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In this project, we compared the performances of several machine learning methods on binary classification task,
then the results were improved by HOG feature extraction in data preprocessing. Furthermore, we implemented
convolutional neural network (CNN) and reached an accuracy of 99%. Based on the CNN model, we accurately
detected all ships in satellite images of San Francisco Bay Area with bounding boxes using sliding windows
detection algorithm.
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. 3. Sliding Windows Detection
1.2 Convolutional Neural Network . __,

Layer (type) Output Shape Param # . .

::nVZd_l (Conv2;?== i (No:;_;;, 80? 32)= i 89: o ¢ W|ndOW SiZze.

max_pooling2d 1 (MaxPooling2 (None, 40, 40, 32) 0 80*80

dropout 1 (Dropout) (None, 40, 40, 32) 0 o Stride: 10

conv2d 2 (Conv2D) (None, 40, 40, 32) 9248

max_pooling2d 2 (MaxPooling2 (None, 20, 20, 32) 0 ¢ NMS th reShOId:

dropout 2 (Dropout) (None, 20, 20, 32) 0 0.2

conv2d 3 (Conv2D) (None, 20, 20, 32) 9248

max pooling2d 3 (MaxPooling2 (None, 10, 10, 32) 0

dropout_3 (Dropout) (None, 10, 10, 32) 0

conv2d 4 (Conv2D) (None, 10, 10, 32) 102432

max pooling2d 4 (MaxPooling2 (None, 5, 5, 32) 0

dropout 4 (Dropout) (None, 5, 5, 32) 0 conCIUSIonS:

flatten_ 1 (Flatten) (None, 800) 0

dense_1 (Dense) (None, 512) By HOG feature extraction in data preprocessing, traditional

(‘)’ : )’ machine learning methods could reach over 90% accuracy.
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2. Sliding Windows Detection * Given ? re!atlv.ely sm.all image tf) search, sll.dmg wmdgws

detection is still a reliable algorithm for object detection task.
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If given large images to search, sliding windows detection will be
inefficient. In situations like this, we have to find a well-labeled
dataset that includes the locations of objects to train CNN model
with more advanced detection algorithms like YOLO.
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