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Abstract 

Satellite imagery provides unique and 

important insights in many aspects of our daily 

life. As a result, there is a need for machine 

learning algorithms to help automate the 

satellite image analysis process, which can be 

applied to issues such as monitoring port 

activity and supply chain analysis. In this 

project, we investigated different machine 

learning algorithms and their effects associated 

with corresponding data processing techniques. 

Our results indicated that the Convolutional 

Neural Network algorithm, with a Stochastic 

Gradient Descent optimizer, provides the best 

performance among various algorithms. Our 

results also revealed the fact that using more 

training data is not always the wisest choice, 

especially when an overfitting issue is very likely 

to happen. 

 

1. Introduction 

1.1. Background 

Satellite imagery provides unique insights 

into various markets, including agriculture, 

defense, intelligence, energy, and finance. New 

commercial imagery providers, such as Planet 

and Black Sky, are using constellations of small 

satellites to exponentially increase the amount of 

images of the earth captured every day. This 

flood of new imagery is outgrowing the ability 

for organizations and individuals to manually 

look at each image that gotten captured, and 

there is a need for machine learning and 

computer vision algorithms to help automate the 

analysis process. Automating this process can be 

applied to many issues including monitoring 

port activity levels and supply chain analysis. 

1.2. Data 

The dataset used for our training purpose 

consists of cropped images extracted from planet 

satellite imagery collected over the San 

Francisco Bay area. Totally 3600 80x80 RGB 

images are included in this dataset, 900 of them 

were labeled as “ship” while the rest are labeled 

as “no-ship”, which were used as disturbances 

and counterparts to examine our accuracy later 

for our proposed algorithms. 

Each of these 3600 images is stored as a list 

of 19200 integers, which represent the color 

information in the classical 0 to 255 scale. The 

RGB channels are evenly distributed in this list. 

The first 1/3 integers represent the red channel, 

the last 1/3 integers represent the blue channel 

and the rest are representations of the green 

channel. 

 

 
Figure 1. Samples of images with label “ship” 

 

Ships of different sizes, orientations, and 

atmospheric collection conditions are included 

in our dataset, which reflect the real imagery of 

satellite images. 
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While images that are labeled “no-ship” are 

more diverse, which mainly fall into 3 

categories.  

● Images of land cover features - water, 

vegetation, bare earth, buildings, etc.  

● Images of incomplete ships which 

should be obviously identified to not fall 

into the “ship” class. 

● Images of previously mislabeled 

models, which are typically caused by 

bright pixels or strong linear features 

 

 
Figure 2. Samples of images with label “no-ship” 

1.3. Data preprocessing 

 

Data preprocessing includes the following steps: 

● Reshape data 

● Normalize data 

● Shuffle all indexes  

● Output encoding 

● Separate row pictures into 3 channels  

 

 
Figure 3. Sample picture displayed in RGB form 

 

2. Mathematical Methods 

2.1. Algorithm 

2.1.1. KNN (K Nearest Neighbors) 

The KNN classifier is a non-parametric, 

instance-based supervised learning algorithm. In 

classification problems, the K-nearest neighbor 

algorithm essentially play a role in forming a 

majority vote between the K most similar 

instances to a given “unseen” observation. 

Similarity is defined according to a distance 

metric between two data points. Euclidean 

distance is popular in deciding whether an 

unseen observation is a neighbour of the given 

point while Manhattan, Chebyshev and 

Hamming distance can also be used. 
 

𝒅(𝒙, 𝒙′) = √(𝒙𝟏 − 𝒙𝟏′)
𝟐  + … +  (𝒙𝒏 − 𝒙𝒏′)

𝟐 

 

It runs through the whole dataset 

computing d between the given point x and each 

training observation. We’ll call the K points in 

the training data that are closest to x the set S. It 

then estimates the conditional probability for 

each class. Finally, our input x gets assigned to 

the class with the largest probability. 

