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Abstract—This report presents results from training two mod-
els on three dataset based on the same training data but where
features are extracted differently. The aim with this project is to
gain a better understanding of these methods and techniques
and compare the results of the different model and feature
combinations. The models used for classifying is Support Vector
Machine (SVM) and Random Forest (RF). Feature extraction
methods include Principal Component Analysis (PCA), custom
features based on color and shape and lastly Discrete Fourier
Transform (DFT) together with PCA. The final accuracies ranges
from 80%-97%.

Index Terms—fruit recognition, fruit detection, machine learn-
ing

I. INTRODUCTION

During the last few years, image recognition and machine
learning have become sophisticated and mature to the extent
of being implemented in every day commercial devices such
as smartphones. With applications and services aiming to
recognize a wide array of different objects, there follows a
need of training algorithms on wide varieties of different sets
of objects.

A dataset of 28736 images was used to train established
and well-understood algorithms with the aim of classifying
each image to one of the 60 predetermined classes (fruits) and
compare the accuracy of such predictions to results obtained
with more sophisticated deep learning methods from previous
work. RGB values in the images was used to extract three
features sets. The first set was obtained from Principal Com-
ponent Analysis (PCA) where 24 components were selected,
the second set consisted of nine custom features derived from
the two physical attributes color and shape, and the third set
consisted of a two-dimensional Discrete Fourier Transform of
the images followed by PCA. We then use Support Vector
Machine (SVM) and Random Forest (RF) implemented in the
Scikit library on each of the three sets to train in total six
different models and obtain accuracies ranging from 80-97%.

II. RELATED WORK

We draw inspiration from work presented in this paper [3]
where a convolutional neural network with multiple layers
including but not limited to convolutional, pooling and ReLU
layers, was used to train a predictive algorithm on the same
dataset as used in this paper. The final accuracy achieved by
the model is 96.3%.

A purely statistical approach based on color and texture
information has been explored to classify fruits, this paper
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[4] presents a method were 13 color and textured features
are derived from the dataset and empirical statistical measures
based on moments are derived. Minimum distance criterion
are used to classify fruits and accuracies achieved on features
solely based on either color or texture are concentrated to
the ranges of 30-60% and 60-80% respectively. Combined
together the algorithm achieves consistent results of around
90% on different classes.

A similar approach to ours has also been investigated and
presented in this paper [6]. The pre-processing stage consists
of simply resizing images to 90 x 90 pixels. Two sets of
training sets based on two different feature extraction tech-
niques were created. First set is extracted with color features
based on statistical moments and shape features based on
Centroid, Eccentricity and Euler Number. Second set uses The
Scale Invariant Transfom (SIFT) to extract features. K-nearest
neighborhood (KNN) and support vector machine (SVM)
algorithms are run on the two datasets to achieve accuracies
ranging from 85-100% depending on traning set and algorithm
combinations.

Another report [5] investigating KNN algorithm perfor-
mance based on color, shape and size features reported ac-
curacy up to 90%

III. DATASET AND FEATURES

The dataset consisted of 38409 images of fruits and was
taken from Kaggle [3]. The training set consisted of 28736
images while the validation set consisted of 9673 images. All
images were 100 x 100 pixels and has white background.
The fruits were filmed while rotating around a fixed axis for
either two or three different axises per fruit. Then the training
set and validation set were obtained by randomly splitting
all the images into a set with 3/4 of the images being in the
training set and 1/4 being in the validation set.

The dataset consisted of fruits from 60 different classes, and
the training set contained around 500 images from every
class. Four fruits from different classes can be seen in figure
1 below, the classes are specified in the figure text.
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Fig. 1. A visualization of images from the training set from four different
classes (from left, Apple Red 3°, Banana’, *Huckleberry’ and ’Papaya’).

For every class pictures were taken of the fruit from dif-
ferent angles. Four different images of the same class (" Apple
red 3’) is visualized in figure 2 below.
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Fig. 2. A visualization of four images from the training set from the class
’Apple Red 3’. This figure shows four images taken from different angels of
the same fruit.

