








Kernels

We might want to consider something more complicated than a linear model:

Example 1: [z, 2?)] — ® ([x(l),x(z)]) = [az<1)2,x(2)2,x(1)x(2)]

Information unchanged, but now we 1)
have a linear classifier on the T

transformed points.

With the kernel trick, we just need kernel Input Space Feature Space

k(a,b) = ®(a)’ ®(b)



Example 4:

k(x,z) = (x'z+¢) = <Z W 20) C) ( RPN c)
l

= z;;x —|—QCZZC
= i(az(') +Z N(V2c2D) +
j0=1

and in n = 3 dimensions, one possible feature map is:
d(x) = [x<1)2,:1:(1)x(2), o 292 V22 V202 20 c|

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.



Dual representation, Sec 6.2
Primal problem: min E(w)
w

1 A A
E=-Ya{w'x, — t,}2+ Zllwll* = [[Xw — t]|I3+ Z[lwl|?

Soluton w=X%'t=(X"X+Al,)" X"t
=XTXXT+ M) 1t =XT(K+ Aly) 1t=X"a

The kernel is K = XX7T

Dual representationis: min E(a)
a

1 A A
E = 3INW %, — ta}2+ 1wl = |[Ka - tl3+5a" Ka

Prediction

y=w'x =a"Xx =Y} apxpx = X)) ank(x,,x)



Dual representation, Sec 6.2
Prediction

y=wlx=a"Xx=YNa,xlx =YNa,k(x,,x)

« Often a is sparse (... Support vector machines)
 We don’t need to know x or ¢@(x).Just the Kernel

A
E(a) = ||Ka — tII%+EaTKa



Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp (— > (x —xN)T2 1(x— x’))

Diagonal X: (this gives ARD)
N 2
1 X; —X;
k(x,x’) = exp __z( l > l)
2 i 0;

Isotropic o7 gives an RBF

20°

x — x'||3
k(x,x") = exp (— | ”2)



Can be inner product in infinite dimensional space
Assume x € R and v > 0.

e_7H)<"_)<J'H2 — e_7(><i—><j)2 = e_'YX-2—|—2’YXin_7X-2

:e—vx,-z—wf(l 4 271XIIXJ 4 (27X/XJ) (27x,xj )

et o B P

(27)° 5 [(2)°
;! X; - ; Xj‘i""): (Xi) ij

_|_

where
-
b(x) = e [17 2y @02 5 [(29) 4 ] »

N o oV e




Sparse Bayesian Learning (SBL)
Model : vy = Ax+n
Prior : x ~ N(x;0,I") E = % + E

I' = diag(v1,...,7M)
Likelihood : p(y|x) = N(y; Ax, %I y)

Evidence : p(y) = /p(y|x)p(x)dx =N(y:0,%,)

x

¥, = ¢’y + ATA"

SBL solution : I' = arg max p(y)
r

= arg min {log |, |+ y"“Z; 'y}
r

M.E.Tipping, " Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research,
June 2001.




Lecture 10
Support Vector Machines

Non Bayesian!

Features:

* Kernel

* Sparse representations
« Large margins



Regularize for plausibility

* Which one is best?
* We maximize the margin




Regqularize for plausibility




Support Vector Machines

The line that maximizes the minimum
margin is a good bet.

— The model class of “hyper-planes with a margin m”
has a low VC dimension if m is big.

This maximum-margin separator is
determined by a subset of the datapoints.

— Datapoints in this subset are called
“support vectors”.

— It is useful computationally if only few
datapoints are support vectors, because
the support vectors decide which side of The support vectors are
the separator a test case is on. indicated by the circles around

them.




Lagrange multiplier (Bishop App E)
max(f (x)) subjectto g(x) =0

laylor expansion ea
gx+&) =gx)+€V g

L(x,4) = f(x) + Ag(x)




Lagrange multiplier (Bishop App E)

max(f(x)) subjectto g(x) > 0
L(x,A) = f(x)+1g(x) V()

XA

Either Vf(x) =0
Then g(x) is inactive, =0

Org(x) =0 butd >0

Thus optimizing L(x, A) with the
Karesh-Kuhn-Trucker (KKT)
equations

gx)=0
A=0
Ag(x) =0



Testing a linear SVM

* The separator is defined as the set of points for which:

wx+b=0
soif wx“+b>0 sayits a positive case

and if wx°+b<0 sayits a negative case

margin



y>0 =} Discriminant functions

y<0 R, The planar decision surface
In data-space for the simple

linear discriminant function:

W X+WO > ()

X on plane => y=0 => }Iw/l/} w'wy

Distance from plane  x/'= > ¥ r 7%//?

