
Impact of Skewed Distributions on an Automated Plankton
Classifier

Will Chapman, Emal Fatima, William Jenkins, Steven Tien, Shawheen Tosifian
ECE228 Machine Learning for Physical Applications, June 2018, UC San Diego

Abstract— Plankton are extremely important to the
marine ecosystem and form the basis for the food web
and carbon cycle. Recently, large efforts have been
dedicated towards classification of plankton species to
better understand population dynamics. Machine learn-
ing has emerged as a way to classify large amounts of
plankton images without dedicating immense amounts
of man hours to this laborious task. However, plankton
populations tend to be realized in large ”blooms” in
which one species acts as a dominant signal as compared
to other species populations. This is a unique situation for
Machine Learning algorithms which are typically trained
and tested on evenly distributed plankton populations.
This paper seeks to understand the errors of machine
assisted plankton classification associated with sudden
population blooms. Using an optimally tuned Random
Forest algorithm, we find that the dominant species acts
to converge on inherent model accuracy, while the non-
dominant species spreads largely around this mean in
a Gaussian distribution. Additionally, categorical species
model biases are explored.

I. INTRODUCTION

As the most abundant form of life in our oceans,
plankton - microscopic organisms which include bacte-
ria, photosynthesizing organisms (phytoplankton), and
the tiny organisms that eat them (zooplankton) - are the
foundation of life in the sea. Their abundance directly
impacts the ecology of the oceans, as their position
at the lowest trophic levels of the food chain ensure
their population dynamics can be felt by even the
largest of apex predators. Additionally, the combined
respiratory and photosynthetic activity of plankton are
major contributors to our planets atmospheric con-
stituents, serving as a biological pump and regulating
both oxygen production and carbon sequestration. Yet
for all their importance, much remains to be learned
about the ecology and population dynamics of these
ubiquitous organisms.

In an effort to get a sense of local plankton popula-
tion dynamics, in 2014-2015 the Jaffe Lab for Under-
water Imaging at Scripps Institution of Oceanography

(SIO) developed the Scripps Plankton Camera (SPC,
pictured below in Figure 1), which has been success-
fully imaging tens of thousands of these small organ-
isms each day. Near real-time images are visible at
http://spc.ucsd.edu. With millions of images collected,
accurate classification of each image is impossible to
do by hand. To assist in the classification of these
large data sets, machine learning algorithms have been
implemented which rely on sets of manually labeled
data to train the classifier. Of particular interest in this
project was clarifying how the underlying statistics of
the plankton population affect the performance of a
classifier algorithm, in our case, the random forest.

In nature, a classifier will often encounter situations
where the environment of interest is largely dominated
by instances of a singular class, for example, during a
red tide event in La Jolla. We are interested in seeing
how the performance of a pre-trained classifier may
be affected by an input with a skewed distribution.
To do this, we trained a simple classifier that utilizes
random forests and tested how its accuracy is affected
by differing distributions.

II. RELATED WORKS

A variety of approaches to plankton classification
have been undertaken so far. Dai et al. utilized a hy-
brid convolutional neural network (CNN) whose inputs
included plankton images as well as local and global
plankton features obtained through traditional feature
extraction methods. The authors designed a pyramid
structure in a fully connected layer to amalgamate
the results from the three input sources. Using this
hybrid structure, an accuracy of 95% was reported
for 30 classes of plankton1. However, one drawback
of this approach was that the classification was done
over a homogenous distribution of plankton, when
real-time classification would encounter non-uniform
distributions of plankton species. Yan et al. proposed a
more efficient CNN architecture which achieved a top-
five accuracy of 96% with the potential to be applied



in ocean systems thanks to its small size2, though
there was no analysis of non-uniform distributions of
plankton species. Tindall et al. used a transfer learning
approach with a VGG16 CNN architecture and reported
an accuracy of 85% for a 12 class plankton set from
Woods Hole Oceanographic Institution3. Though the
accuracy was not as high as that reported in published
CNN literature, its use of transferred weights showed
potential for future improvement. Lee et al. applied
CNNs which incorporated transfer learning (from class-
normalized data and fine-tuning with original data)
to imbalanced distributions of plankton, performing
better than CNNs with and without transfer learning
through data augmentation techniques4. Over 70% of
the images in the dataset belonged to one class, and
90% belonged to five classes. The classification of the
top five classes achieved 95% accuracy, but the rest of
the smaller classes stagnated at less than 50% accuracy,
and their approach did not dramatically improve rates
for non-dominant classes. Orenstein et al. explored
classification with RF as well as CNNs. The RF classi-
fier was reported to have an accuracy of 58% for a 95-
class dataset and 69% for a four-class dataset (obtained
from the Scripps Plankton Camera System)5. The RF
model was trained on 72 hand-engineered features, the
same that were features utilized in this analysis.

