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Abstract—To help address passengers’ concerns of both pri-
vacy and safety, it has been proposed to free TSA (Transportation
Security Administration) scanning and analysis of human inter-
vention by making use of machine learning algorithms. In this
project, AlexNet, a convolutional neural network is implemented
on a set of preprocessed images extracted from full body TSA
scans. The project is, for the time being, limited to 2 regions of
the body - the upper chest and the upper back. The log losses
obtained were 0.1221 and 0.0088 respectively for the 2 regions,
suggesting the algorithm is accurate.

I. INTRODUCTION

After the infamous bomber in 2009, who exploited the flaw
in the airport security measures. At the time TSA only used
Metal detectors to screen travelers for concealed weapons.
After the event two new types of scanners were introduced:

1) Millimeter-wave scanner
2) Backscatter - X-ray scanner
Of which the former uses radio waves to search for hidden

weapons or devices.These are the full-body scanners travelers
encounter at U.S. airports. The ones people are made to stand
in with their feet apart and hands above their heads. Experts
agree they shouldn’t worry anyone.

For the past 8 years various court sessions have been held
opposing the use of body scanners. Two of the main reasons
brought up were health and privacy. Health is immediately
ruled out as the millimeter wave does not harm the body
with extended exposure.The privacy concern was dealt with
by making it the duty of the officer behind the screen to
voluntarily delete the images. In spite of these measures stats
show people prefer pat-downs over the scanners. Another
drawback of the present system is the over straining of the
TSA officers. Due to the drop on the total number of inspectors
from a range of 46 thousand in 2006 to 42 thousand in
2016(LA Times). Officers are forced to perform duties of over
12 hours. This is in spite of the fact that total no of travelers
have increased. The total checkpoint volume has increased
from 708 Million in 2006 to 740 million in 2016.

Our aim was to replace the officer behind the screen with
a program to solve the above mentioned issues. Eliminating
privacy concerns and improving on the human error.

II. RELATED WORK

The most successful proposed method for threat detection
suggests dividing the body into regions and then search-

ing these specific regions for foreign objects (Guimares and
Tofighi, 2018). The paper cited uses a convolutional neural
network to divide the body into specific regions for threat
detection. Jaccard et al. (2016) use a convolutional neural
network to successfully detect small threats in X-ray images
of cargo. Krizhevsky et. al (2012) used the convolutional
neural network AlexNet to classify the 1.2 million high-
resolution images in the ImageNet LSVRC-2012 contest into
1000 different classes. They achieved a winning top-5 test
error rate of 15.3%, compared to the 26.2% error rate achieved
by the runner up. Because of this we chose to divide the
body into regions and use AlexNet as our convolutional neural
network.

III. DATASET AND FEATURES

Original Dataset

The dataset was obtained from the Passenger Screening
Algorithm Challenge on Kaggle (source). The original dataset
consisted of four types of files: calibrated object raw data,
projected image angle sequence (.aps), combined image 3D,
and combined image angle sequence. As described in the
Kaggle challenge and displayed in Figure ??, the body is
divided into 17 different regions for threat detection. Each file
in the dataset is labeled with a binary encoding specifying the
presence of a threat in each region. The threat distribution of
the full dataset is shown in Figure ??.

Fig. 1: Regions used for threat detection (left) and distribution
of threats in the original dataset(right).

Custom Datasets

As people reported achieving the best results using only
projected image angle sequence files, and as these files were
significantly smaller than the other types of image files, only
these files were used. Each .aps file consists of 16 two



dimensional frames equally spaced in angle as shown in Figure
??. Since the frames are not labeled separately, it is not
necessarily known what frame or frames a threat will be visible
in. However, as the entirety of regions 5 and 17 (Figure ??) are
visible in the first and ninth frames (Figure ??) respectively,
it is known that threats in these regions will be visible in
these frames. We thus chose to focus on these regions using
only the corresponding frames. This was done by constructing
a balanced dataset of corresponding frames for each region.
Due to the threat distribution in the original dataset (Figure
??), this resulted in two datasets, one of 212 images total for
Region 5 and one of 190 images total for Region 17.

