines)
• We don’t need to know x or ! " . $%&' '() *)+,)-

. / = */ − ' 22+
3
2/

5*/

Prediction
6 = 75" = /58" = ∑:; <:":5" = ∑:; <:=(": , ")



Gaussian Kernels



Basic concepts

Can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.
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Lecture 10
Support Vector Machines

Non Bayesian!

Features:
• Kernel
• Sparse representations
• Large margins



Regularize for plausibility
• Which one is best?
• We maximize the margin

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29
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Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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Support Vector Machines
• The line that maximizes the minimum 

margin is a good bet.
– The model class of “hyper-planes with a margin m” 

has a low VC dimension if m is big.

• This maximum-margin separator is 
determined by a subset of the datapoints.
– Datapoints in this subset  are called 

“support vectors”.
– It is useful computationally if only few 

datapoints are support vectors, because 
the support vectors decide which side of 
the separator a test case is on.

The support vectors are 
indicated by the circles around 
them.



Lagrange multiplier (Bishop App E)
max $ % subject to . % = 0

Taylor	expansion
. 9 + ; = . 9 + <=∇ . 9

? %, A = $ % + A.(%)



Lagrange multiplier (Bishop App E)
max $ % subject to . % > 0

1 %, 3 = $ % + 3.(%)

Either ∇ f % = =
Then . % is	inactive,	3=0

Or . % = 0 but	3 >0

Thus optimizing 1 %, 3 with the 
Karesh-Kuhn-Trucker (KKT) 
equations

. % ≥ 0
3 ≥ 0

3. % = 0



Testing a linear SVM
• The separator is defined as the set of points for which:
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Large margin
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Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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the soft margin principle. Points with circles around them are support vectors. We also indicate the value
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Maximum margin (Bishop 7.1)

Lagrange function

Subject to

Differentiation

Dual representation

This can be solved with quadratic programming



Maximum margin (Bishop 7.1)
• KKT conditions

• Solving for an

• Prediction



If there is no separating plane…
• Use a bigger set of features.

– Makes the computation slow? “Kernel” trick 
makes the computation fast with many features.

• Extend definition of maximum margin to 
allow non-separating planes.
– Use “slack” variables
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SVM classification summarized--- Only kernels
• Minimize with respect to !,w0

$ ∑&' () + +
, ! 2 (Bishop 7.21)

• Solution found in dual domain with Lagrange multipliers
– .) , ) = 1⋯2 and 

• This gives the support vectors S

3! = ∑&∈5 .) 6)7(9)) (Bishop 7.8)

• Used for predictions

;< = w0 +!=7 9 = w0 +>
&∈5

.) 6)7 9) T7 9

= w0 +>
&∈5

.) 6)@ 9), 9 (Bishop 7.13)



SVM for regression
14.5. Support vector machines (SVMs) 497

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

L2

ε−insensitive

huber

(a)

x

y(x)

y − ϵ

y

y + ϵ

ξ∗ > 0

ξ > 0

(b)

Figure 14.10 (a) Illustration of ℓ2, Huber and ϵ-insensitive loss functions, where ϵ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the ϵ-tube used in SVM regression. Points above the tube have
ξi > 0 and ξ∗

i = 0. Points below the tube have ξi = 0 and ξ∗
i > 0. Points inside the tube have

ξi = ξ∗
i = 0. Based on Figure 7.7 of (Bishop 2006a).

originally designed for binary classification, but can be extended to regression and multi-class
classification as we explain below.
Note that SVMs are very unnatural from a probabilistic point of view. First, they encode

sparsity in the loss function rather than the prior. Second, they encode kernels by using an
algorithmic trick, rather than being an explicit part of the model. Finally, SVMs do not result in
probabilistic outputs, which causes various difficulties, especially in the multi-class classification
setting (see Section 14.5.2.4 for details).
It is possible to obtain sparse, probabilistic, multi-class kernel-based classifiers, which work as

well or better than SVMs, using techniques such as the L1VM or RVM, discussed in Section 14.3.2.
However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.
Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called

the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.
The corresponding objective function is usually written in the following form

J = C
N∑

i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (14.47)
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SVMs are Perceptrons!
• SVM’s use each training case, x, to define a feature K(x, .) 

where K is user chosen. 

– So the user designs the features.

• SVM do “feature selection” by picking support vectors, and 
learn feature weighting from a big optimization problem.

• =>SVM is a clever way to train a standard perceptron.

– What a perceptron cannot do, SVM cannot do. 

• SVM DOES:

– Margin maximization

– Kernel trick

– Sparse



SVM  Code for classification (libsvm)
Part of ocean acoustic data set http://noiselab.ucsd.edu/ECE285/SIO209Final.zip

case 'Classify'
% train

model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict

[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,'-q'); 

>> modelmodel =   struct with fields:   
Parameters: [5×1 double]     
nr_class: 2       
totalSV: 36           
rho: 8.3220         
Label: [2×1 double]    
sv_indices: [36×1 double]         
ProbA: []         ProbB: []           
nSV: [2×1 double]       
sv_coef: [36×1 double]           
SVs: [36×2 double]



libsvm
Basic concepts

Finding the Decision Function

w: maybe infinite variables
The dual problem

min
α

1

2
αTQα − e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

y
Tα = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 10 / 98

Corresponds to 
(Bishop 7.32)
With y=t

7.1. Maximum Margin Classifiers 333

where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w , b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w , b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0" an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive
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Tensorflow Playground
1. Fitting the spiral with default settings fail due to the small training set. The 

NN will fit to the training data which is not representative of the true pattern 
and the network will generalize poorly. Increasing the ratio of training to test 
data to 90% the NN finds the correct shape (1st image). 



Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows 
the small training set to generalize better as it reduce overfitting of the training 
data (2nd image).



Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly. 
Overfitting once again becomes a problem even after you've added noise. This 
can be fixed by adding appropriate L2 regularization (third image).



•NOT USED