 

𝑃(𝑦 =  𝑗| 𝑋 =  𝑥)  =  
1

𝐾
∑ 𝐼(𝑦(𝑖)  =  𝑗)

𝑖∈𝐴

 

 

 
Figure 4. Chart representation of K-neighborhood 

algorithm 

 

2.1.2. Random Forest 

Random forest is a popular machine 

learning algorithm that is typically used for 

classification and regression. A random forest 

classifier consists of multiple decision trees 

trained by different batches of the provided 

training data. In particular, the random forest 
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trees tend to overfit their training sets. However, 

random forest averages multiple decision trees 

to reduce the variance and thus preventing our 

training from overfitting. 

 

 
Figure 5. Illustration of a random forest tree 

 

Bootstrap aggregating or bagging is the 

fundamental technique of the random forest 

training algorithm. A typical bootstrap process is 

as follow: 

 

𝐶𝑏(𝑥) = arg (𝑥) max {𝐶(𝑆𝑘 , 𝑥)}𝑚:1→𝑀 

 

Where 𝐶𝑏(𝑥) represents the bagged 

classification, S is the training set, and x is the 

predicted value from our training set. M random 

training subsets are extracted from the training 

set and bootstrapped. Again, such randomness 

can help reduce the variance and overfitting. 

 

2.1.3 Support Vector Machine 

A Support Vector Machine (SVM) is a 

discriminative classifier formally defined by a 

separating hyperplane. The algorithm gives an 

optimal hyperplane that can categorized new 

examples.  

 

2.1.3.1 Maximal-Margin Classifier 

The Maximal-Margin Classifier is a 

hypothetical classifier that best explains how 

SVM works in practice and this is why we will 

introduce this method first. In SVM, a 

hyperplane is selected to best separate the points 

in the input variable space by their class, either 

class 0 or class 1. In two-dimensions you can 

visualize this as a line and let’s assume that all 

of our input points can be completely separated 

by this line. An straightforward example would 

be: 

𝑏0 + (𝑤1 ∗ 𝑋1) + (𝑤2 ∗ 𝑋2) = 0 

 

Where the coefficients (w1 and w2) that 

determine the slope of the line and the intercept 

(b0) are found by the learning algorithm, and X1 

and X2 are the two input variables. By plugging 

in input values into the line equation, we can 

calculate whether a new point is above or below 

the line. Above the line, the equation returns a 

value greater than 0 and the point belongs to the 

first class (class 0). A value close to the line 

returns a value close to zero and the point may 

be difficult to classify. The distance between the 

line and the closest data points is referred to as 

the margin. The best or optimal line that can 

separate the two classes is the line that as the 

largest margin. 

 

 
Figure 6. Fundamentals of support vector machine 

 

2.1.3.2 Soft Margin Classifier 

The maximal margin method is too ideal to 

deal with complex data in realize so a soft 

margin classifier is introduced. The constraint of 
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maximizing the margin of the line that separates 

the classes is relaxed in this algorithm. This 

change allows some points in the training data to 

violate the hyperplane. A tuning parameter is 

introduced called simply C that defines the 

magnitude of the wiggle allowed across all 

dimensions.  

 
Figure 7. Typical soft margin classifier 

 

2.1.3.3 Linear Kernel SVM 

The SVM algorithm is implemented in 

practice using a kernel. A powerful insight is 

that the linear SVM can be rephrased using the 

inner product of any two given observations, 

rather than the observations themselves. The 

inner product between two vectors is the sum of 

the multiplication of each pair of input values. 