Fig. 2: The 16 frames of a sample .aps file. Threats in Region
5 will be visible in Frame 1 (top leftmost image). Threats in
Region 17 will be visible in Frame 9 (bottom leftmost image).

Data Augmentation

All Images: In order to improve the classification results,
all images went through an image preprocessing pipeline as
displayed in Figure ??. The final process consists of the
following steps:

1) Grayscale Conversion. This was done so histogram
equalization could be performed.

2) Local Histogram Equalization. This was done to enhance
the contrast of the image.

3) Crop. This was done to exclude regions of non-interest
and prevent other possible threats from interfering.

4) Smoothing. Performed on input for region 5 only. Due to
height differences, faces were often included in images
for region 5. It was found that the edges of the face
would interfere with threat detection, so these images
were smoothed with a gaussian blur.

5) Zero-centering.
6) Normalization.

Fig. 3: The steps of the image preprocessing pipeline (from
left to right) for a sample image: grayscale conversion, local
histogram equalization, crop, smoothing, zero-centering and
normalization. Smoothing was only used on Region 5.

Several image filters were experimented with in steps four
and as step seven of the image preprocessing pipeline in
an attempt to further optimize threat detection. As threats
were manually seen to contain sharp edges, several edge
enhancement filters were tested in step 4. These include
unsharpened mask, laplacian, sobel and canny edge detection.
Since principal component analysis (PCA) and whitening
filters are often found to improve results of convolutional
neural networks, these were tested as a potential step seven
of the image preprocessing pipeline. The tested filters are
displayed in Figure ??. None of the filters mentioned were
found to improve our results.

Fig. 4: Tested filters on a sample image. The image enhance-
ment filters (displayed in the first two columns) are from
from left to right: unsharpened mask, laplacian, sobel and
canny edge detection. The last column displays PCA (top)
and whitened image (bottom). None were found to improve
our results.

Training Images: The images were split into separate
training and validation datasets with a split ratio of 0.8. This
resulted in 170/42 and 152/38 training/test images for Region
5 and Region 17 respectively. The training images were then
further flipped randomly in the horizontal direction and/or
randomly translated between -30 to 30 pixels in both the
horizontal and vertical directions.

IV. METHODS

AlexNet Structure

AlexNet is a convolutional neural network that consists
of 15 layers total. These include five convolutional layers,
each with a rectified linear (ReLu) activation function, two
normalization layers, three pooling layers, two dropout layers
and three fully connected layers. The first two fully connected
layers use a ReLu activation function, while the last fully con-
nected layer uses a softmax activation function. The detailed
architecture of AlexNet is displayed in Figure ??. Each type
of layer functions as follows:

The convolutional layer: The convolutional layer computes
the output of neurons connected to a local region in the input.
The size of this local region is specified by a given filter size
F, and one convolutional layer often has more than one and
up to N filters.

Each neuron computes a dot product between a weight and
a local region, the number of weights is calculated by element
wise multiplication of the size of the filter (F, F) and the



depth of the input image. In order to reduce the number of
parameters of the network, one assumes that the neurons of
each depth slice share the same weight and bias. This reduces
the number of parameters of the network and the forward pass
of the convolutional layer is now computed as a convolution
of the weight with the input layer.

The activation function used by the convolutional layer is
the ReLu function, f(x) = max(0, x), as this function trains
a four layered neural network up to six times faster than an
equivalent network that uses the traditional hyperbolic tangent
function (Krizhevsky et. al, 2012).

The Normalization Layer: The normalization layers are
inserted between convolutional layers and pooling layers and
is used to generalize the network and reduce the overall error

The Pooling Layer: The pooling layer is applied after the
convolutional layer, and its purpose is to downsample the
spatial size of the network. This further reduces the number of
parameters and computations done by the network, and as such
it controls overfitting. The pooling method used by AlexNet
is max pooling, which takes the largest output returned by a
region of neurons in the previous layer.

