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A fast, automated and accurate machine learning model for bone age 
assessment is proposed in this project. Bone age assessment is a common 
clinical practice in the diagnosis of child development. The error of BoneXpert, 
the system in use for now, is about 8.4 months[1]. For our project,we trained 
various models using over 12k radiological bone pictures with associated labels 
each corresponding to a patient’s sex and age. Both regression based models 
and CNN with transfer learning, along with multiple image processing and 
feature extraction methods were used. Finally using the VGG16 pretrained 
model with attention mapping focused architecture we were able to achieve a 
mean absolute errors less than a year. 

Abstract
Mean absolute error (MAE) is used to measure the difference between 

predictions and the labeled ages. Performances of two regression models and 

two deep learning models are shown  below in table 1. The best performance 

was achieved using deep learning model 2. Training history of model 2 is shown 

in figure 3 and a sample of its prediction results are shown in figure 4.

 

Dataset and Image Preprocessing

Two major approaches are implemented to predict the bone ages
1. Regression based approach: 

● Linear regression, Logistic regression and preprocessing

Regression models:

2. Deep learning:
For feature extraction, the pretrained VGG model is used
● Model 1: VGG + 3 Fully Connected layers

○ 1,576,961 trainable Parameters

○ (256 x 256) input image size
○ GAP used to compress output of VGG

● Model 2: VGG + Attention Mapping + 2 Fully Connected layers
○ 565,058 trainable Parameters

○ (500 x 500) input image size ~ higher resolution
○ Added attention mapping based on locally connected layer and GAP

Method
Referring to the training history in figure 3, the validation loss reached its 
lowest point in a few epochs and oscillated  while the training loss still 
decreased. This indicated that the trained model was overfitting to the training 
set. 
In figure 4, predictions were more accurate at two ends than in the middle. This 
may caused by the fact that girls grow up much faster than boys around the 
age 10, which leads to high variances when train two genders together. This 
phenomenon cannot be observed when two genders were trained separately.
Four samples of attention maps output from Model 2 and their original images 
are shown in figure 5. It shows that the carpal and metacarpal bones have 
more information on the bone age prediction than other areas of the hand. 

Discussion

We achieved MAE of 9.82/10.75 months for male and female using VGG16 
pretrained model and attention mapping. The result is similar to the 9.84/11.16    
achieved by Fully Automated BAA[2] using the same dataset. The most salient 
features for predicting the age of an individual clearly seems to be the bones 
found in the wrist and middle of the hand. Future work can include trying 
different architectures and analyzing the associated efficacy of the 
implemented designs.

Conclusions

Male Female Both Gender

Validation MAE Linear Regression (Months) 30 27 32

Validation MAE Logistic Regression 34 31 36

Train MAE Model1 17.34 17.58 18.07

Validation MAE Model1 15.21 16.15 16.88

Train MAE Model2 8.14 8.38 11.19

Validation MAE Model2 9.82 10.78 11.45

Results

Figure 5. Attention map samples

The goal our project is to develop an algorithm which can most accurately 

determine bone age based on X-ray scans of hands.

The original dataset was released by Pediatric Bone Age Challenge organized by 

RSNA. This training set includes 12611 pediatric hand radiographs. The label files 

includes corresponding skeletal ages and gender for each radiographs. Some 

sample hand radiographs are shown in figure 1 below. Watersheding and blob 

detection method were used to extract hand images shown in figure 2.

Linear regression Logistic regression

Figure 3. Training history for model 2 . Figure 4. Predictions for model2 with 
both gender

VGG16 FC FCImage AgeFC

Preprocessing for the 
model:

● Group data by male and female
● Resize and random crop to 128*128
● PCA with 60% features left

VGG16 FC FC
Image AgeAM

Figure 1. Original images

Figure 2. Extracted hand images

Table 1. Training results.
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