Automated Analysis of Planktonic Image Data

Eric Orenstein

Guest lecture – ECE228/SIO209 April 25th, 2018

Automated Analysis of Planktonic Image Data

- i. Studying plankton
- ii. Scripps Plankton Camera system overview
- iii. Transfer learning and deep feature extraction for planktonic image data sets
 - Orenstein and Beijbom, *Applications of Computer Vision* (WACV), 2017 IEEE Winter Conference on.
- iv. High-temporal resolution *in situ* imaging reveals dynamics of copepod-parasite interaction

 Basis of marine food web

- Basis of marine food web
- Link atmosphere and deep ocean

- Basis of marine food web
- Link atmosphere and deep ocean
- Influence biogeochemical cycles

- What organisms live in the ocean?
- How many of them are there?
- What are they doing?
 - Changes over time?
 - Interactions?
- Difficult to answer due to technological limitations

Scripps Plankton Camera

Scripps Plankton Camera

Imaged Volume

SPC - Specifications

Property	Specification	X
Field of View	25 mm x 20 mm	1.0
Resolution	7.4 μm pixels 35 lp/mm @ 40 % contrast	
Depth of Field	400 µm @ 35 lp/mm @ 20 % contrast	Cala Cope Acar
Hi-Resolution Volume	0.2 mL per Frame	60
Blob-Detection Volume	10 mL Frame	alue 50
Data Rate	Up to 8 fps with ROI processing	85 40 30

SPC – Data Logging

SPC - Deployment

SPC - Deployment

SPC - Deployment

Fragile objects

Background – SPC

Fragile objects

0.1 mm

Background – SPC

spc.ucsd.edu

- Boost human annotation efforts with machine learning
- Test a variety of ML approaches
 - Random Forests (Blaschko et al., 2005)
 - Support Vector Machines (Sosik et al., 2007)
 - Convolutional Neural Networks (Orenstein et al., 2015)
- Goal: Test the effectiveness of out-ofdomain data for plankton classification

In Situ Ichthyoplankton Imaging System (ISIIS) Imaging FlowCytobot (IFCB) Scripps Plankton Camera (SPC)

5 mm

0.5 m

ISIIS

- Images organisms in *mm* size range
- 100s of millions unlabeled images
- 37000 labeled images, 37 classes

5 mm

IFCB

- Images organisms in 10s to 100s of um
- ~1 billion unlabeled images
- 96000 labeled images, 96 classes

SPC

- Images organisms from 100s um to cm
- ~800 million unlabeled images
- 4000 labeled images, 4 classes (as of 2015)

5 mm

ISIIS

- Images organisms in *mm* size range
- 100s of millions unlabeled images
 37000 labeled images, 37 classes

5 mm

IFCB

- Images organisms in 10s to 100s of um
- ~1 billion unlabeled images
- 96000 labeled images, 96 classes

SPC

- Images organisms from 100s um to cm
- ~800 million unlabeled images
- 4000 labeled images, 4 classes (as of 2015)

Machine learning

- Random forests
 - Ensemble classifier
 - Operates on 'hand-engineered' features
- Convolutional Neural Networks (CNNs)
 - Representation learning
 - Operates directly on raw data
- Both types require labeled data for training and evaluation

 $= [x_1, x_2, x_3, \dots, x_n]$

• Fine tuning

- Cut off top layers of a network and retrain
- Decreases training time, increases accuracy with small training set (Yosinski et al., 2014)
- Deep features
 - CNN weights used for margin or ensemble classifiers (Donahue et al., 2013)

Fine-tuning and feature extraction

- Deep nets based on AlexNet:
 - -2 from scratch with ISIIS and IFCB
 - 2 fine-tuned from ImageNet with ISIIS and IFCB
 - 2 double fine-tuned with both plankton datasets
 - ImageNet weights with no plankton data

Fine-tuning and feature extraction

- Random Forests:
 - Hand-engineered features
 - Deep features
 - Deep + hand-engineered features

Results

		ifcb	ImageNet ➔ ifcb	ImageNet ➔ isiis ➔ ifcb	isiis	ImageNet ➔ isiis	ImageNet ➔ isiis ➔ ifcb	ImageNet
	IFCB	0.78	0.86	0.86	-	-	-	-
	ISIIS	-	-	-	0.71	0.83	0.83	_

- Double fine-tuning had a slight positive effect on classifier accuracy
- Suggests that a machine classifier treats IFCB and ISIIS data sets as very similar

Results

		ifcb	ImageNet ➔ ifcb	ImageNet ➔ isiis ➔ ifcb	isiis	ImageNet ➔ isiis	ImageNet ➔ isiis ➔ ifcb	ImageNet
Deep feat	IFCB	-	-	-	0.65	0.77	-	0.81
	ISIIS	0.56	0.65	-	-	-	-	0.63
	SPC	0.57	0.69	0.67	0.52	0.65	0.65	0.71
Deep + Hand	IFCB	-	-	-	0.68	0.78	-	0.81
	ISIIS	0.65	0.70	-	-	-	-	0.66
	SPC	0.67	0.76	0.74	0.69	0.74	0.74	0.77

 Addition of hand-engineered features had slight positive effect

Results

- Demonstrated value of out-of-domain data
 - Weights from standard object detectors useful
 - Potential to combine ocean image data for more powerful models
- Further development needed for deployment on real data
 - Data—set shift: prior probability of classes changing with time (Moreno-Torres et al., 2012)

Thank you

Eric Orenstein e1orenst@ucsd.edu