UC San Diego

Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu

Mercedes-Benz Bench Test Time Estimation

It would be promising to manage test time and further optimize the
whole test system if there exists an algorithm to predict the bench test time
with a combination chosen from roughly 400 features.

We aim to desigh a model with input as interested feature combinations
and output as the correspondent bench test time prediction.

Bench Test

Prediction (Y)

The input for our model is feature combination:

x,=1 means the nt*feature is included in the bench test.

x,=0 means the nt"feature is removed from the bench test.

The feature combination is represented by a array which only consists of 1 or

0.
e Data Size

* 4209 Training Sets and 4209 Test Size.
e 376 Logistic features and 8 Classification features.

180

160 A

140 -

120 -

100 A

a aaab acad af ai aj ak alameoapagas atauawaxayazbbabccde fghi j kIl mnogrstuvwxyz

X0
Figure 1. Feature distribution

Feature Preprocessing

 Feature Selection

T T T 0 T
200 225 80
uuuuuuuuuuuu

Figure 2. Feature selection. For the data distribution, we remove the outlier from
raw input data.

* Feature Extraction
The goal of feature extraction is to minimize the effect from sparse signals
and separate classification features for further processing.

Contact

Kexiong Wu

University of California, San Diego
9500 Gilman Dr.,, La Jolla, CA 92093
kewl35@eng.ucsd.edu
(858)260-9076

Distribution of y variable with X0

180 180

Distribution of y variable with X0

.
160 1 160 1 !
'

140 +

140
120 1 120

100 - 100 -

aadaf al allamapagas atauawaxay az bbabcd e f h i k | mn ooner s u v w xzero

a aaab acad af ai aj ak alameoapagas atauawaxayazbbabcc de fghi jk Il mnogrstuvwxyz

X0 X0
Figure 3. Feature extraction. Here we set the threshold as 0.1% and then calculate the KL

divergence between the distributions for classification features and manually combined those
close distributions. Red arrows show the sparse signals which are supposed to be filtered out.
Blue and purple arrows show close distributions need to be combined.

e Model Candidates for Selection
XGBoost K-Nearest Neighbors

Stochastic Gradient Decent

Random Forest

Linear Regression Extra Trees

Support Vector Machine Decision Tree Gradient Boosting

For XGBoost, the model is tree ensemble including a set of classification and regression
trees. We can write the model in the form

K
9= ) fuld), fee

where K is the number of trees, f is a function in the functional space F, and F is the set of
all possible CARTs. Therefore, our objective to optimize can be written as

0bj(0) = X1 (i, V) +Xk=1 2(fx)
The next step is tree boosting, inclosing regularization, additive training, compute loss
function. Then we get

. ~(t— 1
obj =31, [l ()’i»yi(t 1)) + gife(xi) + S hiff (Xi)] + Q(f;) + constant
Where the g i and h_i are defined as

— ~(t-1)Y . _ a2 ~(t—1)
gi = ayi(t—l)l ()’i;)’i ) h; = aj}i(t_l)l ()’i»yi )
Renormalizing the tree model, we can write the objective value with the t-th tree as
. 1 1

1
=371 [(Zier, 9) W +5 Cier, b + DWH+yT
Where I; = {i|q(x;) = j} is the set of indices of data points assigned to the j-th leaf. We
can have G; = ZiEIj gi and H; = ZiEIj h;
. 1
The best w; and best objective reduction we can get is

2
* Gj i~ 1 @T Gj
w; =— ; objT = —=)i +yT
J Hj+A J 24J=1 ;42 14
The last equation measures how good a tree structure q(x) is. The smaller the score is,

the better the structure is.

* Test Data
* Divide raw data into 75% training set and 25% cross-validation set.
e 4209 test samples.

Where total sum of squares SS;,:=>.;(v; — ¥)?, sum of squares of residuals
SSres = Zi()’i — fi)zzzi eiz

Model Train error
Linear Regression -1.0227464886939429e+24
Stochagtic Gradient Decent -1.0520412148310016e+17
Support Vector Regression(Linear Kemel) 0.531070389547927/8
Support Vector Regression(Polynomial Kemel) 0.4292692789452468
Support Vector Regression(RBF Kemel) 0.4258513541680711
K-Nearest Neighbors 0.4839903962740162
Decision Tree 0.30902602134884694

Random Forest 0.5671153256808917
ExtraTree 0.3853554827238316
Gradient Boosting 0.6406754701863584

Table 1. Train error of different model

* Model Combination
* For cross-validation set, we have highest R-2 score using following
model combination
90% Gradient Boost + 8% Random Forest + 2% Support vector(linear Kernel)
* For test data set, we add XGBoost and achieve highest score in Kaggle.
80% XGBoost + 10% Random Forest + 5% Extremely Randomized Forest + 5%

Gradient Boosting

In our project, we finally can predict bench test time if we can know
specific feature combinations. With an accurate bench test prediction, the
manufactures could arrange their resources and time during their
manufacturing process in a more efficient way. Also with the accurate bench
test prediction, factories can detect malfunctions during the bench test if the
bench test takes longer than the model predicts.

Since the process is a discrete problem rather than a continuous
problem, the coefficient in discrete problem cannot be so linearly sensitive, so
a lower R? score is allowed. Before we started, we estimated R squared could
be something about 0.5. After we finished the project, our R* score is
0.55647, which meets our expectation. Besides, we found that the highest
score on Kaggle is 0.5550 which also strongly matches our expectation at the
beginning.

* Using Deep Neural Network for data featuring.

* Get Feature Hierarchy by training each layer.

 The training is based on previous layer's output.
* Detect the latent structures of our data, with feature hierarchy.
 Deep Neural Network enables the automatic feature extraction.
* Feature Extraction without DNN vs. with DNN

Filtering Hierarchy Analysis
* Model Evaluation
Wrapping Convolution
We choose the R-square score to assess our model. vs.
Embeddi Pooli
RZ B 1 _SSTeS mbedding vPooling
SStot Dimension Reduction Weight Feedback
1. Ben-Hur, Asa; Horn, David; Siegelmann, Hava; and Vapnik, Vladimir N.; "Support vector clustering"; (2001); Journal of Machine Learning Research, 2: 125-137
2. Davies, Alex; Ghahramani, Zoubin (2014). "The Random Forest Kernel and other kernels for big data from random partitions". arXiv:1402.4293
3. J.H. Friedman. "Greedy Function Approximation: A Gradient Boosting Machine®.
4. Devore, Jay L. (2011). Probability and Statistics for Engineering and the Sciences (8th ed.). Boston, MA: Cengage Learning. pp. 508-510. ISBN 0-538-73352-7
5. Samuel, Arthur L. (1988). "Some Studies in Machine Learning Using the Game of Checkers. I". Computer Games |. Springer, New York, NY. pp. 335-365. doi:10.1007/978-1-4613-8716-

9_14.1SBN 9781461387183.

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM



