Vegetation Classification Using Hyperspectral Images

Fengjunyan Li, Kazim Ergun, Osman Cihan Kilinc, Yuming Qiao

Abstract— Every object has its unique spectral ’signature’
over the electromagnetic spectrum, and this can be captured
using hyperspectral sensors. In this project, we use these
signatures for discriminating different types of plants. It has
been shown that machine learning algorithms are very powerful
at learning patterns. They have already been utilized for clas-
sification tasks in various fields. Indian pines dataset! is used
for testing and other measurements. Treating the hyperspectral
bands in the images as features and each pixel as a sample,
we classify plants with convolutional neural networks(CNN)
and support vector machines(SVM). Furthermore, we optimize
CNN to prevent overfitting, accelerate inference, and reduce
the resources it uses with respect to memory, battery and
computational power. The results demonstrate that CNN is very
successful in hyperspectral image classification tasks and opti-
mizations further increase its accuracy. We achieved 83.9% test
accuracy using SVM with Polynomial kernel, and successfully
achieved 99.2% with CNN.

I. INTRODUCTION

Hyperspectral imaging, like other spectral imaging, col-
lects and processes information across the electromagnetic
spectrum, usually in visible, near infrared, and short-wave
infrared wavelengths. Recently, with the development of
hyperspectral sensors, it has become possible to go beyond
traditional RGB images and capture hundreds of spectral
bands sampled with narrow wavelength intervals. There-
fore, taking advantage of contiguous narrow bands, these
hyperspectral sensors enabled the study of the chemical
properties of scene materials remotely for the purpose of
identification, detection, and chemical composition analysis
of objects in the environment. Hence, hyperspectral images
captured from earth observing satellites and aircraft have
been increasingly important in agriculture, environmental
monitoring, and urban planning.

The fundamentals of hyperspectral imaging are based
primarily on the interaction of light with matter. When a
photon is incident on a surface of a medium, energy can
be absorbed, transmitted and/or reflected by that surface,
with a wavelength dependency determined by the material
properties. The ratio of the energy reflected or scattered by
the surface to the incident energy is termed as the reflectance,
and measured by the hyperspectral sensors. For a particular
object, the reflectance spectrum shows characteristic bands
induced by the constituent materials. Therefore, spectral re-
flectance provides substantial information about the material
properties.

All authors are graduate students in University of California San Diego,
Electrical and Computer Engineering

(a) Hyperspectral Images (b) Satellite Image of In-
dian Pines

Fig. 1: Hyperspectral Images and Indian Pines Dataset

In this project, we utilize the spectral reflectance infor-
mation to classify plant types as an application of precision
agriculture. Specifically, we use hyperspectral images cap-
tured from satellites and use machine learning techniques
to discriminate crops in a plantation area. We use Indian
Pines Hyperspectral Dataset' gathered by AVIRIS Sensor.
For classification, we have used Convolutional Neural Net-
works(CNN)? and Support Vector Machines(SVM) with di-
mensonality reduction methods Principle Component Anal-
ysis(PCA) and Nonnegative Matrix Factorization(NMF). In
short, the input to our algorithm is an a hyperspectral image
with size 145 x 145 x 224 seen in figure 1 (b). We then use a
SVM and CNN model to output a predicted vegetation class
for each pixel.

II. RELATED WORK

In their work Delalieux et al.> used hyperspectral data to
detect apple scab caused by disease. The study involved the
identification of infected trees and selection of wavelengths
best suited for classifying the infected leaves from those of
the healthy leaves. The spectral data were analyzed using
methods as LDA, logistic regression analysis (for each wave-
length), partial least squares logistic discriminant analysis,
and tree-based modeling for classifying the infected leaves
classification.

Lee et al.* worked on the detection of greening in citrus
plantation using hyperspectral images. He used the spectral
angle mapping and spectral feature fitting classification tech-
niques. However, the author was not able to achieve high
classification accuracies due to a large variability within the
data.

