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Abstract—Supervised machine learning can be effectively used
to solve source localization problem. Machine learning methods,
such as feed-forward neural networks(FNN), support vector ma-
chine(SVM) and random forests(RF), work on the data directly.
The Inputs are normalized sample covariance matrices(SCMs),
and classifiers will be trained on that. Testing results will be used
to compare and demonstrate the advantages of each method for
under water source localization.The performance of each method
is evaluated by mean absolute percentage error (MAPE), and
SVM gives the best result with an average of 3.7% in all datasets.

I. INTRODUCTION

Source localization problem in ocean acoustic can be solved
by observed data in different ways. According to the re-
sult from matched-field-processing(MFP), a classical method,
there are some obvious errors due to sidelobes [1]. The reason
for this is that MFP can produce accurate prediction only if
the ocean environment is modeled accurately. Intuitively, due
to its complicated and unstable, other approaches may give
better results.

Machine Learning methods used in this problem work on
observed data directly and then predict source ranges. In
this paper, three popular machine learning algorithms, feed-
forward neural network(FNN), support vector machine(SVM),
and random forest(RF), are explored to address the range
estimation. For FNN, the deep learning framework we use
is tensorflow, while SVM, RF and feature selection are imple-
mented based on Scikit-learn. These well-developed machine
learning libraries simplify the implementation task and save
computational time a lot for us.

The input data are normalized sample covariance matri-
ces(SCMs), where amplitude and phase information are in-
cluded. Specially, for different machine learning method, the
data will be preprocessed slightly different, and this will be
talked later in this paper. The output is the prediction on source
range, or location in the ocean based on models that have been
trained on training datasets.

II. DATASET AND FEATURES

The shipping noise data was collected from the signal of
R/V New Horizon. Figure1 shows the dataset geometrically,
with the vertical linear array (VLA) indicated as a red triangle.
The five ship tracks shown in five colors are used for estima-
tion, and each dataset includes both training and test data as
summarized in tableI with different time ranges [1].

Fig. 1. The structure of SVM with slack variable

Dataset Training samples Test samples
01 890 189
02 830 177
03 650 127
04 1010 213
05 615 135

TABLE I
NUMBER OF TRAINING AND TEST SAMPLES OF FIVE DATASET

The received pressure phase and amplitude is preprocessed
to a normalized sample covariance matrix (SCM). Since there
are more than 7,000 features in each dataset, Principal Compo-
nent Analysis (PCA) is used to reduce the dimension of feature
space, which significantly helps decrease the computation
time and improve the performance of each model. Principal
components are chosen such that it will retain 90% of the
original variance of data.

A. Sample Covariance Matrix

As discussed in [1], the received pressure array is trans-
formed to a normalized sample covariance matrix (SCM) as
input. The DFT of the sound pressure at frequency f at L
sensors is denoted as

p(f) = [p1(f), p2(f), ..., pL(f)]T (1)

and the sound pressure model is:

p(f) = S(f)g(f, r) + η (2)

where S(f) is the source term, g is the Green’s function, and
η is the noise.



In order to diminish the effect of source amplitude |S(f)|,
the complex pressure is normalized as:

p̃(f) =
|p(f)|√∑L
l=1 |pl(f)|2

=
p(f)

||p(f)||2
(3)

Then the conjugate symmetric matrix of the normalized sam-
ple covariance matrices over NS snapshots is:

C(f) =
1

Ns

Ns∑
s=1

p̃s(f)p̃Hs (f) (4)

Where H denotes the hermitian matrix, and p̃s denotes the
sound pressure over the sth snapshot.

As in classification problem, the source range is equally
divided into K bins, r1, r2, ..., rK with same width δr, and
hence provides labels tn ∈ rk for each input vector xn.
Especially in FNN, the class label tn is transformed into a
1×K binary vector tn such that

tnk =

{
1, if |tn − rk| ≤ δr

2

0, otherwise
(5)

where tn = tn,1, ..., tn,K .
These labels are later used in all methods when we build

the training models.

B. Principal Component Analysis

Principal Component Analysis was first introduced by Karl
Pearson in 1901 [1] and is one of the oldest techniques to
understand which dimensions of a high dimensional dataset
are ”important” by projecting data into a lower dimension
space. PCA takes a high dimensional input matrix and se-
lect important components and hence compress the data by
ignoring features which are useless.

The main idea of PCA is using eigenvalue decomposition to
select features [3]. Given an input matrix X ∈ RM×N , where
N is the number of samples, and M is the number of features.
Each column of X , xi is one data point with M features. First,
sample mean is needed:

µ =
1

N

∑
i

xi (6)

Then, sample covariance,

Σx =
1

N

∑
i

(xi − µ)(xi − µ)T (7)

Next, we use eigenvalue decomposition to find the eigenvalues
and eigenvectors of the covariance.

Σx = ΦΛΦT (8)

where
Λ = diag(λ1, λ2, ..., λM ) (9)

and
ΦΦT = I (10)

λi and φi are placed in a descending order. We want to
keep the dimensions with the highest variance and discard

the dimensions with the lowest variance. In some sense to
maximize the amount of ”randomness” that get preserved
when we compress the data.

The first k largest eigenvalues are selected with their corre-
sponding eigenvectors, the selected eigenvectors φi are called
principal components:

φ̂ ∈ RM×k = (φ1, φ2, ..., φk) (11)

Then, the data is compressed and is reconstructed as:

y = φ̂T (X − µ) ∈ Rk×N (12)

We can adjust the parameter k to control the size of the data
and the computation time. In order to keep the consistency,
the same preprocessed data, SCMs, which retains 90% of the
original variance of data is used as input for all three methods.

III. METHODS

A. Feed-forward Neural Network

Fig. 2. Illustration of FNN

Feed-forward Neural Network is a kind of deep learning
method where data flows in one direction and all neurons are
fully connected. A Feed-forward Neural Network may have
many layers hence the deep learning aspect, where the output
of each layer can be described by the equation:

aj = f(

D∑
i=i

wijxi + bj)wherej = 1, 2, 3, 4...M

where f is an activation function which is non-linear function
used to give gradient to the ooutput in order for the system
to be trained by backpropagation. Wij and bj are the weights
and bias of the hidden layer which can be thought of as a
matrix. J is the number of hidden units within this layer and
i is i-th sample of the input into the layer.

For this project, we will be using the Rectified Linear
Unit, otherwise known as ReLU which has the following
characteristics:

f(x) = max(0, x)

This has the advantage over the traditional sigmoid activation
function because there is no gradient vanishing unlike the
sigmoid function which has parts where gradient is 0, which
would lead to no updates to the weight and biase hence no
learning. In this project, since we are classifying things into



distance ranges, this is in essence a classification problem,
therefore we will be using a softmax as our final layer:

yk(x,w) =
exp(ak(x,w))∑

j(aj(x,w))

with cross entropy cost defined as:

En(tn, yn) = −
∑
k

tnklnynk

With multiple layers of Feed forward network, we are hoping
that it will capture the non-linearity natural of the data and
give good predication for distance.

B. Support Vector Machine

In machine learning, support vector machines are super-
vised learning models with associated learning algorithms that
analyze data used for classification and regression analysis
[4]. For linear separable data points, SVM is going to find a

Fig. 3. The structure of SVM

hyperplane, defined as:

ωTx+ b = 0 (13)

that maximize the margin, define as:

|ωTxn + b

||ω||2
(14)

By applying normalization that min
i
|ωTxi + b| ≡ 1, the

problem becomes:
min
ω,b
||ω||2 (15)

subject to
yi(ω

Txi + b) ≥ 1∀i (16)

This convex problem can be solved by its dual problem,
and the answer is:

ω∗ =
∑
i∈SV

α∗i yixi (17)

b∗ = −1

2

∑
i∈SV

yiα
∗
i (x

T
i x

+ + xTi x
−) (18)

For prediction, the output will be:

f(x) = sgn[
∑
i∈SV

yiα
∗
i x
T
i x+ b∗] (19)

If the training set is not linear separable, the slack variable
ζ ≥ 0is introduced to allow misclassification happen. Then
the optimization problem is:

argmin
ω,b

1

2
||ω||2 + C

N∑
n=1

ζn (20)

subject to
snyn ≥ 1− ζn, n = 1, ..., N (21)

The value of C controls the tradeoff between max margin
and misclassification [4]. In addition to performing linear

Fig. 4. The structure of SVM with slack variable

classification, SVMs can efficiently perform a non-linear clas-
sification using what is called the kernel trick, implicitly
mapping their inputs into high-dimensional feature spaces. In
our study, three types of kernel are used

1) Linear Kernel
2) RBF(Gaussian) Kernel
3) Polynomial kernel

C. Random Forest

RF consists of Classification and Regression Trees (CART),
a conditional weighted method which only uses important
features to do the classification [6]. Gini impurity is chosen
as the metric to split the root in CART:

Gini(f) =

J∑
i=1

fi(1− fi), i = 1, 2, ..., J (22)

where J is the number of classes and fi is the portion of data
which belongs to class i [7]. The dataset keeps splitting based
on Gini index until all the nodes is splitted to a maximum or
when a specific threshold value is reached. However, a CART
would cause over-fitting if the node in the tree is splitted too
robustly [5].

