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Abstract— We apply modern machine learning techniques
for multi-label classification of satellite imagery. Using custom
convolutional neural networks and popular architectures with
transfer learning, we participate in a Kaggle competition that
aims to fight deforestation.

I. INTRODUCTION

Deforestation in the Amazon Rainforest accounts for re-
duced biodiversity, habitat loss, climate change, and other
devastating ecological and environmental effects. Under-
standing and tracking human deforestation and ecological
changes over time can better help environmentalist and
government efforts in responding to both human and natural
forest loss. Using modern computer vision techniques, we
attempt to aid in this effort by using satellite imagery data
of the Amazon Rainforest to track the expansion of human
deforestation efforts. The ability to classify satellite data
will allow us to better understand where, how, and why
deforestation happens all over the world - and ultimately
how to respond [1].

We utilize several convolutional neural networks (CNNs)
whose inputs are images of the rainforest and whose outputs
are predicted labels of the condition of the rainforest. Class
labels can be categorized into 3 groups: atmospheric con-
ditions, common land cover, and rare land cover. Weather
conditions such as overcast can complicate accurate labeling
of the data, which must be taken into careful consideration.
Our experimentation included the following methods:

• Custom CNN Architectures: We create our own custom
neural network architectures using modern techniques in
machine learning and computer vision.

• Transfer Learning using Various Successful CNN
Architectures: We wish to utilize pretrained features
from the successful VGG16 and Xception architectures
and fine-tune the weights through backpropagation to
classify the satellite images in our dataset.

We implemented these in the Python programming language
using the high-level neural networks API Keras with Tensor-
Flow backend [2], [3].

II. RELATED WORKS

Convolutional Neural Networks work well for image clas-
sification tasks partly due to their rich hierarchical represen-
tation of features derived from an input image. Prior to CNNs
however, there have been several similar approaches for
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extracting features for computer vision and image processing
tasks.

Finite-Impulse Response (FIR) filter design laid the foun-
dations for low-level feature extraction for things such as
edges, lines, and colors of an image. Laplacian, Prewitt, and
Gabor filters are examples of primitive feature extractors that
can detect lines and edges in various orientations [4]. These
filters were applied using convolution and were some of the
first methods in computer vision and image processing for
developing “hand-crafted” features for image classification.
It is pleasing that the first-layer filters learned through back-
propagation of a convolutional neural network are typically
variants of Laplacian and Gabor filters.

Wavelet representations were an early development in
creating a hierarchical representation of features [5]. A
wavelet representation can be obtained by recursively ap-
plying an orthogonal “filter bank” followed by a decimation
step over various stages creating a multi-scale hierarchical
representation of the image. This is similar to CNNs in
that the various output channels of a convolutional layer
can be interpreted as a filter bank followed by a down-
sampling or “pooling” stage. However, these methods used
hand-crafted filters, while the philosophy of deep learning
attempts to learn the best representation (or kernels) through
backpropagation.

An early convolutional network called the Neocognitron
was designed for optical character recognition of handwritten
digits from 0 to 9 in the 1980’s by Fukushima et. al [6].
They alternated between convolution and average-pooling
without backpropagation. LeCun et. al. created LeNet-5 for
reading hand-written digits using the hyperbolic tangent
function after convolutions trained using backpropagation
on the famous MNIST dataset [7]. In 2012, AlexNet won
the ImageNet challenge using a deeper CNN using ReLU
and introduced the concepts of using specific GPU architec-
tures, normalization, and overlapping pooling [8]. Since this
landslide victory of the ImageNet challenge, many variants
of CNNs have appeared such as ZFNet [9], VGG[10],
Inception/GoogLeNet[11], ResNet[12], DenseNet[13], and
Xception[14].

III. DATA

We obtain the dataset from Kaggle’s “Planet: Understand-
ing the Amazon from Space” [1].

• train.csv - a list of training file names and their
labels; the labels are space-delimited
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• sample submission.csv - standard format of sub-
mission according to Kaggle, which contains all the file
names in the test set

• [train/test]-tif-v2.tar.7z - tif files for the
training/test set (updated: May 5th, 2017)

• [train/test]-jpg[-additional].tar.7z -
jpg files for the training/test set (updated: May 5th,
2017)

According to Kaggle, the data is provided in a “chips”
image format. Planet, the company sponsoring the competi-
tion, used 4-band satellites in sun-synchronous orbit (SSO)
and International Space Station (ISS) orbit. The chips use
the “GeoTiff” format characterized by four bands of data:
red, green, blue, and near infrared, each of which is in
16-bit digital number format. Kaggle has stripped “geotiff
information regarding the chip footprint and ground control
points” [1]. The data, collected between January 1, 2016
and February 1, 2017, centers around the Amazon basin
which includes Brazil, Peru, Uruguay, Colombia, Venezuela,
Guyana, Bolivia, and Ecuador (Figure 1).