Begum Demir and Sarp Erturk’ used Relevance Vector
Machine. They propose that RVM has similar strategy with
SVM but require fewer relevance vectors. With lower com-
plexity, RVM can achieve similar classification as SVM. In
the paper of G. Mercier and M. Lennon,® they researched

SVM with spectral-based kernel to classify satellite hyper-
spectral images. Their method is able to reduce the false
alarm by traditional kernel. We will try to use traditional
kernels in the SVM of our project to verify the result.

In their work Makantasis et al.”> show that using CNN,
hyperspectral images can be successfully classified. CNN
can encode the spectral and spatial features of pixel. The
low-to-high hierarchy of features improve the performance of
classification greatly. In our CNN implementation we extend
and optimize their method with layer pruning and layer
compression methods. Although these methods are widely
adopted in the industry and research, to our knowledge no
other work has been published that applies such optimiza-
tions on top of the model Makantasis et al. provided in their
work.

III. DATASET FEATURES AND PREPROCESSING

The dataset Indian Pines' consists of 145 x 145 pixels
and 224 spectral reflectance bands in the wavelength range
0.4 —2.5 um. There are 16 classes, some of them being from
the same crop type but at different stages of growth. In
terms of machine learning, each pixel in the images are
labeled according to their class and contain 224 features.
Plainly speaking, each pixel represents a location, and that
location contains 224 spectral bands. For example, the first
five spectral bands of a pixel/location can have values such
as : 3172, 4142, 4506, 4279, 4782. Data is preprocessed
for four reasons: (i) to introduce variability into data, (ii) to
strengthen the weak classes, (iii) to reduce the dimensionality
of the feature set and (iv) to prepare data for processing.

A. Oversampling

In Indian Pines dataset, there is a huge imbalance between
the number of samples of different crop types. For example,
as shown in Table I. There are 20 Oats samples whereas
the number of Soybean-mintill samples are 2455. To fix
this imbalance issue, we oversampled the classes which has
substantially less number of samples compared to the others.
Without oversampling, the classifier would give more weight
towards the classes with high number of samples, which
would lead to misclassification in minority classes. In our
implementation, we check the number of samples(pixels)
per each class and for each class we concatenate samples
from that class to data matrix to make up for the difference
between classes. Later, we randomly redistribute samples in
the dataset.

B. Data Augmentation

To prevent overfitting and train our model for the real
world, where images can come with different rotations and
different angles, we introduce new data by augmenting the
existing data. This increases the variability of data and
prevents overfitting. Hence, it increases the accuracy. This
achieved by flipping and rotating the images. In our imple-
mentation we randomly choose either to flip left-right, up-
down or rotate each sample.

TABLE I: 16 Classes of Indian Pines Dataset.

Class # of Samples
Alfalfa 46
Corn-notill 1428
Corn-mintill 830
Corn 237
Grass-pasture 483
Grass-trees 730
Grass-pasture-mowed 28
Hay-windrowed 478
Oats 20
Soybean-notill 972
Soybean-mintill 2455
Soybean-clean 593
Wheat 205
Woods 1265
Buildings-Grass-Trees-Drives 386
Stone-Steel-Towers 93

C. Dimensionality Reduction

Hyperspectral data is large in size, since information from
whole spectrum range is included in a pixel. However, not
all the information contained in the data is relevant for the
analysis, thus can be discarded without much loss. Moreover,
a lot of the bands shows high correlation. Applying dimen-
sionality reduction on our data before classification step helps
us reduce the processing time by projecting the data on a
smaller sized space without loss of information.

1) Principal Component Analysis: Principal component
analysis (PCA) is a statistical procedure that uses an or-
thogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. This
transformation is defined in such a way that the first principal
component has the largest possible variance (that is, accounts
for as much of the variability in the data as possible),
and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal
to the preceding components. The resulting vectors are an
uncorrelated orthogonal basis set. More information about
PCA can be found in.” To show the amount of information
kept after dimension reduction, we plotted the variance ratio
for different number of principle components in Figure2. We
took the 30 top principle components since it is enough to
explain the 0.99 of the total variance.

