
AnnouncementsClass is  170.

Matlab Grader homework, 
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
For HW1, please get word count <100
167, 165,164 has done the homework. (If you have not done it talk to me/TA!)
Homework 3 (released ~tomorrow) due ~5 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 27 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve. 

Today: 
• Stanford CNN 9, Kernel methods (Bishop 6), 
• Linear models for classification, Backpropagation

Monday 
• Stanford CNN 10, Kernel methods (Bishop 6), SVM, 
• Play with Tensorflow playground before class http://playground.tensorflow.org

 

MNIST



Projects

• 3-4 person groups preferred
• Deliverables: Poster & Report & main code (plus proposal, 

midterm slide)

• Topics your own or chose form suggested topics. Some 
physics inspired.

• April 26 groups due to TA (if you don’t have a group, ask in 
piaza we can help). TAs will construct group after that.

• May 5 proposal due. TAs and Peter can approve. 
• Proposal: One page: Title, A large paragraph, data, weblinks, 

references. 
• Something physical



DataSet
• 80 % preparation, 20 % ML
• Kaggle:

https://inclass.kaggle.com/datasets
https://www.kaggle.com

• UCI datasets: http://archive.ics.uci.edu/ml/index.php

• Past projects…

• Ocean acoustics data



In 2017 Many choose the source localization 
• two CNN projects, 



2018: Best reports 6,10,12 15;   interesting 19, 47 
poor 17; alone is hard 20.

I



Bayes and Softmax (Bishop p. 198)
• Bayes:

• Classification of  N classes:

correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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Softmax to Logistic Regression (Bishop p. 198)

• "# = ln ' ( )# ' )#
• " = "# − "+

• ' )# , = #
#-./0(23425)
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The Kullback-Leibler Divergence

P true distribution, q is approximating 
distribution



Cross entropy
• KL divergence (p true q approximating)

7 89 ('||;) = ∑=> '=ln('=) -∑=> '=ln(;=)
= −? ' +?(', ;)

• Cross entropy
? ', ; = ? ; + 7 89 ('||;)= -∑=> '=ln(;=)

• Implementations

tf.keras.losses.CategoricalCrossentropy()

tf.losses.sparse_softmax_cross_entropy
torch.nn.CrossEntropyLoss()

e

cross
entropy

pre In Cg 1h
Caffe
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Cross-entropy or “softmax” function for multi-class classification
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201751

Reminder: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201752

Reminder: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56

preserves spatial 
dimensions, reduces depth!

Projects depth to lower 
dimension (combination of 
feature maps)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

Summary: CNN Architectures 

10
0

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- NiN (Network in Network)
- Wide ResNet
- ResNeXT
- Stochastic Depth

- DenseNet
- FractalNet
- SqueezeNet

b
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64
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Pool

relu
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ai

ni
ng

 e
rr

or

Iterations

56-layer

20-layer

Te
st

 e
rr

or

Iterations

56-layer

20-layer
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Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

i
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relu

72

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

72
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Kernels

Information unchanged, but now we 
have a linear classifier on the 
transformed points.

With the kernel trick, we just need kernel
B C, D = E(C)F E(D)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.
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closest example from the training set. These are examples of memory-based methods
that involve storing the entire training set in order to make predictions for future data
points. They typically require a metric to be defined that measures the similarity of
any two vectors in input space, and are generally fast to ‘train’ but slow at making
predictions for test data points.

Many linear parametric models can be re-cast into an equivalent ‘dual represen-
tation’ in which the predictions are also based on linear combinations of a kernel
function evaluated at the training data points. As we shall see, for models which are
based on a fixed nonlinear feature space mapping φ(x), the kernel function is given
by the relation

k(x,x′) = φ(x)Tφ(x′). (6.1)

From this definition, we see that the kernel is a symmetric function of its arguments
so that k(x,x′) = k(x′,x). The kernel concept was introduced into the field of pat-
tern recognition by Aizerman et al. (1964) in the context of the method of potential
functions, so-called because of an analogy with electrostatics. Although neglected
for many years, it was re-introduced into machine learning in the context of large-
margin classifiers by Boser et al. (1992) giving rise to the technique of support
vector machines. Since then, there has been considerable interest in this topic, bothChapter 7
in terms of theory and applications. One of the most significant developments has
been the extension of kernels to handle symbolic objects, thereby greatly expanding
the range of problems that can be addressed.

The simplest example of a kernel function is obtained by considering the identity
mapping for the feature space in (6.1) so that φ(x) = x, in which case k(x,x′) =
xTx′. We shall refer to this as the linear kernel.