III. DATASET AND FEATURES

A. Dataset

Images were obtained from the Scripps Plankton
Camera System. The raw images were then filtered,
cleaned, and segmented such that the image field of
each plankton was obtained and all extraneous image
information discarded. The images were provided by
Eric Orenstein at the Scripps Institute of Oceanography
at UCSD5. For this project, we utilized approximately
12,000 labeled images from 12 different classes com-
posed of various plankton types. To simulate different
orientations for the plankton and increase our image
count, we created transformed (rotated/sheared) copies
of the images for a total of 24,000 images for 12
classes. The images varied in size from about 100-200
pixels square, and were represented in color.

B. Features

From these processed images, we extracted 72 hand-
engineered features to be used as the input vectors for
the classifier. Each feature corresponds to a geometric
property of the plankton image, such as major axis
length, minor axis length, aspect, elliptical properties,

(a) Acanthera Class (b) Copepod Class (c) Chain Class

Fig. 1: Some sample images from the dataset

etc. These properties were determined algorithmically.
This was accomplished by searching for iso-contours in
the image, representing them in Fourier space, making
them rotation invariant, and then taking the first 10%
of the Fourier coefficients and then back projecting to a
simplified boundary. Additionally, the other geometric
features were calculated using the skimage library′s
measure function. A gray level co-occurrence matrix
was also utilized in the feature extraction to incorporate
properties of the image. By using geometric properties
of the plankton, we are able to take into account
distinguishable aspects of the data while reducing the
dimensionality of the data (versus feeding the entire
image into the model).

IV. METHODS

In order to test the impact of skewed distributions on
artificially intelligent machine classifiers, we needed a
machine trained to classify plankton images into 12
different categories and a method to input a skewed
distribution. A skewed distribution being a set of im-
ages that intentionally have an abundance of one class
over the other.

Our choice of algorithms to train our classifier was
through implementation of a Random Forest. The Ran-
dom Forest method is not the method with the greatest
accuracy, but that fits our purpose well as its simplicity
is expected to highlight the error, which was impact of
interest, caused by skewed distributions.

To generate our skewed distribution, we wanted a
large training set and a large testing set. With 12,000
images for 12 classes, there were only 1000 images a
class, so we performed some preprocessing to create
transformed images from our prelabeled ones such that
the images created would be skewed or flipped, which
would represent a different orientation these plankton
would be in. As a result, we were able to grow our
total dataset to 24,000 pictures.

On top of performing image transform on our
dataset, we needed to sample it for our testing set in a



way that produced a dominance from one class. This
was done by setting aside half of the 24,000 images,
selected at random, for testing. With each testing run
one category was artificially increased to have 10-fold
the number of images of every other category.

A. Random Forest

For our classifier, we utilized the Random Forest
algorithm. From a high level perspective, the Random
Decision Forest can be thought of as a collection of
Random Trees. A Random Tree takes the input (in
this case an image vector/matrix) and classifies it via a
random weighting of its features. The classification de-
cision from each Random Tree is considered a ”vote”.
All the votes are then tallied up and whichever class has
the highest votes wins. Figure 2 shows this pictorially.

An optimal Random Forest algorithm is achieved by
tuning the hyper parameters (external configurations
inherent to the model, such as model depth, number
of trees, etc.). This was achieved through a hyper
parameter grid search, the model was initialized, trained
and tested on a randomized set of hyper parameters.
In the process, the data is 10-fold cross validated
to prevent over fitting. This operation is performed
roughly 500 times and the optimal model is then saved
and used for the final model results. The optimal model
for our random forest had the following configuration:
maximum depth: 70, minimum number of samples in a
leaf: 1, minimum number of samples in a split: 2, and
the number of estimators: 400.

Figure 3 shows a confusion matrix of the perfor-
mance of this random forest on a fairly evenly dis-
tributed testing samples, with roughly 1000 images
per testing category. Accurately predicted species are
contained on the diagonal, thus high numbers on the
diagonal are desired. The overall model accuracy for
every image classified is 86.4 percent. This is on par
with the state of the art methods outlined in the previous
section. Upon further inspection, it is clear that some
species are more readily identified than others. The
overall accuracy of the model is thus highly dependent
on which categorical species is presented most often.
Understanding the distributions of these accuracies
motivates our study.