The equation for making a prediction for a new 

input using the dot product between the input (x) 

and each support vector (xi) is calculated as 

follows: 

𝑓(𝑥) = 𝑏0 + 𝑠𝑢𝑚(𝑎𝑖 ∗ (𝑥, 𝑥𝑖))   

This is an equation that involves calculating 

the inner products of a new input vector (x) with 

all support vectors in training data. The 

coefficients b0 and ai (for each input) must be 

estimated from the training data by the learning 

algorithm. The dot-product is called the kernel 

and can be re-written as: 

𝐾(𝑥, 𝑥𝑖) = 𝑠𝑢𝑚(𝑥 ∗ 𝑥𝑖) 

 

2.1.4 Convolution Neural Network (CNN) 

2.1.4.1 Neural Network Model 

A neural network is put together by 

hooking together many of the simple “neurons,” 

so that the output of a neuron can be the input of 

another. Taking the figure below as an example, 

we will explain here the framework of Neural 

Network. 

 

 

 
Figure 8. A layer representation of CNN 

 

Our neural network has parameters: 

(𝑊, 𝑏) = (𝑊1, 𝑊2, 𝑏1, 𝑏2) 

Where 𝑊𝑖𝑗
(𝑙)

  denotes the parameter 

associated with the connection between unit j in 

layer l, and unit i in layer l+1. Also, 𝑏𝑖
(𝑙)

 is the 

bias associated with unit 𝑖 in layer 𝑙 + 1. We 

will write a𝑖
(𝑙)

 to denote the activation of unit 𝑖 

in layer 𝑗. Given a fixed setting of the 

parameters𝑊, 𝑏, our neural network defines a 

hypothesis ℎ𝑊,𝑏(𝑥)that outputs a real number. 

Specifically, the computation that this neural 

network represents is given by: 

 

𝑎1

(2)
= 𝑓 (𝑊11

(1)
𝑥1 + 𝑊12

(1)
𝑥2 + 𝑊13

(1)
𝑥3 + 𝑏1

(1)
) 

𝑎2

(2)
= 𝑓 (𝑊21

(1)
𝑥1 + 𝑊22

(1)
𝑥2 + 𝑊23

(1)
𝑥3 + 𝑏2

(1)
) 

𝑎3

(2)
= 𝑓 (𝑊31

(1)
𝑥1 + 𝑊32

(1)
𝑥2 + 𝑊33

(1)
𝑥3 + 𝑏3

(1)
) 

ℎ𝑊,𝑏(𝑥) = 𝑓 (𝑊11

(2)
𝑎1

(2)
+ 𝑊12

(2)
𝑎2

(2)
+ 𝑊13

(1)
𝑎3

(2)

+ 𝑏1

(2)
) 

 

2.1.4.2 Backpropagation Algorithm 
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We can train our neural network using 

batch gradient descent. In detail, for a single 

training example (𝑥, 𝑦), we define the cost 

function with respect to that single example to 

be: 

𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

2
‖ℎ𝑤,𝑏(𝑥) − 𝑦‖

2
 

We can then define the overall cost function to 

be: 

𝐽(𝑊, 𝑏) = [
1

𝑚
∑(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))

𝑚

𝑖=1

]

+
𝜆

2
∑ ∙

𝑚−1

𝑙=1

∑∙

𝑠𝑙

𝑖=1

∑∙

𝑠𝑙+1

𝑗=1

(𝑊𝑗𝑖
(𝑙)

)
2

 

The first term in the definition of 𝐽(𝑊, 𝑏) is 

an average sum-of-squares error term. The 

second term is a regularization term that tends to 

decrease the magnitude of the weights and helps 

prevent overfitting. Then the backpropagation 

algorithm is give below. First perform a 

feedforward pass, computing the activations for 

layers 𝐿2, 𝐿3, and so on up to the output layer 

𝐿𝑛𝑏
. For each output layer unit 𝑖 in layer 𝑛𝑏, set: 

𝑦𝑖
𝑛𝑙 =

𝜕

𝜕𝑧𝑖
(𝑛𝑙)

1

2
||𝑦 − ℎ𝑊,𝑏(𝑥)||

2

= − (𝑦𝑏 − 𝑎𝑖
(𝑛𝑏)

