

UCSD ECE 228

1

Ships Identification in Satellite Images

Using Machine Learning Techniques

Weilun Zhang Zhaoliang Zheng Mingchen Mao

 (A53239629) (A53254665) (A53248197)

 wez242@eng.ucsd.edu zhz503@neg.ucsd.edu m8mao@ucsd.edu

Abstract

Satellite imagery provides unique and

important insights in many aspects of our daily

life. As a result, there is a need for machine

learning algorithms to help automate the

satellite image analysis process, which can be

applied to issues such as monitoring port

activity and supply chain analysis. In this

project, we investigated different machine

learning algorithms and their effects associated

with corresponding data processing techniques.

Our results indicated that the Convolutional

Neural Network algorithm, with a Stochastic

Gradient Descent optimizer, provides the best

performance among various algorithms. Our

results also revealed the fact that using more

training data is not always the wisest choice,

especially when an overfitting issue is very likely

to happen.

1. Introduction

1.1. Background

Satellite imagery provides unique insights

into various markets, including agriculture,

defense, intelligence, energy, and finance. New

commercial imagery providers, such as Planet

and Black Sky, are using constellations of small

satellites to exponentially increase the amount of

images of the earth captured every day. This

flood of new imagery is outgrowing the ability

for organizations and individuals to manually

look at each image that gotten captured, and

there is a need for machine learning and

computer vision algorithms to help automate the

analysis process. Automating this process can be

applied to many issues including monitoring

port activity levels and supply chain analysis.

1.2. Data

The dataset used for our training purpose

consists of cropped images extracted from planet

satellite imagery collected over the San

Francisco Bay area. Totally 3600 80x80 RGB

images are included in this dataset, 900 of them

were labeled as “ship” while the rest are labeled

as “no-ship”, which were used as disturbances

and counterparts to examine our accuracy later

for our proposed algorithms.

Each of these 3600 images is stored as a list

of 19200 integers, which represent the color

information in the classical 0 to 255 scale. The

RGB channels are evenly distributed in this list.

The first 1/3 integers represent the red channel,

the last 1/3 integers represent the blue channel

and the rest are representations of the green

channel.

Figure 1. Samples of images with label “ship”

Ships of different sizes, orientations, and

atmospheric collection conditions are included

in our dataset, which reflect the real imagery of

satellite images.

UCSD ECE 228

2

While images that are labeled “no-ship” are

more diverse, which mainly fall into 3

categories.

● Images of land cover features - water,

vegetation, bare earth, buildings, etc.

● Images of incomplete ships which

should be obviously identified to not fall

into the “ship” class.

● Images of previously mislabeled

models, which are typically caused by

bright pixels or strong linear features

Figure 2. Samples of images with label “no-ship”

1.3. Data preprocessing

Data preprocessing includes the following steps:

● Reshape data

● Normalize data

● Shuffle all indexes

● Output encoding

● Separate row pictures into 3 channels

Figure 3. Sample picture displayed in RGB form

2. Mathematical Methods

2.1. Algorithm

2.1.1. KNN (K Nearest Neighbors)

The KNN classifier is a non-parametric,

instance-based supervised learning algorithm. In

classification problems, the K-nearest neighbor

algorithm essentially play a role in forming a

majority vote between the K most similar

instances to a given “unseen” observation.

Similarity is defined according to a distance

metric between two data points. Euclidean

distance is popular in deciding whether an

unseen observation is a neighbour of the given

point while Manhattan, Chebyshev and

Hamming distance can also be used.

𝒅(𝒙, 𝒙′) = √(𝒙𝟏 − 𝒙𝟏′)
𝟐 + … + (𝒙𝒏 − 𝒙𝒏′)

𝟐

It runs through the whole dataset

computing d between the given point x and each

training observation. We’ll call the K points in

the training data that are closest to x the set S. It

then estimates the conditional probability for

each class. Finally, our input x gets assigned to

the class with the largest probability.