Explained Variance Ratio

g
\
|

Variance Ratio
a = o 2 o
S o o ° @
2 & g &

o
=

[0 100 150 200
rank

Fig. 2: Variance Explained vs Number of Principle Compo-
nents

Using the results of the PCA method, we can write
Ax; = A;x; , where x; are the eigenvectors of A, A; are the
eigenvalues of A, for any matrix A.

For data given as a set of m vectors € R", xy,...,X,,,PCA
method can be formalized as an optimization problem as
follows:®

maximize ||[XW]|[}
WeRmxk

subject to ||W]|| =1,

where X denotes the normalized covariance matrix X =
%Z;":l xixiT and W is the orthogonal projection matrix.

2) Nonnegative Matrix Factorization: Nonnegative Ma-
trix Factorization (NMF) is a matrix factorization method
where a matrix V is factorized into matrices W and H,
with the property that all three matrices have no negative
elements. Similar to PCA, we use NMF as a tool to reduce
dimensionality. Difference between PCA and NMF is that
while PCA has negative elements, the most rule of NMF
is that it does not have any negative elements. Thus, with
respect to PCA, NMF has more floating point elements to
approximate the matrix as close as possible to the original.
A comparison with respect to accuracy between PCA and
NMF is provided in the results section. The standard NMF
problem can be formulated as follows:

minimize [|[V—WH]|
WeRm*r HeRr <1
subject to W.H >0,

IV. CLASSIFICATION METHODS

A. Support Vector Machines

Support Vector Machine, also known as SVM, is popular
for solving problems about classification, detection and re-
gression. In support vector machine, the model constructs a
hyperplane or set of hyperplane in higher dimension space.
From,® we can know the structure of SVM. The hyperplane
linear model of SVM can be defined as

y=w'9(x)+b

where ¢(x) is transformed feature space. The margin is
defined as the smallest distance from the decision hyperplane
to the closest point from dataset. In the SVM problem, we
are trying to construct the decision boundary hyperplane to
maximize the margin with dataset. For each data point, ¢; is
the target label, where t€ {1,—1}. In our case, the problem
is not linearly separable, we will use soft-margin SVM and
introduce slack variable & > 0. & allows the misclassification
of outline. When &; > 1, the data point is misclassified. At the
same time, we should have inequality constraint as follows:

ti(wi ¢i(x) +b) > 1-§;

This is because we need to make y(x,) > 0 for those points
that have #, = 1, and make y(x,) < O for those points that

have f, = —1. The distance from data point x,, to the decision
boundary in hard-margin is given by:

ti(W'9(x) +b)

In order to find the maximum margin solution, we solve the
following problem:
1
argmaxw Wmin,Z (tn (wT(]) (x)+b)
w
With simplification of problem and the soft-margin slack
variable , the SVM problem eventually becomes:

1 N
argmaxy y ¢ §||W||2 +CY &,
n=1
stt,(Wo(x)+b)>1-&;E >0n=1,2,...N

The variable C is the regularization parameter to control the
tradeoff between margin and the tolerance of misclassifi-
cation. In addition,in the dataset is non-linearly separable,
we can use kernel trick to transform them to higher linear
dimension, such as Gaussian Kernel. Since the SVM problem
is a convex optimization problem, we can always obtain a
global optimum from the model. With the optimal decision
boundary, we can use it to classify our dataset into different
labels.