) ⋅ 𝑓 ′ (𝑧𝑖
(𝑛𝑙)

) 

For each node 𝑖in layer 𝑙,set 

𝑦𝑏
(𝑙)

= (∑  

𝑠𝑙+1

𝑗=1

𝑊𝑗𝑖
(𝑙)

𝛿𝑗
(𝑙+1)

) 𝑓 ′ (𝑧𝑖
(𝑙)

) 

Compute the desired partial derivatives, which 

are given as: 

𝜕

𝜕𝑊𝑖𝑗
𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝑎𝑗

(𝑙)
𝛿𝑖

(𝑙+1)

 

 
 

𝜕

𝜕𝑏𝑖
𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿𝑖

(𝑙+1)
 

To train our neural network, we can now 

repeatedly take steps of gradient descent to 

reduce our cost function 𝐽(𝑊, 𝑏). 

CNNs, like neural networks, are made up of 

neurons with learnable weights and biases. Each 

neuron receives several inputs, takes a weighted 

sum over them, pass it through an activation 

function and responds with an output. The whole 

network has a loss function and all the tips and 

tricks that we developed for neural networks still 

apply on CNNs. 

 

 

 
Figure 9. How CNN method proceeds 

 

 

2.1.4.3. Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is a 

commonly used optimization algorithm. It 

straightforwardly adopted the purpose of 

minimizing an objective function that has a form 

of sums. A random batch is selected for each 

iteration, namely stochasticly, under which the 

objective function will be minimized through 

each iteration. 

𝑤𝑛𝑒𝑤 = 𝑤 − 𝜂𝛻𝑄(𝑤) 

 

2.1.5. Other Algorithms 

Except for the algorithms mentioned above, 

we also tested 6 other algorithms with less 

significance.  

• Gaussian Naive Bayesian Classifier 

(GNB) 

𝑝(𝑥 = 𝑣|𝐶𝑘) =
1

√2𝜋𝜎𝑘
2

𝑒
−

(𝑣−𝜇𝑘)2

2𝜎𝑘
2

 

• Lagrangian Support Vector Machine 

(LSVM) 
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• Decision Tree Classifier (DTC)  

• Entropy: 𝐸(𝑆) = ∑ ℎ𝑐
𝑖=1 − 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 

• Linear Regression (LR) 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 

• Gaussian Bayes Classifier (GBC) 

𝑝(𝑦 = 𝑖|𝑥)

=

1

(2𝜋)
𝑚
2 |𝑆𝑖|

1
2

𝑒−0.5(𝑥𝑘−𝜇𝑖)𝑇𝑆𝑖(𝑥𝑘−𝜇𝑖)𝑝𝑖

𝑝(𝑥)
 

• XGBoost (XGB) 

• More details see reference 4. 

 

2.2. Accuracy and Cross Validation 

2.2.1 K-Fold Cross Validation 

K-fold cross validation is a method that is 

widely used in machine learning validation 

problems. While performing K-fold cross 

validation, the dataset is firstly partitioned into 

K subsets. Then perform K iterations such that 

each subset is used as validation set while the 

others are used as training sets. Train the 

machine learning model using the cross-

validation training set and calculate the accuracy 

of your model by validating the predicted results 

against the validation set. Finally, estimate the 

accuracy of the machine learning model by 

averaging the accuracies derived in all the k 

cases of cross validation. 

 
Figure 10. K-fold cross-validation 

 

2.3. Hyper-tuning on parameters 

In these algorithms, there are lots of parameters 

we could change in it, and in fact, some of these 

parameters could make a great impact on the 

result. We call the process of tuning these 

parameters as hyper-tuning.  

For simple algorithm like logistic regression, 

Gaussian naïve Bayes, support vector machine, 

there are no much parameters that need to be 

tuned. But for XGB, random forest tree, there 

are lots of parameters which need to be tuned.  