𝑃(𝑦 = 𝑗| 𝑋 = 𝑥) =
1

𝐾
∑ 𝐼(𝑦(𝑖) = 𝑗)

𝑖∈𝐴

Figure 4. Chart representation of K-neighborhood

algorithm

2.1.2. Random Forest

Random forest is a popular machine

learning algorithm that is typically used for

classification and regression. A random forest

classifier consists of multiple decision trees

trained by different batches of the provided

training data. In particular, the random forest

UCSD ECE 228

3

trees tend to overfit their training sets. However,

random forest averages multiple decision trees

to reduce the variance and thus preventing our

training from overfitting.

Figure 5. Illustration of a random forest tree

Bootstrap aggregating or bagging is the

fundamental technique of the random forest

training algorithm. A typical bootstrap process is

as follow:

𝐶𝑏(𝑥) = arg (𝑥) max {𝐶(𝑆𝑘 , 𝑥)}𝑚:1→𝑀

Where 𝐶𝑏(𝑥) represents the bagged

classification, S is the training set, and x is the

predicted value from our training set. M random

training subsets are extracted from the training

set and bootstrapped. Again, such randomness

can help reduce the variance and overfitting.

2.1.3 Support Vector Machine

A Support Vector Machine (SVM) is a

discriminative classifier formally defined by a

separating hyperplane. The algorithm gives an

optimal hyperplane that can categorized new

examples.

2.1.3.1 Maximal-Margin Classifier

The Maximal-Margin Classifier is a

hypothetical classifier that best explains how

SVM works in practice and this is why we will

introduce this method first. In SVM, a

hyperplane is selected to best separate the points

in the input variable space by their class, either

class 0 or class 1. In two-dimensions you can

visualize this as a line and let’s assume that all

of our input points can be completely separated

by this line. An straightforward example would

be:

𝑏0 + (𝑤1 ∗ 𝑋1) + (𝑤2 ∗ 𝑋2) = 0

Where the coefficients (w1 and w2) that

determine the slope of the line and the intercept

(b0) are found by the learning algorithm, and X1

and X2 are the two input variables. By plugging

in input values into the line equation, we can

calculate whether a new point is above or below

the line. Above the line, the equation returns a

value greater than 0 and the point belongs to the

first class (class 0). A value close to the line

returns a value close to zero and the point may

be difficult to classify. The distance between the

line and the closest data points is referred to as

the margin. The best or optimal line that can

separate the two classes is the line that as the

largest margin.

Figure 6. Fundamentals of support vector machine

2.1.3.2 Soft Margin Classifier

The maximal margin method is too ideal to

deal with complex data in realize so a soft

margin classifier is introduced. The constraint of

UCSD ECE 228

4

maximizing the margin of the line that separates

the classes is relaxed in this algorithm. This

change allows some points in the training data to

violate the hyperplane. A tuning parameter is

introduced called simply C that defines the

magnitude of the wiggle allowed across all

dimensions.

Figure 7. Typical soft margin classifier

2.1.3.3 Linear Kernel SVM

The SVM algorithm is implemented in

practice using a kernel. A powerful insight is

that the linear SVM can be rephrased using the

inner product of any two given observations,

rather than the observations themselves. The

inner product between two vectors is the sum of

the multiplication of each pair of input values.

The equation for making a prediction for a new

input using the dot product between the input (x)

and each support vector (xi) is calculated as

follows:

𝑓(𝑥) = 𝑏0 + 𝑠𝑢𝑚(𝑎𝑖 ∗ (𝑥, 𝑥𝑖))

This is an equation that involves calculating

the inner products of a new input vector (x) with

all support vectors in training data. The

coefficients b0 and ai (for each input) must be

estimated from the training data by the learning

algorithm. The dot-product is called the kernel

and can be re-written as:

𝐾(𝑥, 𝑥𝑖) = 𝑠𝑢𝑚(𝑥 ∗ 𝑥𝑖)

2.1.4 Convolution Neural Network (CNN)

2.1.4.1 Neural Network Model

A neural network is put together by

hooking together many of the simple “neurons,”

so that the output of a neuron can be the input of

another. Taking the figure below as an example,

we will explain here the framework of Neural

Network.