The Dropout Layer: The dropout layers are inserted be-
tween the fully connected layers and discards a specified ratio
of neurons, which again reduces the number of parameters and
thus prevents overfitting.

The Fully Connected Layer: Neurons in the fully connected
layer connect to all neurons in the previous layer, and as such
this layer behaves like a regular neural network or a multi-layer
perceptron. It can also be considered a convolutional layer with
filter size equal to one, and the activation functions for this
layer are thus, with the exception of the last fully connected
layer, the same as for the convolutional layer. Since the output
of the final layer returns a probability the softmax activation
function, also known as the normalized exponential function,
is used for the last layer.

AlexNet Implementation

An original AlexNet was implemented in Python following
the theoretical structure outlined in the previous section and
represented in Figure ??. However, a pretrained AlexNet
already trained on 1.2 million high-resolution images of
the ImageNet challenge, as described by Krizhevsky et. al
(2012), also exists in MATLAB. Since the first layers of
a convolutional network detect low level details of images,
such as edges, it is advantageous to use already pretrained
layers to both speed up and improve the training process.
Therefore, AlexNet was also implemented in MATLAB using
layer transfer.

In MATLAB, the activation functions are separated into
separate layers. In addition, the first and last MATLAB layers
are just input and output layers. This results in a network with
25 layers total. In order for AlexNet to classify our threat-
detection images into the binary threat or no threat classes,
the last fully connected layer (which corresponds to the last
three layers in MATLAB) needed to be modified and retrained.
The number of classes of the last fully connected layer was set

Fig. 5: Detailed architecture of AlexNet as implemented in
Python (top left), AlexNet implemented in MATLAB (top
right) and the modified MATLAB layers (bottom). The dropout
layers (not shown in the top left) are inserted after the first
and second fully connected layers. Filter size is shown as NxN,
the number of filters as Nfm and the stride as NxNsub for a
number N.

to 2 and this layer was trained on our datasets. The original
MATLAB implementation, as well as the implementation of
the modified layers, are displayed in Fig ??.

V. RESULTS

The minimum losses achieved for each region were obtained
with the pretrained AlexNet and are displayed in Table I and
the losses obtained at each training step in Figure ??. The
minimum validation losses achieved for the two regions were
12.21% for Region 5 and 0.88% for Region 17. In comparison,
the original AlexNet achieved a best loss of 35% and 6% for
Region 5 and Region 17 respectively.

TABLE I: Minimum Losses

Training Validation
Region 5 0.0139 0.1221

Region 17 0.0006 0.0088

Fig. 6: Training and validation loss for Region 5 (left) and
Region 17 (right). Orange represents the validation loss while
blue is the training loss.



VI. CONCLUSION

To help address passengers’ concerns of privacy, it was
proposed that the scanning and analysis of these scans be freed
of human intervention by making use of machine learning al-
gorithms. In this project, AlexNet, a convoluted neural network
is implemented on a set of preprocessed images extracted from
full body scans. The project is, for the time being, limited
to 2 regions of the body - the upper chest and the upper
back. When the program was run on a validation set, the log
losses obtained were 0.1221 and 0.0088 respectively for the 2
regions, suggesting the algorithm is very accurate. The average
log losses reported on Kaggle for all regions is 0.0242%, and
the average of our 2 regions puts us in the top 10. The results
are, however, based on the synthetic data provided in dataset
made available by the TSA. Although real world performance
of the program was not tested, it is reasonable to expect similar
accuracy in detecting presence of threats in real scans.

VII. FUTURE WORK

For sake of simplicity and because of constraints in time, the
program was only run on inputs that were manually cropped
from a single slice. To be able to identify threats from any
part of the body, including curved parts of the body, such as
parts of the thighs and calves, a new algorithm would have to
be developed to automatically crop the images (one image for
every slice- approximately 20 degrees of the 360 degrees body
scan) of the scanned subject into the predefined regions, then
pass them to the main program to identify presence of threats,
and finally, combine the information from these 16 slices to
affirm the presence of a threat on the entire body. Future work
might also include development of the neural network portion
of the program to identify the kind of threat detected using
object detection strategies.
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