The validation set consisted of images that were very similar
to the ones in the training set. In figure 3 below, instances
of the classes shown in figure 1 have been taken from the
validation set to visualize the similarity between the training
set and the validation set.
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Fig. 3. A visualization of images from the validation set from four different
classes (from left, Apple Red 3’, 'Banana’, 'Huckleberry’ and ’Papaya’).
Compare with figure 1.

IV. METHOD
Data Preprocessing

Because of the dataset coming from a relatively controlled
environment, limited pre-processing was needed. Using the
openCV library in Python, all images were rescaled to 45 x 45
pixels and the RGB pixel values in each image transformed
into a flattened vector.

Feature extraction

Three different sets of features were created using Principal
Component Analysis (PCA), custom feature extraction directly
from the image and Fourier transform with PCA. The first
technique involved projecting the data into a lower dimen-
sional subspace using PCA, the second technique involved
creating nine features based on color and shape and lastly
the third technique was transforming each color channel into
frequency space followed by performing PCA on the new
image.

Methods used

Implementations of Support Vector Machine (SVM) and

Random Forest (RF) in the SciKit library were used to train

the fruit classifier. This section briefly explain the underlying
theory of the methods used, including PCA and DFT.

A. Principal Component Analysis

PCA is often used to either increase the computability of
a dataset or mitigate the so called “curse of dimensionality”
when working with datasets in higher dimensions. The process
involves finding principal components that are orthogonal to
each other and accounts for as much variability as possible,
i.e. explains as much of the variance in the dataset as possible.
This is the same thing as finding orthogonal eigenvectors
with the largest eigenvalues to the covariance matrix of the
data. To gain even more intuition about the process, one
can imagine the process of fitting an ellipsoid of the same
dimensionality as the data where the axises represent the
principal components. A longer axis implies a component that
explains the variability more than a shorter axis. These axis
are later normalized to unit vectors and forms a new lower
dimension coordinate system where the data are projected to.
Mathematically, the processes of finding principal components
reduces to the optimization problem seen in equation 1 below

[1].
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Where T dentoes the mean of the data, S the covariance matrix
and wu; the variable to be maximized. It is a so called greedy
algorithm where it seeks to maximize the next component
in the iteration. That is, it does not necessarily maximize
explained variability for a given number of components.
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Fig. 4. Illustration of data points projected down on one component. Figure
from p. 561, Bishop, M. (2006) Pattern Recognition and Machine Learning.
Springer. [1]

B. 2D Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a transforma-
tion in which a complex sequence X = {zg,21,....,ZN—1}
is transformed into another complex sequence X' =
{z}, 2}, ...,2%y_, } according to:
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In practical terms, the DFT decomposes a complex sequence
into a new sequence of the same size where each element in
the new sequence corresponds a frequency, with its magnitude
indicates its contribution toward the original sequence.

The DFT can be naturally extended to 2D-dimensional data
(e.g. images) where we use similar notation with the exception
that elements of X and X’ are now indexed by tuples and are
assumed to be of size M x N.
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This form allows us to decompose any image into its
frequency components, where each such component has a
direction and frequency.

C. Custom features

The nine features that were extracted manually from the
image were the mean and variance of selected RGB channels
in the image (six features) as well as three features derived
from the shape of the fruit.

The color features only took into consideration pixel values
which were deemed not to be white, so as not to have the
background impact the features. The idea behind extracting the
mean RGB values is quite intuitive: a banana and a strawberry
most certainly differ in color and generally color is a means
of differentiating fruit. By also including the variance one can
also take into consideration how uniform the color of the fruit
is in each RGB component, which also should supply a means
to differentiating fruit.

The shape features were extracted by first finding the biggest
connecting component after having binarized the picture and
then to calculate different measures for this component. Useful
measures were properties of an ellipse fitted to the component
and the component’s area. The shape features that were
ultimately extracted were:

1) the ratio of the minor and major axis of a fitted ellipse

2) the ratio of the area of the component and a fitted ellipse

3) the ratio of the area and the circumference of the
connected component

D. Support Vector Machine

SVM is a non-probabilistic approach to classify data by
maximizing the distance to the boundary from the nearest data
point in each class. SVM is inherently a binary classifier but
can be extended and generalized into a multi class classifier.
We briefly discuss the theory for the binary case.