Figure 8. A layer representation of CNN

Our neural network has parameters:

(𝑊, 𝑏) = (𝑊1, 𝑊2, 𝑏1, 𝑏2)

Where 𝑊𝑖𝑗
(𝑙)

 denotes the parameter

associated with the connection between unit j in

layer l, and unit i in layer l+1. Also, 𝑏𝑖
(𝑙)

 is the

bias associated with unit 𝑖 in layer 𝑙 + 1. We

will write a𝑖
(𝑙)

 to denote the activation of unit 𝑖

in layer 𝑗. Given a fixed setting of the

parameters𝑊, 𝑏, our neural network defines a

hypothesis ℎ𝑊,𝑏(𝑥)that outputs a real number.

Specifically, the computation that this neural

network represents is given by:

𝑎1

(2)
= 𝑓 (𝑊11

(1)
𝑥1 + 𝑊12

(1)
𝑥2 + 𝑊13

(1)
𝑥3 + 𝑏1

(1)
)

𝑎2

(2)
= 𝑓 (𝑊21

(1)
𝑥1 + 𝑊22

(1)
𝑥2 + 𝑊23

(1)
𝑥3 + 𝑏2

(1)
)

𝑎3

(2)
= 𝑓 (𝑊31

(1)
𝑥1 + 𝑊32

(1)
𝑥2 + 𝑊33

(1)
𝑥3 + 𝑏3

(1)
)

ℎ𝑊,𝑏(𝑥) = 𝑓 (𝑊11

(2)
𝑎1

(2)
+ 𝑊12

(2)
𝑎2

(2)
+ 𝑊13

(1)
𝑎3

(2)

+ 𝑏1

(2)
)

2.1.4.2 Backpropagation Algorithm

UCSD ECE 228

5

We can train our neural network using

batch gradient descent. In detail, for a single

training example (𝑥, 𝑦), we define the cost

function with respect to that single example to

be:

𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

2
‖ℎ𝑤,𝑏(𝑥) − 𝑦‖

2

We can then define the overall cost function to

be:

𝐽(𝑊, 𝑏) = [
1

𝑚
∑(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))

𝑚

𝑖=1

]

+
𝜆

2
∑ ∙

𝑚−1

𝑙=1

∑∙

𝑠𝑙

𝑖=1

∑∙

𝑠𝑙+1

𝑗=1

(𝑊𝑗𝑖
(𝑙)

)
2

The first term in the definition of 𝐽(𝑊, 𝑏) is

an average sum-of-squares error term. The

second term is a regularization term that tends to

decrease the magnitude of the weights and helps

prevent overfitting. Then the backpropagation

algorithm is give below. First perform a

feedforward pass, computing the activations for

layers 𝐿2, 𝐿3, and so on up to the output layer

𝐿𝑛𝑏
. For each output layer unit 𝑖 in layer 𝑛𝑏, set:

𝑦𝑖
𝑛𝑙 =

𝜕

𝜕𝑧𝑖
(𝑛𝑙)

1

2
||𝑦 − ℎ𝑊,𝑏(𝑥)||

2

= − (𝑦𝑏 − 𝑎𝑖
(𝑛𝑏)

) ⋅ 𝑓 ′ (𝑧𝑖
(𝑛𝑙)

)

For each node 𝑖in layer 𝑙,set

𝑦𝑏
(𝑙)

= (∑

𝑠𝑙+1

𝑗=1

𝑊𝑗𝑖
(𝑙)

𝛿𝑗
(𝑙+1)

) 𝑓 ′ (𝑧𝑖
(𝑙)

)

Compute the desired partial derivatives, which

are given as:

𝜕

𝜕𝑊𝑖𝑗
𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝑎𝑗

(𝑙)
𝛿𝑖

(𝑙+1)

𝜕

𝜕𝑏𝑖
𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿𝑖

(𝑙+1)

To train our neural network, we can now

repeatedly take steps of gradient descent to

reduce our cost function 𝐽(𝑊, 𝑏).

CNNs, like neural networks, are made up of

neurons with learnable weights and biases. Each

neuron receives several inputs, takes a weighted

sum over them, pass it through an activation

function and responds with an output. The whole

network has a loss function and all the tips and

tricks that we developed for neural networks still

apply on CNNs.

