
U-Net On Biomedical Images

Amir Persekian

aperseki@eng.ucsd.edu

Max Jiao

mjiao@eng.ucsd.edu

Lucas Tindall

ltindall@eng.ucsd.edu

Abstract

Traditional CNN architectures have been very good at tasks such as applying a
class label to an image after training on a very large example dataset. However, in
many applications, a more fine grained classification is necessary. One example is
for image segmentation in the biomedical field. In order to classify pixels based on
only the contextual information surrounding it without a need for a large training
dataset, we use an efficient and generalizable network called the U-Net. The U-
network leverages the homogeneous nature of medical images to train on similar
images very efficiently. Our network is able to classify with an F1 score of 0.96
after training on just 10% of our images, but loses precision around the edges of
of said structures.

1 Introduction

Image segmentation and pixel-wise classification are an important next step when it comes to image
processing techniques. Current architectures are very good at classifying regions or images based
on sliding windows. There are some problems when it comes to the traditional approach. These
problems can be seen and emphasized in the field of biomedical research and imaging. Traditional
CNN models rely on a vast amount of training data, primarily relying on feature extraction and
feature matching in order to correctly classify images or regions of images. Convolution and other
techniques are used for increasing scaling and translation invariance, but the primary motive has
been to extract and match features.

In the biomedical field, classification tasks are generally less about detecting what an image is, but
rather identifying the boundaries between different components and detecting where key sections of
the specimen are located. Traditionally, this is done by staining specimens and imaging them one
at a time. Scientists proceed to hand trace and label the different parts of the images based on their
domain knowledge. This is incredibly arduous and has a very low throughput, which is a bottleneck
in being able to do larger scale research such as time series observations on specimen in response to
different stimuli, or efficient 3D rendering and extrapolation.

The goal is to have a network accurately label related images using a very limited training set.
This means that a greater importance is put on data preprocessing techniques as well as contextual
information in the images. Thankfully, images in this field tend to be homogeneous not only between
images, but even across regions in the same image.

In order to realize these goals, we start with three different tasks using different datasets containing
microscopic cell images. We use the architecture proposed by O. Ronneberger [1], known as the
U-Net. The paper states that this architecture is both robust and generalizable to applications in the
biomedical field. The tasks that we attempt in this project are:

• Identifying nuclei in different images of cells
• Identifying cell membranes and component boundaries
• Differentiating different cell components in images of cells

1



2 Related Work

2.1 U-Net

Convolutional neural networks have become very common tools for image processing tasks. Their
ability to learn detailed spatial features makes them well suited to the task of image segmentation
since they have the ability to detect features invariant of location or orientation. A common architec-
ture used for the specific task of biomedical image segmentation is the U-net model first proposed
by Ronneberger et al [1]. This architecture is well suited to the task of pixel-wise classification as
the network is fully convolutional with outputs being the same size as the inputs.

2.2 Data Augmentation

Given the limited and small datasets available, there is a strong need for data augmentation to boost
the variance of the datasets. With stacks of images often resulting in very homogeneous features
data augmentation allows the network to learn a better representation of the feature space. Multiple
works [4, 5] have also used random crops, flips and rotations to bolster their datasets.

2.3 Other Architectures

Since there are many biomedical image segmentation datasets there have been many proposed meth-
ods and architectures to best solve the task. Some very similar architectures used on these same
datasets include the Residual U-Net [5] and Mask R-CNN [6]. The Residual U-Net combines the
typical U-Net architecture with residual convolutional blocks for increased performance. For our
purposes and because of our limited computational resources we choose to forgo this model and
keep the original U-Net architecture. Mask R-CNN has also shown to perform well on this task but
requires a region proposal network which adds additional layers of computation.

3 Dataset and Features

For testing our architecture, we used a variety of different datasets in order to test the three major
goals that we stated earlier. The goal was to use as small of a dataset as we could for training, and
keep the rest for validation. Initially, we used 80% of the dataset for training, and then 20% as
validation, but then we gradually decreased the amount needed for training down to 10%.

Set 1: Kaggle Data Science Bowl 2018 Dataset [7] First is the Kaggle 2018 dataset, which
features a variety of types of images with nuclei in them. The goal we pursued on this dataset was
to identify the nuclei of the cells, which is the first step in detecting separate key objects in an image
from the biomedical field. The challenge on this dataset was that there are many different types of
images that were taken using different magnifications and stains.

Kaggle: Details The original dataset contained 670 color images of various pixel dimensions.
These were all downsized to a resolution of 128 x 128 pixels.