B. Convolutional Neural Networks

With the development in hardware technology, convo-
lutional neural networks have become popular for image
classification tasks in the recent years. In convolutional
neural networks, the first few hidden layers are convolutional
layers. The convolutional layers consist of spatially small
filters. These filters are applied through a sliding-window
across the input. Each filter outputs an activation map in
2-D that corresponds to an edge, rotation, or some other
hidden feature of the input. These activation maps are then
aggregated to be the output of that convolutional layer.
The key difference of convolutional layers is that they are
connected only to a local region of the input volume. Despite
of the skepticism CNN received at first,it has been proven
by countless papers and against many benchmarks that CNN
is actually a very powerful method for image classification.
Thus, it was adopted by many researchers in various fields
for different tasks.

1) Architecture: Our architecture is similar to the generic
Convolutional Neural Network architecture, which usually
consists of convolutional layers, followed by pooling layers,
normalization layers and finally the fully connected layers.
However, we do not use pooling layers. Although they are
usually useful and it is counterintuitive to not use them,
pooling layer actually decreases the accuracy in our case.
Thus we did not use them. During forward propagation, the
equation below is calculated at each neuron. Suppose that
this neuron has m connections in the previous layer, these
connections have weights w; and the activation values of the

units are a;.

m

Z w;a; +b

i=1
The output of this calculation then goes through a non-
linear function. We use ReLu as our non-linear activation
function, which clamps the negative activations to 0 and
dropout method to provide some relief from overfitting. The
ReLu function can be mathematically represented as:

f(x) = max{0,x}

Since the gradient of a cost function with respect to its
parameters gives the direction of gradient ascent, to minimize
the cost function we need to go in the opposite direction.
Then, we simply leverage the chain rule and derivatives to
update the parameters during backpropagation.

C. Optimizations

One of the problems that should be addressed is the
resources neural networks use, since they are a drain on
the resources. They are computationally expensive to use.
They require a large memory, a powerful battery and a
powerful GPU. Therefore, today much of the computation
is done via the cloud services. However, recent innovations
show that machine learning will become ubiquitious. Edge
devices traditionally operate on low resources. Moreover,
drones also play an important part in precision agriculture
and agricultural technology. We can leverage hyperspectral
imaging technology on the drones to provide farmers a real
time feedback. Thus, it is important to make neural networks
light enough to put them on edge devices.

By optimizating our neural networks, we reduce the
number of parameters and computations. Thus, we acce-
larate inference and decrease the resource requirements. For
this reason, we have implemented two methods: (i) layer
compression and (ii) layer pruning. Although most of the
computation is typically done on convolutional layers, fully
connected layers have the most connections and parameters
on the convolutional neural networks. Thus, we have imple-
mented these methods on fully connected layers.

1) Fully Connected Layer Compression: Layer compres-
sion is used to reduce the number of parameters of a layer.
It is usually achieved by decomposing the weight matrix
of a layer and then replacing that matrix with a low rank
representation or approximation. This method provides a
dramatic decrease in the number of parameters.

We replaced only the first fully connected layer by its de-
composition, preserving all other layers in the network. First,
we used PCA to select the number of principal components
that can successfully approximate its weight matrix. Then,
we used singular value decomposition to factorize the matrix
and replaced this layer with its factorization.

Since each neuron is connected to all neurons in the
previous layer, if there are m neurons in the previous layer
and n neurons in that layer, then there are mxn connections.
Suppose we want to replace the weight matrix W € IR™"

with low rank approximation of rank k. The singular value
decomposition of W is below.

W = USV’, where U e R™™ .S € R™™ and V € R™"

After selecting the first k principal components of the matrix,
we use only U € R™k § ¢ Rk and V € IRK*™, Thus, the
matrix Wis replaced by matrices R1 € R™¥ and R2 € IRk*™,

R1 = U,,;»kSexk
R2 = Vgxnv

where R1 and R2 give the low-rank approximation of the
original weight matrix W. We replace the first fully con-
nected layer with two new fully connected layers, constructed
from R1 and R2, respectively. While the first replacement
layer does not have any bias assigned, the second replace-
ment layer is assigned the bias of the original layer. Thus, we
reduce the number of parameters in the matrix from m X n
to k X (m+n). The change in the number of parameters is
dramatic, the results are demonstrated in the results section.