Figure 9. How CNN method proceeds

2.1.4.3. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a

commonly used optimization algorithm. It

straightforwardly adopted the purpose of

minimizing an objective function that has a form

of sums. A random batch is selected for each

iteration, namely stochasticly, under which the

objective function will be minimized through

each iteration.

𝑤𝑛𝑒𝑤 = 𝑤 − 𝜂𝛻𝑄(𝑤)

2.1.5. Other Algorithms

Except for the algorithms mentioned above,

we also tested 6 other algorithms with less

significance.

• Gaussian Naive Bayesian Classifier

(GNB)

𝑝(𝑥 = 𝑣|𝐶𝑘) =
1

√2𝜋𝜎𝑘
2

𝑒
−

(𝑣−𝜇𝑘)2

2𝜎𝑘
2

• Lagrangian Support Vector Machine

(LSVM)

UCSD ECE 228

6

• Decision Tree Classifier (DTC)

• Entropy: 𝐸(𝑆) = ∑ ℎ𝑐
𝑖=1 − 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

• Linear Regression (LR)

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖

• Gaussian Bayes Classifier (GBC)

𝑝(𝑦 = 𝑖|𝑥)

=

1

(2𝜋)
𝑚
2 |𝑆𝑖|

1
2

𝑒−0.5(𝑥𝑘−𝜇𝑖)𝑇𝑆𝑖(𝑥𝑘−𝜇𝑖)𝑝𝑖

𝑝(𝑥)

• XGBoost (XGB)

• More details see reference 4.

2.2. Accuracy and Cross Validation

2.2.1 K-Fold Cross Validation

K-fold cross validation is a method that is

widely used in machine learning validation

problems. While performing K-fold cross

validation, the dataset is firstly partitioned into

K subsets. Then perform K iterations such that

each subset is used as validation set while the

others are used as training sets. Train the

machine learning model using the cross-

validation training set and calculate the accuracy

of your model by validating the predicted results

against the validation set. Finally, estimate the

accuracy of the machine learning model by

averaging the accuracies derived in all the k

cases of cross validation.

Figure 10. K-fold cross-validation

2.3. Hyper-tuning on parameters

In these algorithms, there are lots of parameters

we could change in it, and in fact, some of these

parameters could make a great impact on the

result. We call the process of tuning these

parameters as hyper-tuning.

For simple algorithm like logistic regression,

Gaussian naïve Bayes, support vector machine,

there are no much parameters that need to be

tuned. But for XGB, random forest tree, there

are lots of parameters which need to be tuned.

Take random forest as an example, there are 4

parameters need to be adjusted: max_features,

max_depth, samples_leaf, min_samples_split.

Figure 11. hyper -parameters in random tree

After hyper-tuning, the result usually will

increase 1-2%, but this process would normally

take a lot time to finish.

3.Result Analysis

Basically, two categories of tests were

conducted to investigate the ability of proposed

models in terms of classifying pre-cropped and

labeled images (small size) and raw images

(large size) taken from satellites respectively.

The small image tests were mainly aimed to

examine the effectiveness of our data pre-

processing techniques and the accuracy our

various models. As a reference for the big image

tests, the small image tests provided insights of

each model and algorithm to make the big image

test more efficient and pertinent, whose results

examined our data post-processing techniques

and validated the results of the small image tests.

UCSD ECE 228

7

3.1. Small-Image Test

10 different models and algorithms were

investigated in this test, which were used as

references in the future for the big-image tests.

These models and algorithms were selected from

a large common-used machine learning

algorithm pool for various purposes. For

example, the Gaussian Naïve Bayesian model

was based on an improper assumption and its

failure can be predicted, so it was selected as a

benchmark and validation tool to examine our

methods and other models. The XGBoost

algorithm has over 10 parameters, which

guarantee this model great potential for us to

discover, we also hoped that it became the best

model after hyper-tuning.

The K-fold validation was used to examine

the accuracy and consistency of our algorithms.

We used 90 % of data for training purposes and

10 % of data for validation, which is equivalent

to a 10-fold validation. The mean of accuracy

and standard deviation of accuracy for these 10

tests were summarized in the table below.