2



Figure 1: Sample image, ground truth mask, and instance segmentation from Kaggle dataset

Set 2-3: ISBI Datasets [8, 9] We used two separate datasets from the ISBI challenges. These were
the 2012 and 2013 segmentation challenges that gave the task of segmenting neuron structures in
Electron Microscope (EM) images. These images are devoid of color and pretty complex. However,
they are very similar across the dataset. This is especially true of the 2013 challenge where the
dataset consisted of stacks of cross sections of neurons. The target results were masks that clearly
marked out the boundaries of the neurite components.

Figure 2: Sample image, ground truth mask, and instance segmentation from ISBI 2012 dataset

ISBI: Details The ISBI 2012 dataset had 30 binary images of resolution 512 x 512 pixels. The
ISBI 2013 dataset had 100 binary images of resolution 1024 x 1024 pixels. These images were
downsized to 512 x 512 pixels.

Set 4: NCMIR Mitochondria Dataset [10] The NCMIR dataset was collected using an Electron
Microscope (EM) and contained images from the brain of a mouse. The images were annotated such
that each mitochondria was identified. This touches on our 3rd goal of identifying specific parts of
a cell in an image.

NCMIR: Details This dataset contained 30 binary image/mask pairs of resolution 1024 x 1024
pixels. These were downsized to a resolution of 512 x 512 pixels.

3



Figure 3: Sample image, ground truth mask, and instance segmentation from the NCMIR dataset

Set 5: EPFL CVLab Mitochondria Dataset [11] The EPFL dataset was another EM collection
which contained a stack of images taken from the CA1 hippocampus region of the brain. The masks
identified mitochondria within the images.

EPFL: Details The dataset contained 165 binary image/mask pairs of resolution 768 x 1024 pix-
els. These were downsized to a resolution of 512 x 512 pixels.

Figure 4: Sample image, ground truth mask, and instance segmentation from the EPFL dataset

Pre-processing and Post-processing One very important consideration to our posed problem is
that training data need not be readily available. Many other architectures may be able to do the
segmentation and classification jobs very well, but the downside is that they require a large amount
of training data before results become convincing. In order to address this issue, we leverage certain
quirks of these microscopy images to train our model successfully despite the limitations. First,
because the images are always very similar to each other when taken with the same machine on
the same types of cell, images don’t vary very much across the dataset. This means that we can
train on context regions within the image using the U-Network, which does not have any fully
connected layers. This further extends into capabilities to handle any reasonably large sized image,
and in fact treat the greater size as more training data. The second method that we use is data
augmentation. It can be noted that the images across the dataset can be expressed as very similar
to distortions and transformations done on each other. Therefore, we an create a sizable amount
of augmented data with various image transformation techniques such as blurring, Gaussian noise,
affine transformations, flips, rotations, and zooms.

There were no mandatory post-processing techniques needed to achieve the targets that were spec-
ified in the competitions that each dataset was for. However, we did decide to take our results a
step further and try to further separate the different component masks that we ended up with after

4



feeding inputs through our model. The methods that we used in order to accomplish this will be
further addressed in the methods section.

4 Methods

4.1 Preprocessing

Because of the nature of the U-Network and the specifications of the field of application of our
project, we are able to limit the need for preprocessing. As previously stated, the U-Network is
generalizable across any reasonably sized input image (approximately 64x64 pixels or greater), and
puts an emphasis on using contextual information to classify the pixels in a region. The versatil-
ity of our input means that we do not need to down-sample, blur, or do any other augmentation
techniques to improve our model’s ability to classify inputs. However, because each region of the
input can be considered a new training sample, larger and higher resolution inputs greatly increase
the performance of our model. Since the input images are generally so similar in both composition
and structure, we simulate an increased dataset using data augmentation techniques. We create a
large supplementary dataset using various distortion transforms, including rotations, zooms, affine
transforms, crops, and warps.

4.2 Architecture

For our network architecture we choose the U-Net proposed by Ronneberger et al [1]. The entire
network can be found in figure 5. The first half of the network is an auto-encoder comprised of
convolutional blocks with batch normalization and ReLU activations. These blocks are connected
by max pooling layers. Since each max pooling layers decreases the spatial dimensions of the
features we also increase the number of feature channels as the network progresses.

ReLU(x) = max(0, x) (1)

The second half of the network is a decoder which takes in the detailed, localized features learned
by the auto-encoder and combines them with skip connections and transposed convolutional layers
to recover spacial features in larger resolutions. The decoder half continues with this same pattern of
skip connections and transposed convolutional layers until the original resolution is recovered and
then applies a final sigmoid activation, resulting in a pixel wise binary classification.