Take random forest as an example, there are 4 

parameters need to be adjusted: max_features, 

max_depth, samples_leaf, min_samples_split. 

 

 
Figure 11. hyper -parameters in random tree 

 

After hyper-tuning, the result usually will 

increase 1-2%, but this process would normally 

take a lot time to finish. 

3.Result Analysis 

Basically, two categories of tests were 

conducted to investigate the ability of proposed 

models in terms of classifying pre-cropped and 

labeled images (small size) and raw images 

(large size) taken from satellites respectively. 

The small image tests were mainly aimed to 

examine the effectiveness of our data pre-

processing techniques and the accuracy our 

various models. As a reference for the big image 

tests, the small image tests provided insights of 

each model and algorithm to make the big image 

test more efficient and pertinent, whose results 

examined our data post-processing techniques 

and validated the results of the small image tests. 
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3.1. Small-Image Test 

10 different models and algorithms were 

investigated in this test, which were used as 

references in the future for the big-image tests. 

These models and algorithms were selected from 

a large common-used machine learning 

algorithm pool for various purposes. For 

example, the Gaussian Naïve Bayesian model 

was based on an improper assumption and its 

failure can be predicted, so it was selected as a 

benchmark and validation tool to examine our 

methods and other models. The XGBoost 

algorithm has over 10 parameters, which 

guarantee this model great potential for us to 

discover, we also hoped that it became the best 

model after hyper-tuning. 

The K-fold validation was used to examine 

the accuracy and consistency of our algorithms. 

We used 90 % of data for training purposes and 

10 % of data for validation, which is equivalent 

to a 10-fold validation. The mean of accuracy 

and standard deviation of accuracy for these 10 

tests were summarized in the table below. 

 

 
Figure 12. Summary of mean accuracy and standard 

deviation of accuracy for various models 

 

This result basically indicates 3 points. 

Firstly, the model that is more accurate tends to 

be more consistent as well, which helps us to 

eliminate the concern of worrying the 

consistency of a potential model with decent 

accuracy. Secondly, the CNN model with SGD 

optimizer gives the best results, which has over 

96.6 % of confidence to identify the right 

category of a given labeled small image. 

Unsurprisingly, the GNB model yields a terrible 

accuracy and ranks the least among all models. 

This on the other hand helps to validate the 

correctness of our methods. Lastly, the standard 

deviation of the best model is approximately 

1/100 of the mean accuracy, which indicates that 

this CNN models shall be reliable. 

 

 
Figure 13. A better representation of our algorithm 

accuracy comparison 

  

 

3.2. Big-Image Test 

Based on the results from the small-image 

test, only the CNN model with SGD optimizer 

was implemented on this big-image test due to 

the trust to our small-image test and the sake of 

saving time (it takes a fairly long time to test one 

model for once). 

The first issue we encountered is multi-

identification, which is illustrated in the picture 

below. 
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Figure 14. A multi-identification example 

 

As Figure 14 indicated, a single ship and a 

single ship-like object were identified more than 

once in our model, which is unnecessary and 

time-consuming. This is mainly due to the limit 

of our data preprocessing technique, which 

failed to prevent the model to identify one single 

item multiple times. Our solution to this problem 

was to add extra lines of code called “not near”, 

which assumed the size of a ship based on 

experience, once our model identified a ship, it 

will automatically ignore the area that is not 

sufficient for the present of another ship near 

this identification. The success of this method 

relies on the fact that our model has the ability to 

tell whether or not an object is an intact ship as 

we trained it with incomplete ship images 

labeled as “no-ship”. The improvement was 

shown in Figure 12. 

The second problem that comes with the 

big-image test is overfitting. Ships look like 

ships in similar ways while non-ship objects can 

be similar to ships in various ways, which 

greatly confused our model and impaired its 

capability to distinguish a similar-to-ship object 

to a real ship. Although most of our training data 

(2700) are no-ship images, this is still not 

enough to enumerate all the possible patterns of 

no-ship objects. As a result, our algorithm 

identified many ship-like objects as ships, such 

as extrudes of ports, landscapes with sharp ends 

and bridges across the sea. 