In order to partition the space where the data lies in, the
data has to be linearly separable. Often, this is not the case,
there are two common remedies to the problem. The first one
involves projecting the data to a higher dimensional space
where the data might be linearly separable. This is often done
in practice with the so called “’kernel trick” where the data are
implicitly mapped to higher dimension space using a suitable
kernel function.

Since data is rarely perfectly linear separable even in higher
dimension, a soft margin is usually used in practice where a
regularizing parameter is added to the objective function to
allows some leeway for misclassification. The tuning of the
regularizing parameter involves the usual bias-variance trade-
off optimization. Letting y; = sign(wx; — b), w, b, denoting
parameters for the separating hyperplane and A denoting the
regularizing parameter the error function can be written as[1]:
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E. Random Forest

The Random Forest algorithm involves a procedure where
decision or regression trees are fitted to a randomly chosen
subset of the training set, a process that is often called
tree bagging. The Random Forest algorithm adds a second
stochastic element in the algorithm where not only a training
subset is selected randomly but also a subset of the features
are selected in each tree iteration.

The main reason that warrants this technique is the tendency
to overfit the models to the data, this is especially true for deep
trees. The two stochastic elements in the procedure alleviates
the overfitting, i.e. reduces the variance to a relatively small
bias increase.

The optimal number of trees can be found by e.g. cross
validation and the final prediction of the model can be given
by either taking the mean of the predictions made by the
individual trees or by simple majority vote.

V. RESULTS

A. Principal Component Analysis (PCA)

By iteratively testing it was found that the optimal number
of components for the PCA was 24. This number was found
by testing systematically, so a slight increase or decrease in
the number of components would make the results worse.

In figure 5 below one can see how what proportion of
the variance that each of the principal components explains.
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Fig. 5. A visualization of how much of the total variance each of the top
24 principal components explain. All together these principal components
explained 74.4% of the total variance.

The top 4 principal components are visualized in figure 6
below and how much variance each of these explains can be
seen in figure 5 above.
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Fig. 6. A visualization of the top four (from left to right) principal components
extracted from the training set.

Other, non-top, components are visualized in figure 7 below.
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Fig. 7. A visualization of four principal components extracted from the
training set. The components in this figure are the ones explaining (from
left to right) the 9th, 10th, 14th and 20th most of the variance.

Even though not all the top 24 principal components are
visualized in figures 6 and 7 it is worth to mention that all the
principal components that were extracted from the training set
are more or less symmetric. The components all have a round
shape and the color of the top components differ while the
last of the top 24 components look like the rightmost one in
figure 7 above.

B. Custom features

The results of the classifiers when using the custom features
can be seen in tables I for SVM and III for RF. The accuracy
when testing on the validation data was 91.39% for the SVM
classifier and 93.46% for the RF classifier.

C. 2D DFT

The results of the classifiers when using the the 2D DFT
and PCA can be seen in tables I for SVM and III for RF. The

accuracy when running on the validation data was 81.97% for
the SVM classifier and 80.13% for the RF classifier.

D. Support Vector Machine (SVM)

The accuracies of the SVM classifier for the different
preprocessing methods are stated in table I below.

TABLE I
A SUMMARY OF THE ACCURACIES OF THE SVM CLASSIFIER FOR THE
DIFFERENT ALGORITHMS, CF STANDS FOR CUSTOM FEATURES.

| Training set  Validation set

PCA SVM accuracy (%) 100.0 96.73
CF SVM accuracy (%) 94.19 91.39
DFT+PCA SVM accuracy (%) 99.59 81.97

The SVM classifier gave an accuracy of 96.73% on the
validation set when using PCA and a perfect accuracy on the
training set. This accuracy was obtained with a linear kernel,
since it was the kernel that gave the best results. The confusion
matrix of this classifier can be seen in figure 8 below.
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Fig. 8. The confusion matrix that is summarizing the results of the SVM
classifier on the validation set.

The worst performing classes of the SVM classifier are
summarized in table II below.