2) Fully Connected Layer Pruning: Layer pruning is
another method to optimize the neural networks. The idea
is based on reducing the number of connections between
the layers. We used a threshold based method, where we
masked the connections with respect to the absolute value
of their weights. The masked weights are not trained during
training can be completely cut-off during deployment with
complementary methods.

D. Noise Reduction

The noise reduction was done after the result of SVM
and neural networks. As we inspected the resulting im-
age, we found that there were always some dangling mis-
classifications points. We did the noise reduction by correct-
ing points ,whose neighbors all belonged to another single
class, to his neighbor class. We believe that it is impossible
for a plant to grow while all the plants near it belonged to
another class, and the noise reduction result proved that our
belief is correct.

E. Implementation

We used Keras 2.1.5'° in conjunction with Tensorflow!!
1.7.0. Keras is an open source maintained by mostly peo-
ple from Google, where one can quickly prototype neural
networks. Nvidia GTX 1070 graphics processing unit was
used with CUDA 9.0'? for calculations. The development
was completed on a Windows 10 computer. The modularity
of the code was also key aspect of the development.

Other libraries include spectral, matplotlib,'3> numpy,'*
scipy.’learn for utilities such as plots, and training-test
dataset splitting and image outputs.

We used Adam for gradient descent optimization with a
learning rate of 0.0001 and a decay of le~°. Adam acts like a
ball with friction that goes down the convex curve of the loss
function. To achieve that in addition to storing exponentially
decaying average of past squared gradients, it also keeps an
exponentially decaying average of gradients and computes an
adaptive learning rate for each parameter. Given the 6 GB

RAM of Nvidia GTX 1070, the minibatch size was selected
to be 100. This assured the best performance/accuracy for
the model.

V. RESULTS

We split our dataset to training and test datasets, %75 and
%25, respectively. For CNN, we have included the vanilla
classifications (without any optimizations) with PCA-applied
and NMF-applied input. With PCA-applied input, our model
gives a higher accuracy compared to NMF-applied input.
Later, we used the model trained with the PCA-applied data
as a baseline and applied our optimizations on top of that
model. In this section, we make several comparisons such as
retraining and not retraining the model after optimizations.
We also demonstrate the results with different ratios of
network pruning and different ratios of layer compression.
The best accuracies we obtained without denoising are given
in the table below.

CNN Vanilla CNN with CNN with Layer
Classification with Network Pruning
PCA-Input Compression
%98.1 9%99.1 %98.5

TABLE II: Best Accuracies Obtained using CNN

For SVM, the best accuracies we obtained without denois-
ing are given in the table below.

SVM Gaussian Kernel
%30.7

SVM Polynomial Kernel
%82.7

TABLE III: Best Accuracies Obtained for SVM Kernels

The final accuracies we obtained with best CNN and best
SVM after denoising are given in the table below.

CNN with Network
Compression
%99.2

SVM Polynomial Kernel

%83.9
TABLE IV: Final Accuracies after Noise Reduction

A. Support Vector Machines

We provide a detailed explanation of our results, graphs
and output images. We have only used Indian Pines dataset
as a benchmark. We used %25 of the dataset as the test set
and the rest was used as the training set. The operations
were completed on the preprocessed data as explained in the
preprocessing section.

1) Gaussian Kernel: We start by choosing Gaussian Ker-
nel. The training error is 87.8%, and the testing error is
80.7%. Figure 3 is the resulting classified image. It can be
seen that the resulting image successfully shows the structure
of the plantation, but there are also many misclassification
points. Some classes are well learned but some still need
more training.

