
Mercedes-Benz Bench Test Time Estimation
Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu

Kexiong Wu
University of California, San Diego
9500 Gilman Dr., La Jolla, CA 92093
kew135@eng.ucsd.edu
(858)260-9076

Contact
1. Ben-Hur, Asa; Horn, David; Siegelmann, Hava; and Vapnik, Vladimir N.; "Support vector clustering"; (2001); Journal of Machine Learning Research, 2: 125–137
2. Davies, Alex; Ghahramani, Zoubin (2014). "The Random Forest Kernel and other kernels for big data from random partitions". arXiv:1402.4293
3. J.H. Friedman. "Greedy Function Approximation: A Gradient Boosting Machine“.
4. Devore, Jay L. (2011). Probability and Statistics for Engineering and the Sciences (8th ed.). Boston, MA: Cengage Learning. pp. 508–510. ISBN 0-538-73352-7
5. Samuel, Arthur L. (1988). "Some Studies in Machine Learning Using the Game of Checkers. I". Computer Games I. Springer, New York, NY. pp. 335–365. doi:10.1007/978-1-4613-8716-

9_14. ISBN 9781461387183.

References

It would be promising to manage test time and further optimize the
whole test system if there exists an algorithm to predict the bench test time
with a combination chosen from roughly 400 features.

We aim to design a model with input as interested feature combinations
and output as the correspondent bench test time prediction.

The input for our model is feature combination:

𝑥𝑛=1 means the 𝑛𝑡ℎfeature is included in the bench test.

𝑥𝑛=0 means the 𝑛𝑡ℎfeature is removed from the bench test.

The feature combination is represented by a array which only consists of 1 or
0.

Overview

• Model Candidates for Selection

For XGBoost, the model is tree ensemble including a set of classification and regression
trees. We can write the model in the form

ො𝑦𝑖 =
𝑘

𝐾

𝑓𝑘 𝑥𝑖 , 𝑓𝑘 ∈ ℱ

where K is the number of trees, f is a function in the functional space F, and F is the set of
all possible CARTs. Therefore, our objective to optimize can be written as

𝑜𝑏𝑗 𝜃 = σ𝑖
𝑛 𝑙(𝑦𝑖 , ො𝑦𝑖)+σ𝑘=1

𝐾 Ω(𝑓𝑘)
The next step is tree boosting, inclosing regularization, additive training, compute loss
function. Then we get

𝑜𝑏𝑗(𝑡) = σ𝑖=1
𝑛 𝑙 𝑦𝑖 , ො𝑦𝑖

𝑡−1
+ 𝑔𝑖𝑓𝑡 𝑥𝑖 +

1

2
ℎ𝑖𝑓𝑡

2 𝑥𝑖 + Ω 𝑓𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where the 𝑔_𝑖 and ℎ_𝑖 are defined as

𝑔𝑖 = 𝜕
ො𝑦𝑖
𝑡−1 𝑙 𝑦𝑖 , ො𝑦𝑖

𝑡−1
; ℎ𝑖 = 𝜕

ො𝑦𝑖
𝑡−1

2 𝑙 𝑦𝑖 , ො𝑦𝑖
𝑡−1

Renormalizing the tree model, we can write the objective value with the t-th tree as

𝑜𝑏𝑗(𝑡) ≈ σ𝑖=1
n [𝑔𝑖𝑤𝑞 𝑥𝑖 +

1

2
ℎ𝑖𝑤𝑞(𝑥𝑖)