B. Skewed Distribution - Monte Carlo Analysis

Utilizing the skewing method mentioned above, a
Monte Carlo technique is leveraged to explore the error
space. A Monte Carlo method randomly subsamples
a space multiple times and determines the accuracy

Fig. 2: Random Decision Forest

Fig. 3: Confusion Matrix of roughly evenly distribution
testing dataset

for each subsampling. This is motivated by the fact
that in large population, it is possible that the true
error of interest is obscured by other unknown factors
about the sample. In more specific terms to our project,
from the 12,000 images available to us for testing, we
intentionally resampled it such that there is a known
abundance of one class, a dominant class, so that we
could observe classifier performance under this new
sample of images. This was repeated 2000 times for
each dominant and non-dominant class. This resulted
in a probability distribution of accuracies.

The Monte Carlo was performed for every class and
the performance of the classifier was determined. This
is so that we could see how effective the classifier is
for each class, as an 89 percent accuracy overall may
just be due to the fact that the classifier attempts to
minimize error by classifying everything into a class



such that it nets the greatest performance overall, even
if it forsakes an underrepresented class. In essence, we
implemented the Monte Carlo to test if the classifier
performs based off any prior knowledge on the probable
distribution from the training set. The accuracy for each
instance where one class is dominant can be seen in
a experiment matrix (Figure 5). Figure 4 shows the
results of the twelve Monte Carlo experiments (one for
each species tested), with each column representing a
separate experimental run. The dominant class for each
experiment is highlighted in yellow on the diagonal.
Each column representing the percent of accurately
categorized species, which is also summarized in the
table above it, called the ”Large Category Score”. Each
row demonstrates the performance of an individual
species across every experimental run. Figure 4 shows

Fig. 4: Dominant class experimental runs, the dominant
species in each of the 12 experiments is shown in
yellow along the diagonal

the Experimental Matrix generated when each class
is sampled to be the dominant one in the testing
sample. If we compare this to the raw score normally
obtained without a dominant class, it can be seen that
the accuracy for most classes does not decrease or
deviate much even when dominating the distribution.
This suggests that the classifier extracts features that
do not seem to depend on the training set’s actual
distribution. However, there is is still a 5-15 (depending
on the dominant class) percent deviation of accuracy
that varies depending on the supplied distribution. For
the purpose of planktonic research, that may be within
the tolerance of researchers who need the data, however
the deviation of accuracy is worth understanding for the
sake of improving classifier performance.

Fig. 5: The PDFs representing the Monte Carlo gen-
erated samples, in which the spread of the accuracy
for the dominant and non-dominant classes can be
observed.

V. EXPERIMENT/RESULTS/DISCUSSION

Figure 5 gives a graphical representation of the
Monte Carlo Simulations, and a graphical representa-
tion of Figure 4. As can be seen, there is no meaningful
shift in the means of the distribution. Although, the
distribution does widen, in the non-dominant species
(shown as the red distribution). The narrowing of the
dominant class (shown as the blue distribution) which
is a result that can be attributed to the classifier seeing
more and more images and converging to an accurate
class skill.

The categorical biases depicted in Figure 6 show
how the Agg class dominant distribution led to poorer
performance of the model, as opposed to the Chain
class dominant distribution; other dominant distribu-
tions performed similarly to the Chain class. The actual
distribution numbers for each experiment are shown in
blue bars. The predicted categories and the range of
error are determined by the mean and the spread of
the Monte Carlo methods described above. This can
be attributed to the physical nature of the Agg class,



(a) Chain Class

(b) Agg Class

Fig. 6: Derived Biases from Monte Carlo methods for
the Chain class (top performing) dominant distribution
and Agg class (worst performing) dominant distribution
are shown.

which is composed of dead pieces of various plankton
and those particles which cannot be classified as one
of the other classes. As a result, the classifier performs
poorly as there is a varied distribution within the
dominant class, leading to the difficulty of the classifier
to correctly identify the class itself along with the other
non-dominant classes. The goal of these figures is to
determine a signal to noise ratio, of when a species is
detected in mass, when can it be trusted that it is in fact
a species bloom. In addition, it appears that a general

trend in the classifiers bias toward dominant classes
is that the bias is generally underspecified, as seen
in Figure 3. We found that no class, as the dominant
species, is biased high, this is fairly unexpected, but
intuitive as 12 separate classes exist. This would not be
the intuitive result for a binary classification system.

VI. CONCLUSION/FUTURE WORK

We suggest extending this experiment to another
classification model, such as a convolutional neural
network. By comparing our results with other models,
strengths and weaknesses of the models can be better
quantified. Afterwards, the models could be tested
against larger and more varied distributions that are
more representative of real-time conditions so their
performances could be measured and evaluated against
other metrics such as computational resources. Even-
tually, a classifier would be implemented which is
capable of accurately identifying plankton images near
real time.
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