Random Forest is a generalization of the decision tree
model, which helps control this over-fitting problem. Assume
the number of classes in the training set is N . Then sample
of these N classes is taken at random but with replacement.
If there are M input features, a number m < M is specified
such that at each node, m variables are selected at random
out of M . The best split on these m is used to split the node.
The value of m is held constant while the forest is building.
Each tree grows to the largest extent possible, and there is no
pruning. Aggregating the predictions of the n tree trees is used
to predict new data point. The outcome is determined by the



majority votes for classification problem and the average for
regression problem [6]. Figure5 shows the general idea of RF.

Fig. 5. The structure of SVM with slack variable

D. Error Metric
In order to compare three methods quantitatively, we use

the mean absolute percentage error (MAPE) over N samples
to evaluate the model:

MAPE =
100

N

N∑
i=1

|Rpi −Rgi
Rpi

| (23)

where Rpi and Rgi are the predicted range and the ground
truth range respectively. MAPE is chosen because it considers
”the magnitude of error in faulty range estimates as well as
the frequency of correct estimates” [1] [8].

IV. RESULTS AND DISCUSSION

A. Result of FNN
Feed Forward Network is implemented using Tensorflow.

For this project, we have found that a three layer network
with 64, 128 and 256 hidden units performed reasonably well.
Figure 6 shows the results of FNN on all datasets where the
red line represent the truth value and the blue circles represent
the predictions.

B. Result of SVM
When implementing SVM by using Scikit-learn(Python),

there are two ways, Linear SVC and SVC. We tested both of
them. Also, the corresponding parameters for different SVMs
are:

1) SVC (linear kernel): C=0.1
2) SVC (polynomial kernel): C=10, degree=1
3) SVC (rbf kernel): C=10
4) Linear SVC: C=0.001

Fig7 results for Dataset01. Blue circle is prediction, and red
line is ground truth. TableII shows the results on all datasets.

C. Result of RF
Figure8 shows the result of RF. From the figure, RF

performs good on dataset01 and dataset04 while performs not
so good on dataset03 and dataset 05. A possible conclusion can
be driven that performance of RF is related to the symmetry of
the dataset to a large extent. MAPE of RF is shown in tableIII.

Fig. 6. Figure showing FNN results of all datasets

Fig. 7. SVM result with different kernel type

V. CONCLUSION

By comparing the methods, SVM outperforms the com-
parison with its smallest average MAPE as low as 3.7%.
We obtained similar MAPE of the first two datasets as the
reference paper did, which is as expected. FNN performs
quite well, and SVM gives the nest results with sacrificed
kernel type. RF gives a relatively high MAPE in dataset 03
and dataset 05, and the reason is maybe due to the symmetry

Dataset Polynomial RBF linear kernel LinearSVC
Dataset01 8.07% 9.43% 8.35% 4.99%
Dataset02 5.28% 5.10% 5.31% 3.75%
Dataset03 4.41% 9.27% 4.42% 2.64%
Dataset04 1.83% 1.76% 1.78% 2.33%
Dataset05 23.55% 2.42% 23.61% 5.40%

TABLE II
SVM RESULT OF ALL DATASET WITH DIFFERENT KERNEL TYPES



Fig. 8. RF result on all dataset

Dataset FNN SVM RF
Dataset01 7.31% 4.99%(LinearSVM) 7.71%
Dataset02 1.91% 3.75%(LinaerSVM) 10.12%
Dataset03 2.66% 2.64%(LinaerSVM) 28.11%
Dataset04 2.58% 1.76%(RBF) 7.51%
Dataset05 3.32 % 2.42%(RBF) 31.04%

TABLE III
COMPARISON OF MODEL

distribution of the dataset.
In this paper, there are limited amount of data and five

tracks are trained and tested as five independent datasets. In
the future, we are going to combine all five dataset as one big
training set to see how these three models work. In addition,
we have started to experiment with using RNN to capture the
temporal information of the data, in the future we would like
to develop upon this a little more.
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