2]+𝛾𝑇 +
1

2
𝜆 σ𝑗=1

𝑇 𝑤𝑗
2

=σ𝑗=1
𝑇 [σ𝑖∈𝐼𝑗

𝑔𝑖 𝑤𝑗 +
1

2
(σ𝑖∈𝐼𝑗

ℎ𝑖 + 𝜆)𝑤𝑗
2]+𝛾𝑇

Where 𝐼𝑗 = 𝑖 𝑞 𝑥𝑖 = 𝑗 is the set of indices of data points assigned to the j-th leaf. We

can have 𝐺𝑗 = σ𝑖∈𝐼𝑗
𝑔𝑖 and 𝐻𝑗 = σ𝑖∈𝐼𝑗

ℎ𝑖

𝑜𝑏𝑗(𝑡)=σ𝑗
𝑇[𝐺𝑗𝑤𝑗 +

1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]+𝛾𝑇

The best 𝑤𝑗 and best objective reduction we can get is

𝑤𝑗
∗=−

𝐺𝑗

𝐻𝑗+𝜆
; 𝑜𝑏𝑗∗= −

1

2
σ𝑗=1
𝑇 𝐺𝑗

2

𝐻𝑗+𝜆
+𝛾𝑇

The last equation measures how good a tree structure q(x) is. The smaller the score is,
the better the structure is.

Discussion

In our project, we finally can predict bench test time if we can know
specific feature combinations. With an accurate bench test prediction, the
manufactures could arrange their resources and time during their
manufacturing process in a more efficient way. Also with the accurate bench
test prediction, factories can detect malfunctions during the bench test if the
bench test takes longer than the model predicts.

Since the process is a discrete problem rather than a continuous
problem, the coefficient in discrete problem cannot be so linearly sensitive, so
a lower 𝑅2 score is allowed. Before we started, we estimated R squared could
be something about 0.5. After we finished the project, our 𝑅2 score is
0.55647, which meets our expectation. Besides, we found that the highest
score on Kaggle is 0.5550 which also strongly matches our expectation at the
beginning.

Model

Where total sum of squares 𝑆𝑆𝑡𝑜𝑡=σ𝑖(𝑦𝑖 − ത𝑦)2, sum of squares of residuals

𝑆𝑆𝑟𝑒𝑠 = σ𝑖(𝑦𝑖 − 𝑓𝑖)
2=σ𝑖 𝑒𝑖

2

• Model Combination
• For cross-validation set, we have highest R-2 score using following

model combination
90% Gradient Boost + 8% Random Forest + 2% Support vector(linear Kernel)

• For test data set, we add XGBoost and achieve highest score in Kaggle.
80% XGBoost + 10% Random Forest + 5% Extremely Randomized Forest + 5%
Gradient Boosting• Data Size

• 4209 Training Sets and 4209 Test Size.
• 376 Logistic features and 8 Classification features.

Data

Feature
Model

Y = F(x,)

Bench Test
Prediction (Y)

Figure 1. Feature distribution

• Feature Selection

• Feature Extraction
The goal of feature extraction is to minimize the effect from sparse signals

and separate classification features for further processing.

Feature Preprocessing

Figure 2. Feature selection. For the data distribution, we remove the outlier from
raw input data.

Figure 3. Feature extraction. Here we set the threshold as 0.1% and then calculate the KL
divergence between the distributions for classification features and manually combined those
close distributions. Red arrows show the sparse signals which are supposed to be filtered out.
Blue and purple arrows show close distributions need to be combined.

XGBoost K-Nearest Neighbors Random Forest

Stochastic Gradient Decent Linear Regression Extra Trees

Support Vector Machine Decision Tree Gradient Boosting

Table 1. Train error of different model

Result

• Test Data
• Divide raw data into 75% training set and 25% cross-validation set.
• 4209 test samples.

• Model Evaluation
We choose the R-square score to assess our model.

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

Discussion

Future Work
• Using Deep Neural Network for data featuring.

• Get Feature Hierarchy by training each layer.
• The training is based on previous layer's output.

• Detect the latent structures of our data, with feature hierarchy.
• Deep Neural Network enables the automatic feature extraction.
• Feature Extraction without DNN vs. with DNN

Filtering

Wrapping

Embedding

Dimension Reduction

Hierarchy Analysis

Convolution

vPooling

Weight Feedback

vs.