Figure 12. Summary of mean accuracy and standard

deviation of accuracy for various models

This result basically indicates 3 points.

Firstly, the model that is more accurate tends to

be more consistent as well, which helps us to

eliminate the concern of worrying the

consistency of a potential model with decent

accuracy. Secondly, the CNN model with SGD

optimizer gives the best results, which has over

96.6 % of confidence to identify the right

category of a given labeled small image.

Unsurprisingly, the GNB model yields a terrible

accuracy and ranks the least among all models.

This on the other hand helps to validate the

correctness of our methods. Lastly, the standard

deviation of the best model is approximately

1/100 of the mean accuracy, which indicates that

this CNN models shall be reliable.

Figure 13. A better representation of our algorithm

accuracy comparison

3.2. Big-Image Test

Based on the results from the small-image

test, only the CNN model with SGD optimizer

was implemented on this big-image test due to

the trust to our small-image test and the sake of

saving time (it takes a fairly long time to test one

model for once).

The first issue we encountered is multi-

identification, which is illustrated in the picture

below.

UCSD ECE 228

8

Figure 14. A multi-identification example

As Figure 14 indicated, a single ship and a

single ship-like object were identified more than

once in our model, which is unnecessary and

time-consuming. This is mainly due to the limit

of our data preprocessing technique, which

failed to prevent the model to identify one single

item multiple times. Our solution to this problem

was to add extra lines of code called “not near”,

which assumed the size of a ship based on

experience, once our model identified a ship, it

will automatically ignore the area that is not

sufficient for the present of another ship near

this identification. The success of this method

relies on the fact that our model has the ability to

tell whether or not an object is an intact ship as

we trained it with incomplete ship images

labeled as “no-ship”. The improvement was

shown in Figure 12.

The second problem that comes with the

big-image test is overfitting. Ships look like

ships in similar ways while non-ship objects can

be similar to ships in various ways, which

greatly confused our model and impaired its

capability to distinguish a similar-to-ship object

to a real ship. Although most of our training data

(2700) are no-ship images, this is still not

enough to enumerate all the possible patterns of

no-ship objects. As a result, our algorithm

identified many ship-like objects as ships, such

as extrudes of ports, landscapes with sharp ends

and bridges across the sea.

Figure 15. Multiple identification was overcome but

many ship-like objects were identified as ships mainly

due to overfitting

A better representation of overfitting was

illustrated by a confusion matrix in Figure #. As

it shown, the model was pretty good at

identifying an item that is not a ship, it has

96.2 % accuracy to identify such category.

However, as discussed before, due to the

irregular shapes lying in our satellite images and

the overfitting issue, our model tends to identify

many items which are not ship to ships, this

number even exceeds the number of real ships.

Figure 16. The overfitting issue represented by a

confusion matrix

After analysis, we interpolated that the

reason of overfitting is mainly that we have used

too many training data in our training. Although

intuitively more training data tends to yield

better accuracy, but this is lying on the

foundation that these data are well categorized

and preprocessed. As a result, the overfitting

UCSD ECE 228

9

issue indicated that our data preprocessing was

not mature and powerful enough. Taking a view

from this dilemma, we can either better pre-

processing our data to make them more distinct

but smooth, or we can reduce the amount of

training data to avoid this overfitting issue. The

latter method was adopted because data

preprocessing is difficult and requires a large

scope of projects.

Improvement was obvious after tuning the

parameter of the amount of data being trained

and validated. Figure # exhibits this trend.

Although the accuracy was only improved

by approximately 1.5 % by reducing the amount

of data being used for training, but this almost

eliminated the overfitting issue. Recall that there

are 510 sections on the big-image being

categorized as no-ship and only 10 ship present,

and the mis-identification rate from a no-ship to

a ship according to the confusing matrix is

approximately 1.9 %. As a result, the 1.5 %

improvement almost eliminated all the cases in

the “0 being confused as 1” class. Figure #

clearly illustrated this conclusion.

Figure 17. Comparison of training with 80% data

and validating with 80% data

Figure 18. Improvement of overfitting after reducing

the percentage of data being used for training. Left is

the model used 80 % data to train, right is the model

used 80 % data to validate.