2) Polynomial Kernel: The best result we can get is
from order = 3. The training accuracy for the polynomial
kernel is 93.4%, and the testing accuracy is 82.7%. The
testing accuracy is better than the Gaussian Kernel. Figure 3
shows the resulting classified image. It can be seen that the
Polynomial kernel model has a better result with much less
misclassified points.

(a) Gaussian Kernel

(b) Polynomial Kernel

Fig. 3: Support Vector Machine Classification

B. Convolutional Neural Networks

We provide a detailed explanation of our results, graphs
and output images. We have only used Indian Pines dataset
as a benchmark. We used %25 of the dataset as the test set
and the rest was used as the training set. The operations
were completed on the preprocessed data as explained in the
preprocessing section.

1) Vanilla Classification:

1) PCA
We implemented two different methods for dimen-
sionality reduction. As explained in the preprocessing
section, the input can be successfully approximated
by using only the first 35 principal components. The
figure 4 shows our results with no optimizations given
the first 35 principal components. Learning curve con-
verges around %98.1 accuracy.

2) NMF
The first 35 components of the nonnegative matrix
factorization was used to make a fair comparison with
PCA. However, it can be seen from figure 4 below
that compared to PCA, NMF produces a poorer result
(%95.67 accuracy). This might be due to the fact
that NMF does not have negative values, thus each
of its components also include very small floating
point numbers. During training, this might engender
an increased number of errors in calculations due to
floating point overflow.

Model Accuracy Model Accuracy

[H

3 6
Epoch Epoch

(a) PCA-applied Data Learning Curve (b) NMF-applied Data Learning Curve § ,,,,

Fig. 4: Learning Curves of Vanilla Classifications

It is clearer from figure 5 that even without any
optimizations the classification with the PCA-applied
input is better than the NMF-applied input.

(a) PCA Vanilla Classi- (b) NMF Vanilla Classi-
fication fication

Fig. 5: Vanilla Classifications

2) Fully Connected Layer Compression: Using the trained
model of the PCA vanilla classification, we took the weight
of the first fully connected layer and displayed its principal
components. The figure below shows that it is nearly linear.
Thus, this means that all the dimension of the weight matrix
is nearly equally important.

Explained Variance Ratio versus Rank

Explained Variance Ratio

q k
Fig. 6: PCA of the First Fully Connected Layer

The reduction in the number of parameters is clearer in
the figure below. The first fully connected layer has m x n
parameters. Table VI shows how small it gets with different
low-rank representations. Even though we significantly de-
crease the number of parameters, we get acceptable results.

Interestingly, even without retraining there is an increase
in accuracy after layer compression. Figure 7 shows that even
for very low rank factorizations, we achieve higher accuracy
or only a negligible decrease in accuracy. In our case layer
compression perturbs the network and prevents overfitting.
When k=75, the model peaks at %99.1 accuracy. Moreover,
it can be observed that the retraining of the network does

little to increase the accuracy. This is because we closely
approximate the weight matrix and it is not always necessary
to retrain the network after compression.

Accuracy vs rank - Without Retraining Accuracy vs rank - With Retraining

03990 0990

0988
0988

Z 0986 z
s 5 0986
+

0984
0982

0980 0982

0 0 4 0 8 100 120 140 0 0 4 0 8 100 120 140
rank rank

(a) Without Retraining (b) With Retraining

Fig. 7: Layer Compression: Accuracy vs Rank

3) Fully Connected Layer Pruning: We pruned all the
fully connected layers with some ratio k. Only the largest
%k of the weights was kept, while the others were clamped
to 0. Thus, while the original model had 2430 x 1804 180 x
16 parameters, this goes down dramatically with pruning.
The subsequent reductions are clear in table VI. It can
be observed from figure 8 that even without training, this
method preserves and slightly increases the accuracy of
our model to %98.2, but as k grows the accuracy slowly
decreases. However, after %90 of the weights are pruned
the accuracy drops significantly. Results are encouraging.
Similar to compression pruning works as a complement and
prevents overfitting. The accuracy slightly increases as k
grows to %060 pruning at %98.5. The difference between
retraining and not retraining is clear. While the accuracy
drops after %80 percent pruning with the untrained model,
the accuracy is relatively preserved until %95 pruning in the
retrain model. Moreover, this method is orthogonal to layer
compression and can be used in conjunction.