Sigmoid(x) =
1

1 + exp(−x)
(2)

The U-Net was trained using stochastic gradient descent with the Adam optimizer. Since each task
involved binary pixel-wise classification we used the binary cross entropy loss function:

BCE loss = −(y ∗ log(p) + (1− y) ∗ log(1− p)) (3)

4.3 Post-processing

The target results of our model were just to classify pixels as part of the mask or part of the back-
ground. We tried to improve on this result by post-processing the result such that each individual
component is distinguishable from the others. To do this, we used the K-means algorithm to find
the center points of each cell or component. To determine the optimal K-value, we did a sweep
of K-values with the elbow method using the Sum-Squared Error to approximate the number of
clusters in the generated mask. The centers of the k-means algorithm were used as markers for the
Watershed algorithm to distinguish the components from each other.

4.4 Objectives and Metrics

To accurately measure the performance of our models we evaluated both the network on the training
and validation datasets using multiple evaluation metrics. First we evaluated the performance using

5



Figure 5: The U-Net architecture from Ronneberger et al [1]

Mean Average Precision, defined as:

mAP =
1

11

∑
r∈{0.5,0.55,...,1.0}

APr (4)

where the Average Precision at threshold r and Intersection Over Union (IOU) are defined:

APr =
TruePositives

(TruePositives+ FalsePositives)
, IOU(TruePositives) ≥ r (5)

IOU =
Area of overlap

Area of union
(6)

We also used the pixel-wise F1 score defined as:

F1 score =
2 ∗ Precision ∗Recall

Precision+Recall
(7)

Precision =
TruePositives

(TruePositives+ FalsePositives)
(8)

Recall =
TruePositives

(TruePositives+ FalseNegatives)
(9)

6



5 Results

5.1 Segmentation Masks

Figure 6: Segmentation mask for Kaggle dataset after 100 epochs

Figure 7: Segmentation mask for NCMIR dataset after 200 epochs

Figure 8: Segmentation mask for ISBI 2012 dataset after 100 epochs

7



Figure 9: Segmentation mask for ISBI 2013 dataset after 20 epochs

Figure 10: Segmentation mask for EPFL dataset after 100 epochs

5.2 Accuracy

Figure 11: BCE Loss, F1 Score and Precision/Recall plots for Kaggle dataset

8



Figure 12: mAP, Precision/Recall curve and ROC curve for Kaggle dataset

Table 1: Evaluation results on validation sets after 100 training epochs
Kaggle ISBI 2012 ISBI 2013 NCMIR EPFL

mAP 0.47 0.53 0.42 0.23 0.57

F1 0.89 0.93 0.97 0.63 0.95

5.3 Results and Model Discussion

The baseline results that we got were good even when we didn’t include data augmentation tech-
niques to boost the training dataset. The reasoning for this is likely because the images that we used
were often directly related - taken with the same machine (Electron Microscope) and in fact cross
sections of the same cell. Furthermore, the images were very high resolution, which meant that our
network was able to get a lot out of each training image.

However, the values from the mAP (mean average precision) metric are noticeably lower than the
other metric (F1 score). The reasoning for this is that the mean average precision is a lot more
sensitive to individual classification errors. The F1 score is generally a better indicator of how well
we did in the grand scheme of things, since it weights both precision and recall in its formula (see
section 4.4 for formulas), while the mean average precision is a strong indicator of how well we do
when classifying small details, getting significantly worse with each false positive that our model
makes. Taking these two scores into account, it can be considered that our model is very good at
locating where the masks should be, but makes a lot of errors on the edges compared to the target
mask. Looking at the visual results that we’ve included in [section 5.1], just from inspection it is
very clear that the general locations of every component is correct, and there are almost no blatant
errors in the predictions in our model. However, especially in the datasets [7] and 8, the density
and edges of the prediction mask are clearly different from the target. Although we only trained for
200 epochs (took about 2 hours on a 2GB GPU), which is nowhere near the amount of time that
Ronneberger [1] recorded (10 hours on Nvidia 6GB GPU).

A complete collection of plots and segmentation output figures can be found in the figures directory
included the code repository for this project.

5.4 Challenges

Analyzing this further, it is unclear how much of a problem unclear edges will pose in real ap-
plications in the biomedical field. It is possible that hand traced and stained images are already
considered to be rough around the edges, and that the false positives and negatives that our model
predicts are actually more accurate than the proposed target masks. It is also possible that this is a
major shortcoming in applications that require very high precision, such as machine aided surgeries
or diagnoses. As the model stands now, applications that focus on broad characteristics from the

9



images, such as studying cell movements in a culture after being exposed to different stimuli may
be reliably labeled, but further work is required to extend into the larger biomedical field.