 
Figure 15. Multiple identification was overcome but 

many ship-like objects were identified as ships mainly 

due to overfitting 

  

A better representation of overfitting was 

illustrated by a confusion matrix in Figure #. As 

it shown, the model was pretty good at 

identifying an item that is not a ship, it has 

96.2 % accuracy to identify such category. 

However, as discussed before, due to the 

irregular shapes lying in our satellite images and 

the overfitting issue, our model tends to identify 

many items which are not ship to ships, this 

number even exceeds the number of real ships. 

 
Figure 16. The overfitting issue represented by a 

confusion matrix 

After analysis, we interpolated that the 

reason of overfitting is mainly that we have used 

too many training data in our training. Although 

intuitively more training data tends to yield 

better accuracy, but this is lying on the 

foundation that these data are well categorized 

and preprocessed. As a result, the overfitting 
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issue indicated that our data preprocessing was 

not mature and powerful enough. Taking a view 

from this dilemma, we can either better pre-

processing our data to make them more distinct 

but smooth, or we can reduce the amount of 

training data to avoid this overfitting issue. The 

latter method was adopted because data 

preprocessing is difficult and requires a large 

scope of projects. 

Improvement was obvious after tuning the 

parameter of the amount of data being trained 

and validated. Figure # exhibits this trend. 

Although the accuracy was only improved 

by approximately 1.5 % by reducing the amount 

of data being used for training, but this almost 

eliminated the overfitting issue. Recall that there 

are 510 sections on the big-image being 

categorized as no-ship and only 10 ship present, 

and the mis-identification rate from a no-ship to 

a ship according to the confusing matrix is 

approximately 1.9 %. As a result, the 1.5 % 

improvement almost eliminated all the cases in 

the “0 being confused as 1” class. Figure # 

clearly illustrated this conclusion. 

 

 
Figure 17. Comparison of training with 80% data 

and validating with 80% data 

 

 

 
Figure 18. Improvement of overfitting after reducing 

the percentage of data being used for training. Left is 

the model used 80 % data to train, right is the model 

used 80 % data to validate. 

 

However, the new model missed one ship 

parking near the shore at the (700,200) 

coordinate, which was identified successfully by 

the previous model. This indicates that there is 

always a trade-off between the amount of data 

being used for training. If we use more data to 

train, it overfits, many ship-like objects will be 

identified as ships. If we use less data to train, it 

may lose sensitivity to certain shapes which are 

actually representations of ships. After some 

trials, it turned out that using 83.4 % data for 

validation gives the most balanced model, which 

is exactly the right image of Figure 18. 

Of course, our algorithm can be more 

sophisticated to enhance the robustness of such 

trade-off. Solutions at hand are better data-

preprocessing and postprocessing so that our 

training data meet more requirements for the 

big-image test demands. This will be discussed 

in the conclusion and future work section in 

detail. 
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4.Conclusion and Future Work 

10 models were implemented to identify 

ships in satellite images, convolutional neural 

network (CNN) with stochastic gradient descent 

(SGD) as optimizer has the overall best 

performance. It can identify ships in pre-labeled 

images (small-image) with an accuracy of 

96.6 % and it is able to identify ships in raw 

satellite images (raw image) with a high 

capability after parameter tuning. 

In the future, we can apply more advanced 

data preprocessing techniques to better classify 

our training sets so that overfitting can be 

minimized. Tuning hyper-parameters of multi-

parameter models such as XGBoost to fully 

exploit its potentials should be performed when 

more powerful computing resource is available. 

Nevertheless, collecting more data (both labeled 

and raw) can help to enhance confidence of our 

results and corresponding conclusion. 
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