Class is 170. Announcements

Matlab Grader homework,

1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.

For HW1, please get word count <100

167, 165,164 has done the homework. (If you have not done it talk to me/TA!)
Homewor-k_I?(reIeased ~tomorrow) due ~5 May IUU\/(S 'S

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 27 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve.

Today:
« Stanford CNN 9, Kernel methods (Bishop 6),
« Linear models for classification, Backpropagation

Monday
« Stanford CNN 10, Kernel methods (Bishop 6), SVM,
« Play with Tensorflow playground before class http://playground.tensorflow.org




Projects

3-4 person groups preferred

Deliverables: Poster & Report & main code (plus proposal,
midterm slide)

Topics your own or chose form suggested topics. Some
physics inspired.

April 26 groups due to TA (if you don’t have a group, ask in
piaza we can help). TAs will construct group after that.

May 5 proposal due. TAs and Peter can approve.

Proposal: One page: Title, A large paragraph, data, weblinks,
references.

Something physical



DataSet
80 % preparation, 20 % ML

Kaggle:
https://inclass.kaggle.com/datasets

https://www.kaggle.com

UCI datasets: http://archive.ics.uci.edu/ml/index.php

Past projects...

Ocean acoustics data



In 2017 Many choose the source localization

two CNN projects,
=

Many thanks for the fun projects! Below are the final projects from the class. Only the report is posted, the
corresponding code is just as important.

1.

NN DR W

12.
13.
14.

Source localization in an ocean waveguide using supervised machine learning, Group3, Group6, Group8,
Group10, Groupl1, Groupl5

. Indoor positioning framework for most Wi-Fi-enabled devices, Groupl
. MyShake Seismic Data Classification, Group2

. Multi Label Image Classification, Group4

. Face Recognition using Machine Learning, Group7

. Deep Learning for Star-Galaxy Classification, Group9

. Modeling Neural Dynamics using Hidden Markov Models,

)
10.
11.

Groupl2

Star Prediction Based on Yelp Business Data And Application in Physics, Group13

Si K edge X-ray spectrum absorption interpretation using Neural Network, Group14

Plankton Classification Using VGG16 Network, Group16

A Survey of Convolutional N eural Networks: Motivation, Modern Architectures, and Current Applications in
the Earth and Ocean Sciences, Groupl/

Use satellite data to track the human footprint in the amazon rainforest, Group18

Automatic speaker diarization using machine learning techniques, Group19

Predicting Coral Colony Fate with Random Forest, Group20

C_ 1 L



2018: Best reports 6,10,12 15;

poor 17; alone is hard 20.