However, the new model missed one ship

parking near the shore at the (700,200)

coordinate, which was identified successfully by

the previous model. This indicates that there is

always a trade-off between the amount of data

being used for training. If we use more data to

train, it overfits, many ship-like objects will be

identified as ships. If we use less data to train, it

may lose sensitivity to certain shapes which are

actually representations of ships. After some

trials, it turned out that using 83.4 % data for

validation gives the most balanced model, which

is exactly the right image of Figure 18.

Of course, our algorithm can be more

sophisticated to enhance the robustness of such

trade-off. Solutions at hand are better data-

preprocessing and postprocessing so that our

training data meet more requirements for the

big-image test demands. This will be discussed

in the conclusion and future work section in

detail.

UCSD ECE 228

10

4.Conclusion and Future Work

10 models were implemented to identify

ships in satellite images, convolutional neural

network (CNN) with stochastic gradient descent

(SGD) as optimizer has the overall best

performance. It can identify ships in pre-labeled

images (small-image) with an accuracy of

96.6 % and it is able to identify ships in raw

satellite images (raw image) with a high

capability after parameter tuning.

In the future, we can apply more advanced

data preprocessing techniques to better classify

our training sets so that overfitting can be

minimized. Tuning hyper-parameters of multi-

parameter models such as XGBoost to fully

exploit its potentials should be performed when

more powerful computing resource is available.

Nevertheless, collecting more data (both labeled

and raw) can help to enhance confidence of our

results and corresponding conclusion.

Reference

[1] T.N. Arnesen, R.B. Olsen, D.J.

Weydahl, "Ship detection signatures in

AP Mode data", 56th International

Astronautical Congress, pp. 06, 2005.

[2] Krogager, E.; Heiselberg, H.; Møller,

J.G.; von Platen, S. Fusion of SAR and

EO imagery for Arctic surveillance. In

Proceedings of the NATO IST-SET-128

Specialist Meeting, Norfolk, VA, USA,

4–5 May 20.
[3] Daniel, B.; Schaum, A.; Allman, E.;

Leathers, R.; Downes, T. Automatic

ship detection from commercial

multispectral satellite imagery. Proc.

SPIE 8743 2013.

[4] Gade, M.; Hühnerfuss, H.; Korenowski,

G. Marine Surface Films; Springer:

Heidelberg, Germany, 2006.

[5] Towards Data Science. (2018). A Tour

of The Top 10 Algorithms for Machine

Learning Newbies. [online] Available

at: https://towardsdatascience.com/a-

tour-of-the-top-10-algorithms-for-

machine-learning-newbies-

dde4edffae11 [Accessed 10 Jun. 2018].
[6] Jain, Aarshay, et al. “Complete Guide to

Parameter Tuning in XGBoost (with

Codes in Python).” Analytics Vidhya, 4

Aug

[7] https://miguelmalvarez.com/2017/03/23/

how-can-machine-learning-and-ai-help-

solving-the-fake-news-problem/

[8] VanderPlasJake “Feature Engineering.”

Introducing Scikit-Learn | Python Data

ScienceHandbook,jakevdp.github.io/Pyt

honDataScienceHandbook/05.04-

feature-engineering.html#Categorical-

Features

[9] http://mccormickml.com/assets/word2ve

c/Alex_Minnaar_Word2Vec_Tutorial_P

art_I_The_Skip-Gram_Model.pdf

a. Jain, Aarshay, et al. “Complete

Guide to Parameter Tuning in

XGBoost (with Codes in

Python).” Analytics Vidhya, 4

Aug. 2016,

[10] http://steventhornton.ca/hyperparameter-

tuning-with-hyperopt-in-python/

[11] www.analyticsvidhya.com/blog/2016/03

/complete-guide-parameter-tuning-

xgboost-with-codes-python/

[12] http://steventhornton.ca/hyperparameter-

tuning-with-hyperopt-in-python/

[13] www.analyticsvidhya.com/blog/2016/03

/complete-guide-parameter-tuning-

xgboost-with-codes-python/

[14] “VNGResearch/doc2vec.”github.com/V

NGResearch/doc2vec.