Accuracy vs Pruning Rate - Without Retraining Accuracy vs Pruning Rate - With Retraining

0395

090

Accuracy

080

0 0 &0 & 100 0 0 &0 & 100
Pruning Rate Pruning Rate

(a) Without Retraining (b) With Retraining

Fig. 8: Uniform Pruning: Accuracy vs Pruning Ratio

4) Noise Reduction: We run the noise reduction based on
our SVM/CNN results. Figure 9 & 10 show the results. In
both cases, the noise reduction results are encouraging. For
SVM model, the noise reduction provides a bigger boost,
there are much fewer dangling incorrect predictions. The
accuracy increases from 82.7% to 83.9%. For CNN model,
although the original result is very good, there are still some
wrong predictions get corrected, and the accuracy increases
from 99.1% to 99.2%

Rank of Decomposition 2 5 10 50 75 100 150 Original
Number of Parameters 5220 13050 26100 65250 130500 195750 261000 391500 437400
Without Retraining (%) 97.9 98.5 98.5 98.2 98.6 99.0 99.08 98.5 98.1
With Retraining (%) 98.5 98.5 98.1 98.6 98.9 99.1 98.5 99.1 98.1
TABLE V: Layer Compression, Accuracies and Parameter Reduction
Pruning Ratio (%) Original 20 30 40 50 60 70 80 90 95 98
Number of Parameters 440280 352224 308196 264168 220140 176112 132084 88056 44028 22014 8805
Without Retraining (%) 98.1 98.2 97.9 98.1 98.2 98.1 95.2 91.4 78.7 55.6 354
Without Retraining (%) 98.1 98.2 98.3 98.3 98.5 98.5 98.3 97.7 96.8 95.0 76.2

TABLE VI: Uniform Fully Connected Layer Pruning, Accuracies and Parameter Reduction

(a) SVM before Denoising (b) SVM after Denoising

Fig. 9: SVM Polynomial Kernel result before and after noise
reduction

(a) CNN before Denoising

(b) CNN after Denoising

Fig. 10: CNN result before and after noise reduction

VI. CONCLUSION

In this project, we utilized the fact that objects have unique
band patterns and proposed machine learning methods of
learning the hyperspectral images using SVM and CNN
model. We pre-processed our data by oversampling for weak
classes, using data augmentation and using PCA to reduce
the dimensionality. Then we used SVM and CNN to learn the
patterns, and tried optimizations on them. In the SVM model,
the result shows that Polynomial kernel with the order of
three produces a higher accuracy (83.9%) than the Gaussian
kernel. In the Convolutional Neural Networks, optimizations
complement training and further increase the accuracy to
%99.2. As the result shows, Convolutional Neural Networks
performs better than SVM. We think that the reason CNN
performs so well is that,CNN is more powerful in fetching

structural data. It might be that band patterns themselves

" have some structure that CNN can interpret, however SVM
cannot, thus CNN performs significantly better in this task.
. The prediction result is very close to the ground truth. We
. believe that a combination of hyperspectral camera and our
- CNN model can classify vegetation in a fast, frequent, and
- cost-efficient manner.

For future works, our model can be extended to plant

" disease diagnosis through introduction of diseased plants’

data. In addition, new data and new classes are always wel-
come, and they will further enhance the ability of our model.
In conclusion, CNN is an effective tool for hyperspectral
image analysis and can be utilized in precision agriculture
technology.

REFERENCES

[1] M. FE Baumgardner, L. L. Biehl, and D. A. Landgrebe,
220 band aviris hyperspectral image data set: June
12, 1992 indian pine test site 3, Sep. 2015. [Online].
Available: https : / / purr . purdue . edu /
publications/1947/1.