UJX =00 t -\ TN
Ve L W

rﬁn_bw_// -~ = e,
- ot 11%7/
2 X=Xt G + flvey,

v/,



y=w'¢px)+b

LW
X, — X Yo, —
R T

Large margin

y >0
y=20

y <0

max——mint
wo lwl[ T




Maximum margin (Bishop 7.1)

1 2 :
arg I?IHQHWH Subject to
w?
tn (W' p(x,) +b) 21, n=1,...,N. (7.5)
Lagrange function ., ;. — L w? - Zan [ (wT () + ) — 1) a7
: C N
Differentiation S et -
;1
Za tn (7.9)
Dual representation _
N N N
=> an— %Z > anamtntmk(xn, Xm) (7.10)
with respect to a subject to the constraints
an > 0, n=1,...,N, (7.11)
N
> ant, = 0. (7.12)

This can be solved with quadratic programming



Maximum margin (Bishop 7.1)
« KKT conditions

a, = 0 (7.14)
thy(xn) —1 = 0 (7.15)
an {t,y(x,) —1} = 0. (7.16)

either a,, = 0 or t,y(x,) = 1.

» Solving for a,

N
W= ) antnd(xn) (7.8)
n=1
 Prediction

N
y(x) = antnk(x,x,) +b. (7.13)

n=1



If there is no separating plane...

« Use a bigger set of features.

— Makes the computation slow? “Kernel” trick
makes the computation fast with many features.

« Extend definition of maximum margin to
allow non-separating planes.

— Use “slack” variables & —= |t — y(x,,)|

thy(x,) =1 — &, n=1,....N (7.20)

Objective function
CY &+ %Hwnz (7.21)




SVM classification summarized--- Only kernels
Minimize with respect to w, wy,

CENT,+= w2 (Bishop 7.21)

Solution found in dual domain with Lagrange multipliers
- a,,n=1--Nand
This gives the support vectors S
W=),.csa,t.@(xn) (Bishop 7.8)
Used for predictions

J=wy+wle(x) =w,+ 2 a,t,e(x,) 'e(x)

nes

= W, + 2 a t k(x,x) (Bishop 7.13)

nes



SVM for regression

= = = = c_jnsensitive
= === = huber

(a) (b)

Figure 14.10 (a) Illustration of £5, Huber and e-insensitive loss functions, where ¢ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the e-tube used in SVM regression. Points above the tube have
& > 0 and & = 0. Points below the tube have & = 0 and & > 0. Points inside the tube have
& = & = 0. Based on Figure 7.7 of (Bishop 2006a).



SVMs are Perceptrons!

SVM'’s use each training case, x, to define a feature K(x, .)
where K is user chosen.

— So the user designs the features.

SVM do “feature selection” by picking support vectors, and
learn feature weighting from a big optimization problem.

=>5SVM is a clever way to train a standard perceptron.
— What a perceptron cannot do, SVM cannot do.

SVM DOES:

— Margin maximization
— Kernel trick

— Sparse



SVM Code for classification (libsvm)
Part of ocean acoustic data set http://noiselab.ucsd.edu/ECE285/SI0209Final.zip
case 'Classify’
% train
model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict
[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,-q");

Radial Basis Function Kernel

>> modelmodel =  struct with fields:
Parameters: [5%1 double]
nr_class: 2
N ... o, R totalSV: 36
EEE A R Label: [2x1 double]
sv_indices: [36%x1 double]
- IR ProbA: ] ProbB: []
TR nSV: [2x1 double]
' " sv_coef: [36x1 double]
SVs: [36%2 double]



Finding the Decision Function libsvm

@ w: maybe infinite variables
@ The dual problem
: 1 7 T
min o Qa—e a Corresponds to

(8

subject to OTS Oi% Ci=1...,1 (BIShOp 732)
y =5 With y=t

where Q; = yiyio(x;) d(x;) and e =[1,...,1]"
@ At optimum

/
W — Zizl a;yip(x;)
@ A finite problem: #variables = #;craiging_da{;a .

Using these results to eliminate w, b, and {,, } from the Lagrangian, we obtain the
dual Lagrangian in the form

N N
~ 1
L(a) = an =3 Z Z A At tmk (X, Xm) (7.32)



X2

X2

Linear Kernel

Sigmoid Function Kernel

%@@@'°
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Radial Basis Function Kernel
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Tensorflow Playground

1. Fitting the spiral with default settings fail due to the small training set. The
NN will fit to the training data which is not representative of the true pattern
and the network will generalize poorly. Increasing the ratio of training to test
data to 90% the NN finds the correct shape (1stimage).




Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows
the small training set to generalize better as it reduce overfitting of the training
data (2nd image).




Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly.
Overfitting once again becomes a problem even after you've added noise. This
can be fixed by adding appropriate L2 regularization (third image).
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