Understanding the Amazon Rainforest
using Neural Networks

Naveen Ketagoda, Christian Koguchi, Niral Pathak, Samuel Sunarjo

{nketagod, ckoguchi, nlpathak, ssunarjo}@eng.ucsd.edu

r N
Abstract

We apply modern machine learning techniques for multi-label classification of satellite
imagery. Using custom convolutional neural networks and popular architectures using transfer
learning, we participate in a Kaggle competition in order to aid in the fight against
deforestation.

Introduction

Deforestation in the Amazon Rainforest accounts for the largest share of reduced biodiversity,
habitat loss, climate change, and other devastating ecological and environmental effects.
Understanding and tracking human deforestation and ecological changes over time can better
help environmentalist and government efforts in responding to both human and natural forest
loss. We attempt to aid in this effort by using satellite imagery data of the Amazon Rainforest
to track the expansion of human deforestation efforts using modern computer vision techniques.
The ability to label satellite data will allow us to “better understand where, how, and why
deforestation happens all over the world - and ultimately how to respond” [1].

Data

Satellite 1magery is obtained from a Kaggle
Competition sponsored by the company Planet
[1]. The data, collected between January 1,
2016 and February 1, 2017, centers around the
Amazon basin which includes Brazil, Peru,
Uruguay, Colombia, Venezuela, Guyana,
Bolivia, and Ecuador. Data is provided in a
3-channel JPG format (RGB) and a 4-channel
GeoTiff format (BGRNir) which adds an extra
near-infrared channel. We work with JPG
images exclusively due to size constraints
(average size: JPG = 15KB; TIFF = 538 KB).
The training dataset consisted of 40479 labeled
files, and the test dataset consisted of 61191
files. The images are 256 x 256 x 3 pixels [1].

Atlantic
Ocean

.Bogoté
COLOMBIA

7bcannhs

. "
Brasilia

BRAZIL
Paclific BOLIVIA

Janeiro
Séo Paulo

There are 17 non-exclusive labels in the dataset which are provided in a CSV file with respective

training image filenames:

* 4 weather: clear, partly cloudy, haze, cloudy

* 6 land: primary, agriculture, water, cultivation, habitation, road

* 7 rare: slash burn, conventional mine, bare ground, artisinal mine, blooming, selective
logging, blow down

Below are examples of images with their respective labels [1]:

We explore the data and find extreme class imbalance amongst the training labels. This will
make training significantly harder. Classification accuracy is not meaningful, so evaluation
metric is based on the F-Beta score which emphasizes precision (p) and recall () combining
statistics about true positives (#p), false positives (fp), and false negatives (fn). Kaggle uses =2.

ip Ip
.l7 — 41'% 2 }?r‘) = —M8M _-
P=UPg o L i fp

Training Label Distribution

35000

30000 1

25000 A

20000 1

15000

10000

5000 A

(")

Objective

We use neural networks 1n order to approximate the function f for the multi-label classification
problem y = f{x) where x 1s a flattened input image, and y 1s a binary 17-dimensional vector
where the binary value describes the presence of a label as the image descriptor. In order to learn
this function f, we use Convolutional Neural Networks (CNNs). They are a “specialized kind of
neural network for processing data that has a known, grid-like topology” [2]. CNNs have
extremely practical applications in modern computer vision tasks. We can leverage the grid-like
topology of the data and use the 1images as inputs into the CNNs in order to output the desired
labels. However, to quickly train a robust CNN that generalizes well to unseen data, we
preprocess our data as described below:
* Input 1images: resized to 96x96x3 normalized to [0,1], zero-mean, randomly rotated, randomly
shifted up/down/left/right, randomly flipped horizontally/vertically
* Input labels: converted to 17-dimensional binary vector with 1 if label present else 0
* General: batch size = 128, training/validation split = 80/20, patience = 3 (prevents overfitting)
e Use binary cross-entropy loss and sigmoid activation on final layer

Models

Conv —» Max Pool —» Dropout —»

Conv H

Dense —» Dense —»

Custom Model 0

Input > Dense —» Output

Custom Model 1 input

3X | Conv ;—*batchNorm}—hi Max Pool —> Dropout —» Conv —)batchNormj’

v |
Dropout —>|_Dense_|—»

Cutput

We designed 2 custom networks (named custom O and custom 1) that are heavily inspired by
Kaggle discussions. Custom 0 is a shallow network that trains quickly, and custom 1 is a
deeper network that adds Batch-Normalization. Furthermore, we explore transfer learning with
VGG16 and Xception which are popular architectures trained on the ImageNet dataset. Transfer
learning is a technique that leverages learned weights in order to accelerate training and acts a
feature extractor [3]. We perform fine-tuning with the architectures which means that we do not
freeze the layers, but instead we allow weights to update throughout the network with
backpropagation.

Results
m Trainable Parameters Validation F2 Kaggle F2
6,510,289 0.87931 0.87766
826,257 0.87987 0.87736
14,749,527 0.91042 0.90845
21,120,319 0.92201 0.91918
Discussion

Note that Kaggle’s top scores are 0.93. Recognize that the fine-tuned networks performed the
best as expected. They are pre-trained and have already learned high-level features from
ImageNet whereas our custom networks learned from scratch. Also, our custom 1 network
performed nearly as well as custom 0 despite having a fraction of the parameters. This suggests
that convolutional layers are in fact more suited for this computer vision task compared to dense
layers (which exist in custom_0).

Future Work

With more time and resources, we would explore the use of the fully sampled dataset and could
test our models on the 4-channel GeoTiff format. Furthermore, ensemble methods in which we
train several models and have them vote on the output of testing examples typically leads to
better generalization. This type of model averaging is also a form of regularization [2]. We
would also like to explore Hinton’s Capsule Networks as an alternative to CNNs and their
applicability to this domain.

References
1. Planet: Understanding the Amazon from Space.
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space.
2. Ian Goodfellow,Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press. 2016.
http://www.deeplearningbook.org.
3. A. Karpathy. Transfer Learning. https://cs23 1n.github.io/transfer-learning/.

Acknowledgements

We would like to acknowledge the neural network frameworks Keras, TensorFlow, and
PyTorch. We further thank Amazon Web Services for free student tier for GPU computation
which allowed us to train and test models quickly. Thanks to Professor Peter Gerstoft and
Teaching Assistants Mark Wagner, Paolo Gabriel, and Nima Mirzaee for their continued

encouragement and advice in the completion of this project.
_J

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
http://www.deeplearningbook.org
https://cs231n.github.io/transfer-learning/