interesting 19, 47

Group|Topic Authors Poster |Report
| Rennplgment?tlon of source locah-zanon In an ocean Jinzhao Feng, Zhuoxi Zeng, Yu Zhang Poster |Paper
waveguide using supervised learning
2 xli‘;';‘s"e learning methods for ship detection in satelite |y, 1 Huadong Zhang, Xiaoshi Li, Quianfeng Guo ~ [Poster [Paper
3 Transparent Conductor Prediction Yan Sun, Yiyuan Xing, Xufan Xiong, Tianduo Hao Poster |Paper
4 Ship identification in sateklite Images Weilun Zhang, Zhaoliang Zheng, Mingchen Mao, Poster |Paper
5 Fruit Recognition Eskil Jarslkog, Richard Wang, Joel Andersson Poster (Paper
‘_a 6 RSNA Bone Age Prediction le;i]n Camilo Castillo, Yitian Tong, Jiyang Zhao, Fengcan Poster |Paper
7 Facial Expression Classification into Emotions gﬁ;ig Orozco, Christopher Lee, Yevgeniy Arabadzhi, Deval Poster |Paper
8 Urban Scene Segmentation for Autonomous Vehicles lY{Z:laﬁ'ighcn Huang, Eddic Tseng, Ping-Chun Chiang, Chih- Poster (Paper
FO Face Detection Using Deep Learning Yu Shen, Kuan-Wei Chen, Yizhou Hao, Min Hsuan Wu Poster |Paper
“‘)O Understanding the Amazon Rainforest using Neural Naveen Dharshana Ketagoda, Christian Jonathan Koguchi, Poster [Paper
Networks Niral Lalit Pathak, Samuel Sunarjo LOSIer (Lapet
11 Mercedes-Benz Bench Test Time Estimation Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu Poster |Paper
. . .. Osman Cihan Kilinc, Kazim Ergun, Yuming Qiao,
‘152 Vegetation Classification in Hyperspectral Image Fengjunyan Li Poster (Paper
13 Threat Detection Using AlexNet on TSA scans Amartya Bhattacharyya, Christine H Lind, Rahul Shirpurkar |Poster |Paper
14 Flagellates Classification via Transfer Learning Eric Ho, Brian Henriquez, Jeffrey Yeung Poster |Paper
nﬁlS Biomedical Image Segmentation Lucas Tindall, Amir Persekian, Max Jiao Poster |Paper
" o - -
16 (‘(I;)Iexelg)Fakes using Generative Adversarial Networks Tianxiang Shen, Ruixian Liu, Ju Bai, Zheng Li Poster (Paper
17 g:tgwlcs)rk Gassification via Conveolutional Neural Yizhou Chen; Xiaotong Chen; Xuanzhen Xu Poster (Paper
18 Dog Breed Identification Wenting Shi, Jiaquan Chen, Fangyu Liu, Muyun Liu Poster |Paper
19 Impact of Skewed Distributions on an Automated Will Chapman, Emal Fatima, William Jenkins, Steven Tien, Poster [Paper
Plankton Classifier Shawheen Tosifian QST Laper
an Dilnnd Al Matnntinem ssninma Qinala chat AMuléiDae Matnntnsn Tavananas Tah Dactaw IDanae



Bayes:

Bayes and Softmax (Bishop p. 198)

p(ylr)p(x)  p(ylr)p(x)

p(zly) =

p(y)  Y,ey p(,y)

Classification of N classes:

Cn)

p(Cnlx) =

with

Qn,

p(x|Cr)p(

exp(ay)

X|C

A le[;

- E];f:l exp(ax)

(Cy)

&y

Sy p(x|Cr)p(Ch

)@-

Parametric Approach: Linear Classifier
3072x1
f(x, W)|= WK +[b] 10x1
10x1  10x3072 :

— fx, W) ——>

Image

10 numbers giving
class scores

A f 32x32x3 b T
oo N t 4
— O e
— 0 4
e
_— c
/ ]

hov



Softmax to Logistic Regression (Bishop p. 198)
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The Kullback-Leibler Divergence

P true distribution, g is approximating
distribution

KLGlo) = ~ [peomaedx— (-~ [pexnpeoax)
_ _/p(x)m{%} dx
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Cross entropy
« KL divergence (p true g approximating)

Dikry(0llq) = X7 paln(pr) -7 prln(qy)

— _H(p) + H(pr q)

N
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» Cross entropy
H(p,q) = H(q) + Dy (0l19)= -X7 paln(qn)

RGO TGy

e Implementations
tf.keras.losses.CategoricalCrossentropy() e—
tf.losses.sparse_softmax_cross_entropy -

e —————

torch.nn.CrossEntropyLoss()




Cross-entropy or “softmax” function for multi-class classification
Z.
e 1

The output units use a non-local non-linearity: Yi=

y1 y2 y3 output units oy,

— =y (1=y)
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Reminder: 1x1 convolutions

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

1x1 CO
56 with 32filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Summary: CNN Architectures

Case Studies
- AlexNet
- VGG
- GooglLeNet
- ResNet



Case Study: ResNet

[He et al., 2015]
—=

Very deep networks using residual
connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner
(3.57% top 5 error)

- Swept all classification and
detection competitions in
ILSVRC’15 and COCO’15!




Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

r may o

re

Training error

[terations

Test error

[terations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to

optimize e



Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

— (H(x) =rF(x) + X~ o ! relu

H(x)

Use layers to

\ fit residual
X F(x) = H(x) - x
\relu identity nstead of
T H(x) directly
X X
“Plain” layers Residual block

HGO = X+ F(X)



Kernels

We might want to consider something more complicated than a linear model:

Example 1: [z 2?)] — & ([x(l),x@)]) = [x(l)Q,x(Q)z,xmx(Q)}

Information unchanged, but now we 0]
have a linear classifier on the T

transformed points. X, L —c

With the kernel trick, we just need kernel Input Bface Feature Space
f

k(a,b) = fb(a)T D (b)

k(x,x') = p(x)Tp(x). (6.1)



Basis expansion
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Gaussian Process (Bishop 6.4, Murphy15)

- f(x) ~ GP(m(x), x(x,x))
C——
2 s A " 0 0's i
This is what a Gaussian process 2 28

posterior looks like with 4 data points
and a squared exponential
covariance function. The bold blue

line is the predictive mean, while the
light blue shade is the predictive 0 )
uncertainty (2 standard deviations).

The model uncertainty is small near
the data, and increases as we move .
away from the data points. .

5 [} L) 5 [} L]

(a) (b}

Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents [E | f(x)] +2std( f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoNoiseFree.



Dual representation, Sec 6.2 . %
Primal problem: min E(w) &= ¢ !\/

E= ZN{W Xp = tn}*+ -||W||2 = || Xw — t]|3+ IIWII2

t 21/1)"7 .\*‘7‘
Solution @ X't=(X"X+ /11 w) X7t [ (]

= X"(XX" + Aly)" 't= XT(K +Ay)'t=X"a

a= (K#)J>z§ X X7

Dual representation is : mln E(af eV
__/.

A
E = 23NWx, — )2+ 2|2 = [Ka — tl|3+2 a’Ka

The kernel is K = XX ¢ E\

a is found inverting NxN matrix
w is found inverting MxM matrix

—

Only kernels, no feature vectors



Dual representation, Sec 6.2
Dual representation is: minE(a)
a
1 A A
E = ;SN W x, — £} SIIwli2 = K — t]3+a"Ka S—

Prediction
y =w'x = a'Xx = ¥} appepx[= Y ank (X, , %)
- : '\‘

A—

. Often a is sparse (... Support vector machines) S (/7
 We don’t need to know x or Just the Kernel

A
E(a) = ||Ka — tII%+EaTKa

-
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Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp (— > (x —x)T2 1 (x — x’))

<
Diagonal X: (this gives ARD) ==/ . ]
N 2 e=?
1 X; — X v
k(x,x") = exp ——2( l > )
2 : oF

Isotropic ¢/ gives an RBE

207

— 212 " ’lr
k(x,x’) = exp (_ ”x X ”2) Z G



Commonly used kernels

Polynomial: K(X,y)=(X.y + 1)p'\

Gaussian 220 that the user
. . —| |1 X— D
radial basis K(Xx,y)=e Iyl 20 must choose

function
_—/

Neural net: K(X,y)=tanh(kx.y —0)

For the neural network kernel, there is one “hidden unit” per support vector,
so the process of fitting the maximum margin hyperplane decides how many
hidden units to use. Also, it may violate Mercer’s condition.



Example 4:

= z;;x —|—QCZSU
= i(x(j)x(@) —i—z (V2cz) (v2c2W) +
=1

and in Qjé dimensions, one possible feature map is:
— ®(x) = [z, 20z @2 2™ V2cx® V2ex® | (]

and ¢ controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.



« FINISHED HERE 30 April 2018

 Showed also http://playground.tensorflow.org/ in the last
10 min.