Some unexpected outcomes that we experienced were that validation and test accuracy actually
decreased somewhat when including a significant amount of augmented data. We were not able to
reach a conclusive decision on how to determine the optimal amount of augmented data to add to
the dataset, as well as how drastic the augmentation can get before the results degrade significantly.
We suspect that the reason we saw a decrease in accuracy after applying the augmented dataset
was because the images were too similar to each other, and so the model became too specialized to
our dataset (the validation images were too similar to the training images). In situations where we
have a more diverse set of images or a larger dataset, the benefits of data augmentation in terms of
versatility of classification may be more apparent. However, due to both time constraints and the
limited amount of datasets that were available, we were not able to explore this adequately.

Unfortunately this specific model will need to be retrained to an extent for different tasks as well
as different styled images, and we did not have the resources to improve our model to account for
multiple features in its predictions and training. Some of the previous Kaggle winners [7] modified
their architecture to account for borders, centers, and components in a holistic manner. Due to
time restrictions, we ended up needing a new network to make predictions for each of those tasks
separately.

5.5 Post-processing Discussion

Finally, our post processing attempt showed some promising results for a proof of concept imple-
mentation. The main problem seemed to be finding a reliable method of detecting how many clusters
there were in the final mask. If we counted beforehand and used that number to seed the K-means
algorithm, then there were very few errors on inspection. Of course, since our datasets did not in-
clude properly differentiated components on ambiguous structures, there was no way to determine a
score of how well we did. We used the elbow method to approximate the number of clusters for our
K-means algorithm, but the approximation in that method meant that error would always appear in
our results [13]. (The colored patches seen in [section 3] do not differentiate touching structures as
separate)

Figure 13: Initial Colormask Segmentation Attempt using K-means and Watershed

6 Future Work

It can be concluded that the U-net designed by Ronneberger [1] is very effective at processing
contextual data and generalizing it through the features of similar images. Our model had problems
with perfecting edges, but this may be improved with a longer training period. However, there
are certain limitations in that the network cannot be easily generalizable across multiple different
datasets at the same time; the system does not perform well to images that are too unfamiliar, and
it is not easy to gauge the tolerances for data augmentation for different datasets. Post-processing
techniques can to an extent distinguish components on generated masks, but the network itself does
not have the capability to. These are areas that can be further explored in future work.

10



Additional work can also be done to include feature hierarchy into our network [7], which is what
one of the contestants of the Kaggle competition used to further improve on results. The theory
is that a hierarchy of features is more useful in ambiguous situations such as edges and touching
borders in our case. It could significantly improve our mAP scores by compensating for our poor
edge precision.

References

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net: Convolutional networks for
biomedical image segmentation.” In International Conference on Medical image computing
and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.

[2] Çiçek, Özgün, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger.
”3D U-Net: learning dense volumetric segmentation from sparse annotation.” In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424-432.
Springer, Cham, 2016.

[3] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik ”Rich feature hierarchies for
accurate object detection and semantic segmentation” 2014

[4] Sadanandan SK, Ranefall P, Le Guyader S, Whlby C. Automated Training of Deep
Convolutional Neural Networks for Cell Segmentation. Scientific Reports. 2017;7:7860.
doi:10.1038/s41598-017-07599-6.

[5] Schlegl, Thomas, et al. ”Fully Automated Segmentation of Hyperreflective Foci in Optical
Coherence Tomography Images.” arXiv preprint arXiv:1805.03278 (2018).

[6] Johnson, Jeremiah W. ”Adapting Mask-RCNN for Automatic Nucleus Segmentation.” arXiv
preprint arXiv:1805.00500 (2018).

[7] Kaggle Data Science Bowl 2018 Dataset. Web link
[8] IEEE International Symposium on Biomedical Imaging Challenge 2012 Dataset. Web link
[9] IEEE International Symposium on Biomedical Imaging Challenge 2013 Dataset. Web link

[10] National Center for Microscopy and Imaging Research: Mitochondria dataset provided by
Matthias Haberl. Web link

[11] École Polytechnique Fédérale de Lausanne Computer Vision Laboratory: Electron Microscopy
Dataset. Web link

11

https://www.kaggle.com/c/data-science-bowl-2018#description
http://brainiac2.mit.edu/isbi_challenge/
http://brainiac2.mit.edu/SNEMI3D/home
https://drive.google.com/open?id=1XT_1MSlm-p8YYEU3tg5uIjGlN4YO-LH-
https://cvlab.epfl.ch/data/em

	Introduction
	Related Work
	U-Net
	Data Augmentation
	Other Architectures

	Dataset and Features
	Methods
	Preprocessing
	Architecture
	Post-processing
	Objectives and Metrics

	Results
	Segmentation Masks
	Accuracy
	Results and Model Discussion
	Challenges
	Post-processing Discussion

	Future Work