TABLE II
SUMMARY OF THE WORST PERFORMING CLASSES FOR THE SVM
CLASSIFIER ON THE VALIDATION SET WITH THE DIFFERENT
PREPROCESSING METHODS. THE ERROR FOR A CLASS IS HERE DEFINED
AS THE PERCENTAGE OF WRONG CLASSIFIED INSTANCES OF THE
PARTICULAR CLASS. ALL THE NUMBERS ARE SHOWN IN PERCENTAGES.

Class PCA Error | CF Error | FFT Error | Avg Error
Apple Braeburn 37.8 34.8 28.7 337
Pomegranate 0.0 100.0 1.2 33.7
Peach Flat 8.5 66.5 23.8 329
Pear 18.3 29.9 415 29.9
Pear Monster 12.7 16.9 44.0 245
Pepino 0.0 28.9 42.8 239
Nectarine 6.7 19.5 40.9 224
Peach 0.0 47.0 12.2 19.7
Apple Red 2 3.0 329 22.6 19.5
Banana Red 0.0 15.7 39.8 18.5

The four instances of the classes in table II above are
visualized in figure 9 below.
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Fig. 9. A visualization of fruits corresponding to the eight worst performing
classes of the SVM classifier with the PCA processing. From left: *Apple
Braeburn’, *Strawberry’, ’Banana’ and ’Apple Golden 1°.

E. Random Forest

The accuracies of the random forest classifier are stated in
table III below for both the training set and the validation set.

TABLE III
A SUMMARY OF THE ACCURACIES OF THE RF CLASSIFIER FOR THE
DIFFERENT ALGORITHMS, CF STANDS FOR CUSTOM FEATURES.

| Training set  Validation set
PCA RF accuracy (%) 100.0 91.73
CF RF accuracy (%) 100.0 93.46
FFT RF accuracy (%) 100.0 80.13

The RF classifier with PCA resulted in an 91.7% accuracy
on the validation set, while this classifier with the custom
features achieved an accuracy of 93.5%. The confusion matrix
visualized in figure 10 below shows how the RF classifier
(PCA) preformed on the validation set.

Predicted

Fig. 10. The confusion matrix that is summarizing the results of the RF
classifier (PCA) on the validation set.

Table IV below summarizes the worst classes of the Random
Forest classifier.

TABLE IV
SUMMARY OF THE WORST PERFORMING CLASSES FOR THE RF
CLASSIFIER ON THE VALIDATION SET. THE ERROR FOR A CLASS IS
DEFINED AS THE PERCENTAGE OF WRONG CLASSIFIED INSTANCES OF THE
PARTICULAR CLASS.

Class PCA Error | CF Error | FFT Error | Avg Error
Apple Red 1 38.4 12.8 59.8 37.0
Nectarine 37.2 329 39.6 36.6
Pear 34.1 232 37.8 31.7
Pepino 27.7 27.1 36.7 30.5
Apple Braeburn 31.7 26.2 31.1 29.7
Pear Monster 235 21.7 33.7 26.3
Pear Abate 14.5 16.3 452 253
Banana Red 38.0 0.6 36.1 249
Apple Red 3 29.2 9.7 29.9 229
Pomegranate 7.3 329 25.6 22.0

Instances of the four classes for the random forest classifier
with the PCA processing are visualized in figure 11 below.

Fig. 11. A visualization of fruits corresponding to the four worst performing
classes of the RF classifier with the PCA processing. From left: *Nectarine’,
’Pear’, ’Banana Red’ and ’Apple Braeburn’.

VI. DISCUSSION
A. Principal Component Analysis

By looking at figures 5 and 6 one can conclude that roughly
a quarter of the variance is explained by a principal component
that is red and round. This suggests a preponderance of these
types of fruit in the dataset.



The accuracy of the support vector machine was 96.73% and
better than expected. A linear kernel was used which means
that the classes are close to being linearly separable. We had a
big issue with the SVM classifier and throughout most of the
project only a 45% accuracy was achieved. The reason for the
poor accuracy was the kernel that was used. First we used the
rbf kernel and changing this to a polynomial kernel increased
the accuracy to over 90% immediately. By modifying the
number of principal components we could finally achieve the
final accuracy of 96.73% which was the best accuracy obtained
by any classifier.