Fig. 1. Map of Amazon River Basin

Kaggle further provides the JPEG format of the data with
only three channels (rgb). The training dataset consisted of
40479 labeled files, and the test dataset consisted of 61191
files. The images are 256 x 256 x 3 pixels. There are 17
unique labels provided in the training labels CSV:

• four weather labels: clear, partly cloudy, haze, cloudy
• six land labels: primary, agriculture, water, cultivation,

habitation, road
• seven rarer labels: slash burn, conventional mine, bare

ground, artisinal mine, blooming, selective logging,
blow down

This allows us to frame our task as a multi-class clas-
sification problem. We provide example training data with
respective labels in Figure 2.

Fig. 2. Examples of Labeled Data

A. Pre-Processing

We opted to use the JPEG formatted data. We randomly
shuffle data and use a 80/20 training and validation split.
We resize from 256x256x3 to 96x96x3 for faster training.
We do note that this down-sampling may result in a loss of
information. We normalize the image pixel values from 0-
255 to 0-1 then perform mean subtraction over the entire
training set. We record this mean and apply it to the
validation and testing set. We further perform the following
functions randomly on the training images:

• rotate the images from 0◦-90◦

• flipping horizontally
• flipping vertically
• shift images horizontally up to 0.2 of image width
• shift images vertically up to 0.2 of image height

IV. METHODS

A. Convolutional Neural Networks

Convolutional neural networks (CNNs) have been shown
to successfully learn a hierarchy of features for a variety of
computer vision and image processing tasks. CNNs are a
“specialized kind of neural network for processing data that
has a known grid-like topology” [15]. Basic neural networks
do not scale well to images, whereas convolutional neural
networks can “take advantage of the fact that the input
consists of images and they constrain the architecture in a
more sensible way” [16]. Figure 3 visualizes a Basic neural
network.

Fig. 3. A basic 3-layer Neural Network [16]

Figure 4 visualizes a typical convolutional neural network
where layers of the CNN transforms the 3D input volume to
a 3D output volume of neuron activations.
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Fig. 4. A Convolutional Neural Network [16]

We suspect that a convolutional neural network would
be useful for this type of problem where we need to take
into account texture, color, and shape information to classify
classes of data. To justify the use of convolutional neural
networks, we explain what CNNs are.

“Convolutional networks are simply neural networks that
use convolution in place of general matrix multiplication in
at least one of their layers” [15]. In the most basic of terms,
convolution is an operation on two functions of a real-valued
argument. The convolution operator, usually denoted by an
asterisk, takes an input x and applies a kernel w to produce
a feature map s

s[n] = (x∗w)[n] =
∞

∑
k=−∞

x[k]w[n− k]

In machine learning applications, the inputs and kernels
are multi-dimensional and are usually called tensors. To
motivate the use of the convolution, we note several key
ideas: sparse interactions, parameter sharing, and equivariant
representations [15].

1) Sparse Interactions: Whereas traditional neural net-
works use matrix multiplication to describe the interaction
between each input neuron and each output neuron, CNNs
use kernels, which are of smaller size than the input, in order
to detect smaller, meaningful features. This allows for more
efficient parameter storage and faster output computation
since there are naturally fewer operations.

2) Parameter Sharing: In traditional neural networks,
each element of the weight matrix is used exactly once when
computing the output of a layer [15]. In convolutional neural
networks, rather than learning a separate set of parameters for
every location, we learn only one set for every kernel [15].
Since the kernel size is drastically smaller than the input
image size, convolutions are “dramatically more efficient
than dense matrix multiplication in terms of the memory
requirements and statistical efficiency” [15].

3) Equivariance: A function is equivariant if when the
input changes, the output changes in the same way. With
images, the convolution creates a 2-D map of where certain
features appear in the input. If an object in the input is
shifted, its representation will be shifted by the same amount.
With convolutional neural networks, it is common to detect
edges in the first layer. The same edges appear more or
less everywhere in the image, so it is practical to share
parameters across the entire image. It is important to note
that convolution is not equivariant to scale or rotations.

Now that we have a motivation for using convolutions, we
explore the basic layers that combine to form a CNN.

• Convolutional layers make up the most computation-
ally intensive part of the network. The parameters of a
convolutional layer include learnable filters or kernels.
Recall, these filters are of smaller size than the input size
dimension. These filters are convolved to obtain a multi-
dimensional activation map. “Intuitively, the network
will learn filters that activate when they see some type
of visual feature such as an edge of some orientation or
a blotch of some color” [16].