[2] K. Makantasis, K. Karantzalos, A. Doulamis, and N.
Doulamis, “Deep supervised learning for hyperspec-
tral data classification through convolutional neural
networks,” in Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2015 IEEE International, IEEE, 2015,
pp- 4959-4962.

[3] S. Delalieux, J. Van Aardt, W. Keulemans, E.
Schrevens, and P. Coppin, “Detection of biotic stress
(venturia inaequalis) in apple trees using hyperspectral
data: Non-parametric statistical approaches and phys-
iological implications,” European Journal of Agron-
omy, vol. 27, no. 1, pp. 130-143, 2007.

[4] H.Li, W. S. Lee, and K. Wang, “Airborne hyperspec-
tral imaging based citrus greening disease detection
using different dimension reduction methods,” in 2013
Kansas City, Missouri, July 21-July 24, 2013, Ameri-
can Society of Agricultural and Biological Engineers,
2013, p. 1.

[5] B. Demir and S. Erturk, IEEE Xplore, 2007. [Online].
Available: https://ieeexplore.ieee.org/
stamp/stamp. jsp?tp=&arnumber=4317528.

(6]

(7]

(8]

(9]

[10]
[11]

G. Mercier and M. Lennon, “Support vector machines
for hyperspectral image classification with spectral-
based kernels,” IEEE Xplore, 2018. [Online]. Avail-
able: https : / / ieeexplore . ieee . org /
stamp/stamp. jsp?tp=&arnumber=1293752.
S. Wold, K. Esbensen, and P. Geladi, ‘“Principal
component analysis,” Chemometrics and Intelligent
Laboratory Systems, vol. 2, no. 1, pp. 37-52, 1987,
Proceedings of the Multivariate Statistical Workshop
for Geologists and Geochemists, ISSN: 0169-7439.
DOIL: https://doi.org/10.1016/0169-
7439 (87) 80084 — 9. [Online]. Available: http :
/ / www . sciencedirect . com / science /
article/pii/01697439878008409.

D. Garber and E. Hazan, “Fast and Simple PCA
via Convex Optimization,” ArXiv e-prints, Sep. 2015.
arXiv: 1509.05647 [math.OC].

C. M. Bishop, Pattern recognition and machine learn-
ing. Springer, 2006.

F. Chollet et al., Keras, https://keras.io, 2015.
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M.
Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorflow: A system for large-scale machine learning,”
in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser.

[12]

[13]

[14]

[15]

OSDI’16, Savannah, GA, USA: USENIX Associa-
tion, 2016, pp. 265-283, 1SBN: 978-1-931971-33-1.
[Online]. Available: http : / /dl . acm . org /
citation.cfm?id=3026877.3026899.

J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable parallel programming with cuda,” Queue,
vol. 6, no. 2, pp. 40-53, Mar. 2008, 1SSN: 1542-7730.
DOI: 10 .1145/ 1365490 . 1365500. [Online].
Available: http://doi.acm.org/10.1145/
1365490.1365500.

J. D. Hunter, “Matplotlib: A 2d graphics environ-
ment,” Computing In Science & Engineering, vol. 9,
no. 3, pp. 90-95, 2007. por: 10 .1109/MCSE .
2007.55.

T. E. Oliphant, Guide to numpy, 2nd. USA: CreateS-
pace Independent Publishing Platform, 2015, ISBN:
151730007X, 9781517300074.

E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open
source scientific tools for Python, 2001. [Online].
Available: http://www.scipy.org/.

APPENDIX

A. Extra Results

Fig. 12: Layer Compression After Training (From Low to
High Rank Compression)

Fig. 11: Layer Compression Before Training (From Low to
High Rank Compression)

Fig. 13: Layer Pruning Before Training Fig. 14: Layer Pruning After Training