With the random forest classifier we could not obtain a
better accuracy than 91.73% for validation set when using
PCA.

B. Custom Features

The custom features appear to work quite well for both
classifiers. Some intuition why this could be is that the first
and second moment of the RGB channels along with a few
key numbers on the shape of the fruit ought to be sufficient for
distinguishing different fruits in all but the most pathological
cases.

The SVM performs considerably worse in comparison with
the SVM on just the PCA set of features as can be seen in
table I. The reason is most likely that the custom features are
not linearly separable, as the training set error implies. This
is not unexpected as the custom features are fewer than the
ones derived from PCA and very likely does not capture all
distinguishing components from that set of features.

The Random Forest outperforms on this set in comparison
to the others, as can be seen in table III. It is harder to explain
why this ought to be the case but a possible reason could be
that each of the individual components explain more variance
(although they are correlated) and subsequently each split in
the decision tree ought to have greater significance.

C. 2D DFT

This set of features performed the worst for both classifiers.
The idea behind choosing it originally was that the 2D DFT
preserves the original data (up to numerics) hence running it
before running the PCA would yield another set of features.
This set would possibly account for textures and patterns in
the fruit as they exhibit periodicity, but the results are clear:
it performed badly.

One of the reasons why this set performs the worst is that
the background can be better dealt with by just using the
PCA. When performing the FFT, the background gets added
up between multiple frequencies (especially the lower ones)
and these frequencies might encode e.g. mean colors, hence
they still need to be used. However, when using just the PCA,
the background is implicitly handled since the background is
assigned to specific pixel values and thus remains in largely
the same area over all pictures (for this specific dataset).

Another reason is that the 2D DFT is performed on a 45x45
pixel image, which might be too small to have the frequency
components correspond to any real patterns.

Two ways of counteracting these negatives would be higher
resolution images and a high-pass filter. Higher resolution
images would naturally result in that patterns would be more
easily distinguished and hence more prevalent in the frequency
decomposition. The high-pass filter would mean that we ignore
the lower frequencies corresponding to the background and
the mean fruit color. The loss of the mean fruit color would
however be compensated for given adequately high resolution
such that texture is revealed, hence it would probably be a
net-positive effect.

D. Worst Performing Classes

One can deduct from tables II and IV that the worst
classified fruit are mostly red and round or green and oval.
This is because a lot of classes have these properties, thus it
is naturally hard to distinguish between these.

One can see in the figure 9 that bananas are poorly classified
when using the SVM with PCA, but there is no other fruit with
the same color and shape as the banana. The reason for the
bad classifying is instead how the set of images were split
into the training set and validation set. In one filming of the
banana 327 images were extracted and 23 consecutive images
of these happened to end up in the validation set. Events like
these will cause bad classifying since there is no image in the
training set looking very similar.

This event has been illustrated in figure 1 that is visualizing
fruits from the training set and 3 that is visualizing fruits from
the validation set. One can see that for the apple, huckleberry
and papaya the images looks identical but for the banana it is
a big difference.

This particular event for classes might cause them being
poorly classified, and it shows a flaw in the dataset. Two
consecutive pictures in one filming looks almost identical and
for the most part there are images in the training set that looks
identical to the ones in the dataset. This is most likely the
reason why the simple classification methods that are used
works so well. To mitigate this, one could augment the training
set with flips in the particular case of such an asymmetric fruit
as the banana to improve the probability of it being observed
from all angles.

VII. FUTURE WORK

In this section it will be suggested how one could proceed
if continuing working on the project for an extended period
of time.

Linear Discriminant Analysis (LDA) is a method to extract
features with the focus to model the difference between classes
which is not modeled by the PCA [2]. To implement LDA
would not be very time consuming and there is a possibility
that better results can be achieved by this substitution.

To make this project more applicable to use, an interesting
new path one can make to the project is to try to recognize
fruit in real world pictures. That is in pictures which does
not contain only a certain fruit and also not only a white
background.
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