The concept of a kernel formulated as an inner product in a feature space allows
us to build interesting extensions of many well-known algorithms by making use of
the kernel trick, also known as kernel substitution. The general idea is that, if we have
an algorithm formulated in such a way that the input vector x enters only in the form
of scalar products, then we can replace that scalar product with some other choice of
kernel. For instance, the technique of kernel substitution can be applied to principal
component analysis in order to develop a nonlinear variant of PCA (Schölkopf et al.,Section 12.3
1998). Other examples of kernel substitution include nearest-neighbour classifiers
and the kernel Fisher discriminant (Mika et al., 1999; Roth and Steinhage, 2000;
Baudat and Anouar, 2000).

There are numerous forms of kernel functions in common use, and we shall en-
counter several examples in this chapter. Many have the property of being a function
only of the difference between the arguments, so that k(x,x′) = k(x − x′), which
are known as stationary kernels because they are invariant to translations in input
space. A further specialization involves homogeneous kernels, also known as ra-
dial basis functions, which depend only on the magnitude of the distance (typicallySection 6.3
Euclidean) between the arguments so that k(x,x′) = k(∥x − x′∥).

For recent textbooks on kernel methods, see Schölkopf and Smola (2002), Her-
brich (2002), and Shawe-Taylor and Cristianini (2004).

x
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Gaussian Process (Bishop 6.4, Murphy15)

306 6. KERNEL METHODS

Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ϵn (6.57)

where yn = y(xn), and ϵn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y ) = N (t|y , β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y ) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y ) = N (y |0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y . This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y )p(y ) dy = N (t|0,C ) (6.61)
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x1 x2 x⋆

f 1 f 2 f ⋆

y1 y2 y⋆

Figure 15.1 A Gaussian process for 2 training points and 1 testing point, represented as a mixed directed
and undirected graphical model representing p(y, f |x) = N (f |0,K(x))

∏
i p(yi|fi). The hidden nodes

fi = f(xi) represent the value of the function at each of the data points. These hidden nodes are fully
interconnected by undirected edges, forming a Gaussian graphical model; the edge strengths represent the
covariance terms Σij = κ(xi,xj). If the test point x∗ is similar to the training points x1 and x2, then
the predicted output y∗ will be similar to y1 and y2.

Our presentation is closely based on (Rasmussen and Williams 2006), which should be con-
sulted for futher details. See also (Diggle and Ribeiro 2007), which discusses the related approach
known as kriging, which is widely used in the spatial statistics literature.

15.2 GPs for regression

In this section, we discuss GPs for regression. Let the prior on the regression function be a GP,
denoted by

f(x) ∼ GP (m(x),κ(x,x′)) (15.2)

where m(x) is the mean function and κ(x,x′) is the kernel or covariance function, i.e.,

m(x) = E [f(x)] (15.3)

κ(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))T

]
(15.4)

We obviously require that κ() be a positive definite kernel. For any finite set of points, this
process defines a joint Gaussian:

p(f |X) = N (f |µ,K) (15.5)

where Kij = κ(xi,xj) and µ = (m(x1), . . . ,m(xN )).
Note that it is common to use a mean function of m(x) = 0, since the GP is flexible enough

to model the mean arbitrarily well, as we will see below. However, in Section 15.2.6 we will
consider parametric models for the mean function, so the GP just has to model the residual
errors. This semi-parametric approach combines the interpretability of parametric models with
the accuracy of non-parametric models.



Dual representation, Sec 6.2
Primal	problem: min
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∑=> RF(= − T= 2+ V

+
R 2 = _C− X +

++ V
+
CF_C
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Dual representation, Sec 6.2

• Often a is sparse (… Support vector machines)
• We don’t need to know x or a ( . cdeX Xfg _ghigj

S C = _C− X +
++
Y
2
CF_C

Dual representation is : min
C

S(C)

S = #
+
∑=> RF(= − T= 2+ V
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Commonly used kernels
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So we showed that k is an inner product for n = 2 because we found a feature
space corresponding to it.

For n = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

�(x) = (x(1)2, x(1)x(2), ..., x(3)2), and �(z) = (z(1)2, z(1)z(2), ..., z(3)2),

h�(x),�(z)iR9 = hx, zi
2
R3.

That’s nice.

We can even add a constant, so that k is the inner product plus a constant
squared.

Example 4:

k(x, z) = (xT
z+ c)2 =

 
nX

j=1

x
(j)
z
(j) + c

! 
nX

`=1

x
(`)
z
(`) + c

!

=
nX

j=1

nX

`=1

x
(j)
x
(`)
z
(j)
z
(`) + 2c

nX

j=1

x
(j)
z
(j) + c

2

=
nX

j,`=1

(x(j)x(`))(z(j)z(`)) +
nX

j=1

(
p

2cx(j))(
p

2cz(j)) + c
2
,

and in n = 3 dimensions, one possible feature map is:

�(x) = [x(1)2, x(1)x(2), ..., x(3)2,
p

2cx(1),
p

2cx(2),
p

2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d � 2

k(x, z) = (xT
z+ c)d,

4

I
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• Showed also http://playground.tensorflow.org/ in the last 
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