• Pooling layers replace the output of the net at a
certain location with a summary statistic of the nearby
outputs [15]. Variations of pooling downsamples the
input to “progressively reduce the spatial size of the
representation to reduce the amount of parameters and
computation in the network” which also helps control
overfitting [16]. Pooling operations tend to help with
spatial invariance as well.

• Dropout is a form of regularization by only keeping a
neuron active with some probability p or setting it to
zero otherwise [16]. This technique forces the network
neurons to generalize by randomly dropping neuron
connections.

• Batch Normalization forces the activations through-
out a network to take on a unit gaussian distribution
[16]. Normalization is a differentiable operation, and
networks that use Batch Normalization are more robust
to bad initialization [16]. This technique “can be in-
terpreted as doing preprocessing at every layer of the
network” [16].

• Fully Connected layers are also known as Dense
layers. These types of layers make up traditional neural
networks. They have full connections to all activations
in the previous layer, and are used towards the ends of
CNNs in order to calculate class scores.

We combine the aforementioned layers in order to create
custom CNN models. We name the models Custom 0 and
Custom 1 for easy reference. The architectures are drawn in
Figure 5.

Fig. 5. Custom CNN Architectures

B. Transfer Learning
We also explore the use of Transfer Learning with the pop-

ular architectures VGG16 and XCeption whose architectures
are shown in Figures 6 and Figure 7 respectively. Transfer
Learning is a technique in deep learning in which we use the
convolutional layers of a pre-trained deep learning model as
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a form of “feature extraction” for a different classification
problem. In theory, a convolutional neural network learns a
rich hierarchy of features which may be useful for multiple
problems. Many modern deep learning frameworks come
with pre-trained CNN architectures. With transfer learning,
we can “freeze” the convolutional layers during backprop-
agation. This means the network weights will not change
during backpropagation, which is akin to not learning. How-
ever, we then append a non-frozen dense linear layer after
the convolutional layers in the architecture to satisfy our
output requirements (in our case, seventeen outputs). We
would only retrain this final layer in order to better suit
our classification problem. Despite being trained on different
datasets, popular CNNs have shown to be powerful feature
extractors that are capable of generalizing to new data and
can thus be re-purposed for our new image classification
problem. In our experimentation, however, we implement a
variant of the aforementioned Transfer learning called “fine-
tuning”. With this technique, we do not freeze any layers, but
instead we allow all the transferred weights in the network
to update with backpropagation. We found this yielded better
results with small samples of data, so our report will focus on
this “fine-tuning” approach. Furthermore, we simply modify
the architectures input and output layers of VGG16 and
XCeption to fit the input image dimension and the output
label dimension.

Fig. 6. VGG16 Architecture [17]

The architectures VGG16 and XCeption were chosen due
to their popularality in image classification. The VGG16
network is built using 3x3 size Convolutional layers that
are stacked on top of each other in the order of increasing
depth. To reduce the volume size, 2x2 size Max pooling
layer is applied. Afterwards, the network contains two fully-
connected layers of 4,096 nodes, which is followed by a
sofmax classifier. Again, we make minor changes to the
architecture to fit our classification problem. Similar to
VGG16 is the VGG19 network which instead contains 19
layers.

The XCeption network is an extension of the Inception
network, where the Inception network extracts multi-level
features by computing 1x1, 3x3 and 5x5 convolutions and
output of these convolutions are stacked along the channel
dimensions before feeding into the next layer in the network.

In the XCeption network, the Inception module is replaced
with depthwise separable convolutions, as shown in the
“Middle flow” section in Figure 7. This allows the network to
map spatial correlations for each output channel separately.
XCeption network tends to outperform the Inception network
on Image classification datasets [18].

Fig. 7. XCeption Architecture [19]

V. EXPERIMENTS

Since this is a multi-label classification problem, we
must use binary cross-entropy loss with individual sigmoid
activations on the last layers. Typically, one uses softmax
on the final layer, but this does not work with multi-label
classification as the labels are not mutually exclusive. We
would like to train a network that can recognize the labels
individually, which can be satisfied by using the sigmoid
activation function at the final layer.

