Blood Cell detection using Singleshot Multibox Detector

Inyoung Huh
Computational Science, Mathematics and Engineering
University of California, San Diego
ilhuh@ucsd.edu

Abstract— Automatically cell detection in microscopy images
has become an important task to a wide range of biomedical
research. In machine learning field, the state of the art methods
for detection have been developed more than classification. In
this paper, I designed Red blood cell detector using Singleshot
Multibox Detection algorithm, which can detect only blood cell
in an image. With more than 99% accuracy, cell detector can
find red blood cell’s location.

I. INTRODUCTION

Over past few years, the neural network has evolved
fast. The advent of deep learning enable machine learn-
ing not only to apply to everyday lives but also to use
an interdisciplinary research. Now we can easily find the
application of deep learning. Deep learning architecture has
been used in many fields, such as computer vision, speech
recognition, natural language processing, audio recognition,
social network filtering, machine translation, bioinformatics
and drug design. Especially, application of deep learning
in medicine is incredible. Deep learning can help doctors
make faster, more accurate diagnoses. It helps doctors can
see, which means that enhances doctors ability to analyze
medical images. For example, by training detecting the tumor
from input images, deep learning model can assist doctors to
decide proper diagnosis. It is of significant interest to a wide
range of medical imaging tasks and clinical applications.
This paper is about cell detection motivated by this insight.
Cell detection is to find whether there are certain types of
cells present in an input image and to localize them in the
image. This paper will begin with a discussion of Single
Shot Multibox Detection algorithm. The data used in this
paper is from Kaggle dataset. The input to this algorithm
are blood cell images, including bounding boxes and class of
blood cells in an image. The Single Shot Multibox Detection
algorithm will predict the class and location of blood cell in
each images.

II. RELATED WORK

In the last few decades, different cell recognition methods
had been proposed. These methods can be divided into
traditional methods and fully deep learning based meth-
ods. Traditional cell detection is based on two approaches:
Hand-crafted feature representation+classifier. For example,
Laplacian-of-Gaussian (LoG) [1] operator was famous for
blob detection. Gabor filter or LBP feature [2] provide
interesting texture properties and had been attempted for a
cell detection task [3]. The process of this methods is, first,
detection system extracts the features as the representation

of input images and machine learning algorithm is applied
the feature vectors to recognize the location around target
cells. However, even though deep learning methods can be
used as classifier, since these are mostly relied on Hand-
crafted feature representation, there are always some risk
that suitable features are selected by human and the features
are tightly coupled with others and some limitation when
massive inputs are needed. Fully deep learning approach
can resolve these problems. Unsupervised learning enable to
evolve itself from fixed feature towards automated learning of
problem-specific features directly from training data. There-
fore, users do not have to go into the elaborate procedure
for the extraction of features. For example, collaboration
with convolutional neural network and compressed sensing
performed well for cell detection which is the first successful
use of convolutional neural network with compressed sensing
based output space encoding [4]. A sparse color unmixing
technique with convolutional neural network presents a suc-
cess for automatic immune cell[5].

III. METHODS
A. Convolutional Neural Network

Convolutional neural network is specialized in analyzing
visual imagery. While traditional neural network consists
of input, hidden and output layers simply, convolutional
neural network consist of four main layers: Convolutional
Layer, Pooling Layer, Dropout Layer and Fully-Connected
Layer. These layers can be said to basic architecture of
convolutional neural network. By stacking these layers, we
can design a full convolutional neural network. Convolutional
layer consist of a set of independent filters. When we make
design choices of convolution layers, we must decide on a
kernel size. The kernel is slid over image taking a ’snapshot”
at each step, the slide is managed with a choice of stride
size, allowing each snapshot to overlap the previous. This
process is the convolution of the pixels set in one snapshot
with the next. A strength of the convolutional network in
image classification is its use of local structure in the image
to support feature learning. This ability is rooted in the
overlapping of these ”snapshots” in the convolution layers.

Sandwiched between convolution layers are pooling,
dropout, or normalization layers depending on design choice.
Pooling layer will perform a downsampling operation along
the spatial dimensions. They are popularly chosen with
2x2 receptive fields. From a receptive field a representative
maximum value pixel is chosen as active and is passed for-
ward through the network, non-active pixels are effectively



zeroed. Gradients backpropogate through the active pixel.
This process reduces the size of the input, not necessarily
the depth though. Dropout layers are used to reduce the
number of parameters and help with overfitting by reduc-
ing parameters and therefore allowable complexity of the
network. Convolution layers can increase the input depth
to the next layer from say, 3 initially for RGB, to 64. The
added depth allows for more complex features to be learned.
Associated with this is an explosion of parameters. The
dropout layer will choose to randomly drop some percentage
of the parameters, in effect, creating a different architecture.
These changing architectures give more flexibility to what
may be learned by the network. Same as traditional neural
network, fully connected layer will connect every output
neurons and compute the class scores.

