Reimplementation: Source localization in an Ocean Waveguide Using Supervised Machine Learning
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Predicting
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Source localization is significant to underwater surveillance, detecting, and
tracking. Compared to matched-field processing, machine learning methods
are needed for some complicated and changing environment. The sound
pressure is preprocessed to a normalized sample covariance matrix as input.
Three machine learning methods, support vector machines (SVM),
Feed-forward neural networks (FNN), and random forests (RF), are
implemented to address the range estimation. The performance of each
method is evaluated by mean absolute percentage error (MAPE), and SVM
gives the best result with an average of 0.037 in all datasets.
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determined by the majority votes for classification problem and the average
for regression problem. The following graphs show RF result on first three
datasets.
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Data

o The shipping noise data was collected from
| ~ the signal of R/V New Horizon. Figure 1

shows the dataset geometrically, with the
vertical linear array (VLA) indicated as a red
triangle. The five ship tracks shown in five
colors are used for estimation, and each
dataset includes both training and test data
with different time ranges.
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Feature

The received pressure phase and amplitude is preprocessed to a normalized
sample covariance matrix (SCM). Since there are more than 7,000 features in
each dataset, Principal Component Analysis (PCA) is used to reduce the
dimension of feature space, which significantly helps decrease the
computation time and improve the performance of each model. Principal
components are chosen such that it will retain 90% of the original variance of
data.

Data projected to R*2 (hyperplane projection shown)

Data in R*3 (separable w/ hyperplane)

. In machine learning, support vector machines
Ees . o et are supervised  learning  models  with
© ./« \%. | associated learning algorithms that analyze
data used for classification and regression
analysis. In addition to performing linear
T E e N RIS CE classification, SVMs can efficiently perform a
—z == non-linear classification using what is called

the kernel trick, implicitly mapping their inputs into high-dimensional
feature spaces.
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Results

Table 1 quantitatively compares all three models. In order to keep the
consistency, the same preprocessed data which retains 90% of the original
variance of data is used as input. FNN performs really well, SVM gives the
best results on all datasets with specific kernel type.

Dataset 1 | Dataset 2 | Dataset 3 | Dataset4 | Dataset5
FNN 0.25314 0.02332 0.05580 0.06038 0.04843
0.0498 0.03754 0.02640 0.01764 0.05400
SVM . . : .
(Linear SVC) (Linear SVC) (Linear SVC) (RBF Kernel) (Linear SVC)
RF 0.05688 0.02334 0.21644 0.05994 0.27771

Table 1. Comparison of MAPE

Discussion

Model 3 - RF

Model 1 - FNN

Feed-forward neural network is a form of deep neural network where data
flow through the network in one direction. The equation for the output of
each layer can be described as:
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Where x is the input and w is the weight matrix that we need to learn for
that layer through training. In our project we will be using rectified linear

Random Forest (RF) consists of Classification and Regression Trees (CART), a
conditional weighted method which only uses important features to do the
classification. Gini impurity is chosen as the metric to split the root:

i
=1

where J is the number of classes and /i is the portion of data which belongs
to class 7. The dataset keeps splitting based
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By comparing the methods in the results section, SVM outperforms the
comparison with its smallest average MAPE. We obtained similar MAPE of the
first two datasets as the reference paper did, which is as expected. RF gives a
relatively high MAPE in dataset 03 and dataset 05, and the reason is still
unknown since we tried all different RF parameters. In addition, all the three
statistical models have better performance on classifying data from the
classes containing more than one training samples, which indicate the
necessity of big data in machine learning.
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In this paper, there are limited amount of data and five tracks are trained and
tested as five independent datasets. In the future, we are going to combine
all five dataset as one big training set to see how these three models work. In
addition, we have started to experiment with using RNN to capture the
temporal information of the data, in the future we would like to develop
upon this a little more.
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