We use a batch size of 128 images. Furthermore, recall
the training/validation split is 80/20. In practice, we tested
convergence (on custom 0) using batch sizes of 512, 256,
and 128 and observed minimal difference. Using the smallest
batch size tended to converge quicker so we stick with batch
size of 128. We use the Keras implementation of the Adam
optimization algorithm which has a default learning rate of
0.001 and no decay [2]. In order to prevent overfitting, we
utilize a patience parameter of 3 defined in Keras callbacks
in order to stop training. Patience sets the number of epochs
with no improvement in validation loss after which training
will be stopped. We use validation loss for our metric during
training. However, Kaggle utilizes Fβ score with β = 2 in
order to rank the competitors.

f β = (1+β
2)

p× r
β 2 p+ r

p =
true positives

true positives + false positives

r =
true positives

true positives + false negatives

To see why F2 score is important, we observe the data
distribution of our training set in Figure 8.

4



Fig. 8. Training Label Distribution

Overfitting via always predicting the majority classes of
“primary” and “clear” must be avoided and could indicate
artificially low training error and high training accuracy;
therefore, the F2 metric is much more meaningful than ac-
curacy. Using a patience parameter based on F2 score would
not work well since Keras implements the callback using
batches and is approximated global-wise. 1 It is misleading
to implement a batch-wise F2 score, so we only check F2
score on the validation set.

We provide the final data of our training, validation, and
testing in Table I. Kaggle F2 scores are obtained by using
late submission entries on the Kaggle competition.

TABLE I
F2-SCORE RESULTS

Networks Trainable Parameters Validation F2 Kaggle F2
Custom 0 6,510,289 0.87931 0.87766
Custom 1 826,257 0.87987 0.87736
VGG16 14,749,527 0.91042 0.90845
XCeption 21,120,319 0.92201 0.91918

We can see that XCeption and VGG16 perform the best.
Our XCeption model performance is fairly close to the top
Kaggle score, which is 0.933. For reference, the Spring 2017
ECE 228 Paper on this same topic had achieved a Kaggle
F2 score of 0.90003 [20]. We expect good performance from
transfer learning due to use of pre-trained features obtained
from the ImageNet dataset which contains 1000 classes.
Fine-tuning to our dataset proves to be the best approach.
We show the training process using metrics such as training
loss, validation loss, and validation accuracy in Figures 9,
10, 11, 12. We note the decrease in validation loss over
epochs in all figures. We can observe variability in validation
loss in Figure 10, which would suggest that our learning
rate is too high, and we should use decay. Furthermore,
note that VGG16 trained for more than 25 epochs whereas
XCeption trained for 6 epochs. The early termination is a
result of the aforementioned patience parameter. We can
also see the accuracy of all the models starts above 95%.
This corroborates our claim that accuracy does not give us

1https://github.com/keras-team/keras/issues/5794

meaningful information about our model, so we use the F2
metric.

Our custom models would likely never do better than
the fine-tuned VGG16 and XCeption. We used our general
knowledge of CNN architectures to construct them. While
our custom networks train from scracth, transfer learning
with fine-tuning leverages pre-trained weights that need to
be modified slightly in order to fit new datasets. In other
words, they start near a minima and require little effort to
achieve great performance. This is evident by the nearly flat
validation loss data in Figures 11 and 12.
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Fig. 9. Custom 0 - Learning
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Fig. 10. Custom 1 - Learning
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Fig. 11. VGG16 - Learning
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Fig. 12. XCeption - Learning

VI. CONCLUSIONS

We found that transfer learning with fine-tuning on XCep-
tion resulted in the best F2 score. We expected our custom
networks not to perform as well as VGG16 and XCeption.
The popular architectures came with features pre-trained on
1000 classes with the ImageNet dataset. These architectures
are state-of-the-art and can be expected to generalize well
to unseen data. Initially, we were unsure how well the
pre-trained features would generalize, but the results speak
for themselves. The Kaggle top scores are in the range
of 0.93, and we were close to 0.92. The custom networks
also corroborate our thoughts about convolutional neural
networks performing well for images. Custom 0 had few
convolutional layers and had many dense layers whereas
Custom 1 emphasize convolutional layers with pooling.
Despite having less than 13% of the parameters of Custom
0, the deeper Custom 1 achieved nearly the same F2 score.
This indicates that convolutional layers along with pooling
can leverage certain properties encoded in images and that
dense layers have parameters that are wasteful.

VII. FUTURE WORK

With more time and resources, we would explore the use
of the fully sampled dataset and could test our models on the
4-channel GeoTiff format. Furthermore, ensemble methods
in which we train several models and have them vote on the
output labels typically lead to better generalization. This type
of model averaging is also a form of regularization [15]. We
would also like to explore Hintons Capsule Networks as an
alternative to CNNs and their applicability to this domain
[21]. We initially explored this type of network, but quickly
found that this is a young technology with few educational
resources.
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