B. VGGI6

Single Shot Multibox Detector is based on convolutional
network. Its base network: VGG16. VGGI16 is a pre-trained
model, which is already trained on a dataset and con-
tains the weights and biases that represent the features of
whichever dataset it was trained on. Learned features are
often transferable to different data. Usually, when we use
pre-trained model, we only use the architecture by discarding
fully connected layers. Therefore, in Single Shot Mulitibox
detector, VGG16 is used for base network without fully con-
nected layer. Fully connected layers of Single Shot Multibox
Detector is replaced by other network.

Fig. 1.

Sliding Window

C. Single Shot Multibox Detector

Traditionally, image processing problem was limited to
classification problem. However, there is a deeper problem:
object detection. While classification is about predicting label
of the object present in an image, detection goes further
than that and finds locations of those objects. In image
classification, we predict the probabilities of each class,
while in object detection, we also predict a bounding box
containing the object of that class.

Fig. 2. Sliding Window

Single Shot Multibox Detector have great balance of
accuracy and speed. As I mentioned before, base network
for Single Shot Multibox is VGG16. VGG16 can be used
the extract feature maps. Full connected layers, called Extra
feature Layers is the key of this architecture. Basic idea of
object detection is sliding window. Sliding window idea is
that we crop the patches contained in the boxes, resize and
insert them to convolutional network. By repeating this pro-
cess with smaller window size , detector can capture objects
of smaller size. However, it occurs lots of computation. In
order to reduce computational cost, Single Shot Multibox
Detector use default boundary boxes. Every feature map cell
is matched with a set of default bounding boxes. It enable
to measure different dimensions and aspect ratios. These
bounding boxes are manually chosen based on IoU with
respect to the ground truth was over 0.5.

Extra Feature Layers
VGG-16 x
through Convs_3 layer

Cassfer - Conv. 33x{éx(Ciasses=4))

Classiier - Conv. 3XA(Ex(Casses))

P
2 per Class |

i

4.3mAP
59FPS

| Non-Maximum Suppression

\l':m-

Fig. 3. Single Shot Multibox Detector Architecture

Since object detection is the process solving classification
and localization problem, we should consider two type of
loss: Confidence loss and location loss. Confidence loss
measure how accurate the network is distinguishing the
objects class. Cross-entopy is used to compute this loss.
Location Loss measure how far away the networks predicted
bounding boxes are from the ground truth ones from the
training set. L1-norm is used for Single Shot Multibox
Detector. xfj = 1, 0 be an indicator for matching the i-th
default box to the j-th ground truth box of category p. c
indicate the softmax loss over multiple classes confidence.



We can calculate confidence loss as following.

N
Leong(w,0) = = Y aljlog(c)) = Y log(c)) (1)
1€ Pos i€ENeg

1 is the predicted box and g is the ground truth box
parameters. We can calculate location loss as follows.

N
Lioe(z,1,9) = Z Z xfjsmoothm(l -9) @

i€ Pos méecx,cy,w,h

Total loss can be calculated with summation of location loss
and confidence loss and weight term «.

1
L(xa Calag) = N(Lconf(xv C) + O‘Lloc(xa l,g)) 3)

IV. EXPERIMENTS/RESULTS
A. Data

In order to train the model with Single Shot Multibox Dec-
tor, we need object image, category and its bounding boxes
(x,y coordinates). The data used for this project is provided
by Kaggle dataset. This project is only for detection Red
Blood Cell. Therefore, class category is “Red Blood Cell”.
Each image contains multiple Red Blood Cells. Therefore,
in one image, there are more than four bounding boxes in
one image. 200 images with 1,453 labels are used as input
data and it is divided into training data and test data with
8:2 ratio. Input data is as following.

filename width height class xmin ymin xmax ymax

Bloodimage_00000.jpg 640 480 RBC 216 358 316 464
Bloodimage 00000.jpg 640 480 RBC 77 328 177 43
Bloodimage_00000.jpg 640 480 RBC 540 353 640 458
Bloodimage_00000.jpg 640 480 RBC 405 350 513 457
Bloodimage_00000.jpg 640 480 RBC 160 72 245 177
Bloodimage_00000.jpg 640 480 RBC 5 335 90 440
Bloodimage _00000.jpg 640 480 RBC 540 33 640 149
Bloodimage _00000.jpg = 640 480 RBGC = 383 1 504 113
Bloodimage_00000.jpg 640 480 RBC 9 82 108 168
Bloodimage_00000.jpg | 640 480 RBC 68 212 165 346
Bloodimage_00000.jpg 640 480 RBC 171 181 264 282
Bloodimage_00001.jpg 640 480 RBC 284 342 365 449
Bloodimage _00001.jpg 640 480 RBC 334 366 448 454
Bloodimage_00001.jpg 640 480 RBC 412 286 542 386

Bloodimage_00001.jpg 640 480 RBC 435 1 569 70

Fig. 4. Input data example

B. Experiments

Tensorflow Object Detection API provide several different
models for object detection. All models are already pre-
trained by COCO dataset, which is the photo collection
of common objects in the world. Additionally, they are
provided two type of algorithms: Mobilenet and inception
version. Difference between Mobilenet and inception one is

that Mobilenet is separable convolution while Inception uses
standard convolution. Mobilenet is lighter than Inception
since it is implemented for mobile application. Since I
trained the model with local computer, Mobilenet is used for
detection training. It is only for detecting single object: Blood
cell. Number of class should be one. I set the batch size is
24. If batch size is too large, it occurs memory error. Initial
learning rate is 0.004 and it decreases by every epoch. It is
often useful to reduce learning rate as the training progresses
because it helps coverage slowly and not to pass the optimal.

(b) BoundingBoxesbydetector

Fig. 5. Test Data 1

(b) BoundingBoxesbydetector

Fig. 6. Test Data 2



(a) ClassificationLoss

LLLLLLLLLLLLLLLLLLLLLLLLL

(b) LocalizationLoss

gggggggggggggggg

(¢) TotalLoss

Fig. 7. Loss

C. Results

I trained the model 14,000K epoch for one day. We can
see interesting features from the final results. First, the final
image shows the more number of bounding boxes before
training. In terms of accuracy, predicting the bounding boxes
show good accuracy. In terms of detecting bounding boxes,
it shows better results than human. In figure 4 and 5 (a),
there are only four bounding boxes even though there are
more blood cell in the image. However by Single Shot
Multibox detector, more red blood cells can be found. It
implies that cell detector trained by Single Shot Multibox
Detector algorithm can outperform than human observer. It
can be applied to help human by finding the feature which
is hard to be distinguished by human eyes.

In figure 4 (b), it detected the wrong cell as red blood cell.
I can guess two why this interesting results come out. Since
the input images was limited to the blood cell but each blood
cell image do not completely look same. Some images has a
spot in the middle of the cell while others do not. In figure 4
(b), the wrong cell which is not blood cell has also a spot in
it. Inconsistent input images may cause to detect this wrong
cell as red blood cell. It also implies the risk of detection by
machine.

V. CONCLUSIONS

This paper is about finding the blood cells in an image with
singleshot multi box detection. Object detection is modeled
as classification problem. However it includes localization
problem. Therefore it predict not only objects class but also
its location in the image. There are several the state-of- the-
arts methods for object detection. Among these methods,
Single Shot Multibox Detector is faster and more accurate

than other methods. Using Single Shot Multibox Detector
algorithm, I trained the model to detect the red blood cells
in the image. This detector showed incredible outperforming
results than human observer. I would like to improve this
the two direction for future work. First one is improving
this work as multi label model. Since the cell detector was
trained with single label, it is difficult to distinguish two
different but similar type of cells in figure 4. If this model
is trained with multi-labels, it will distinguish exactly which
one is red blood cell or not. Additionally, according to related
works, it is still not fully deep learning algorithm. In the
process to annotate bounding boxes around cells, lots of task
depends on Hand-crafted feature representation. This process
contains risk and limitation. We can improve this model with
using fully deep learning or applying other machine learning
algorithms.

REFERENCES

[1] Hui Kong, Hatice Cinar Akakin, and Sanjay E. Sarma. A generalized
laplacian of gaussian filter for blob detection and its applications. IEEE
Transactions on Cybernetics, 43:17191733, 2013.

[2] T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of
texture measures with classification based on feature distributions.
Pattern Recognition, 29:5159, 1996.

[3] Yousef Al-Kofahi, Wiem Lassoued, William Lee, and Badrinath
Roysam. Improved automatic detection and segmentation of cell
nuclei in histopathology images. IEEE Transactions on Biomedical
Engineering, 57:841852, 2010.

[4] Yao Xue and Nilanjan Ray. Cell Detection in Microscopy Images with
Deep Convolutional Neural Network and Compressed Sensing.

[5] Ting Chen and Christophe Chefdhotel. Deep Learning Based Auto-
matic Immune Cell Detection for Immunohistochemistry Images

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox
Detector.

[7] https:github.comdatitranraccoon_dataset

[8] https:github.comtensorflowmodelstreemasterresearchobject_detection



