Class is 176. Announcements

Matlab Grader homework,

1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
For HW1, please get word count <100

Homework 3 (not released yet) due ~29 April

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 19 Groups formed. Look at Piazza for help

Today:
Stanford CNN 8
Linear models for classification, Backpropagation

Wednesday
Stanford CNN 9, Kernel methods (Bishop 6),
Play with Tensorflow playground before class hiip://playground.tensorflow.org

http://playground.tensorflow.org/

CPU vs GPU

Cores Clock Speed | Memory Price
CPU 4 4.4 GHz Shared with system $339
(lntel Core (8 threads with
h hyperthreading
i7-7700k))
CPU 10 3.5 GHz Shared with system $1723
(Intel Core | (20 threads

\ ith
i7-6950X) | hyperthreading

)

GPU 3840 1.6 GHz 12 GB GDDR5X $1200
(NVIDIA
Titan Xp)

GPU 1920 1.68 GHz 8 GB GDDR5 $399
(NVIDIA
GTX 1070)

Programming GPUs

e CUDA (NVIDIA only)

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“‘dumber”; great for
parallel tasks

o Write C-like code that runs directly on the GPU
o Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc

e OpenCL
o Similar to CUDA, but runs on anything
o Usually slower :(
e Udacity: Intro to Parallel Programming
https://www.udacity.com/course/cs344
o For deep learning just use existing libraries

GPU is efficient with matrices

Example: Matrix Multiplication

AxC

m
X
<

BxC

Main packages 2017

Today |
A bit about these

Caffe | Caffe2

(UC Berkeley) (Facebook)

Torch PyTorch

(NYU / Facebook) (Facebook)

Theano » | TensorFlow

(U Montreal) (Google)
Mostly these

+Keras

Paddle
(Baidu)

CNTK
(Microsoft)

MXNet

Developed by U Washington, CMU, MIT,

And others...

DL frame work gives:

(1) Easily build big computational graphs
(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Computational Graphs i

3 ﬂ, e ’u —,f_.ﬁ

weights

oss \
;

DL frame work gives:

(1) Easily build big computational graphs
(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Computational Graphs

import numpy as np
np.random.seed(0)
N, D=3, 4

p.random.randn(N, D) 6

n
np.random.randn(N, D)
n

+
p.random.randn(N, D)
Yy
z
p.sum(b)

N X
o n

QoW

[|

[
+

Computational Graphs

Numpy

import numpy as np
np.random.seed(0)

N, D=3, 4

X

Y
z

np.random.randn(N, D)
np.random.randn(N, D)
np.random.randn(N, D)

]

a
b
c

X *y
a+z
np.sum(b)

1.0

grad ¢ * np.ones((N, D))
grad_b.copy()
grad_b.copy()

grad a * y

grad_a * x

grad_c
grad b
grad_a
grad_z
grad X
grad_y

:
é

TensorFlow

Basic computational graph
import numpy as np
np.random.seed(0)

import tensorflow as tf

N, D=3, 4

X = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
a=x*y

b=a+z

¢ = tf.reduce_sum(b)

grad x, grad y, grad_z = tf.gradients(c, [(x, ¥, 2])

with tf.Session() as sess:

values = |
X: np.random.randn(N, D),
y: np.random.randn(N, D),
z: np.random.randn(N, D),

out = sess.run([c¢, grad x, grad y, grad_z],
feed dict=values)
c_val, grad x val, grad y val, grad z val = out

CNN class

My Advice:

TensorFlow is a safe bet for most projects. Not perfect but has
huge community, wide usage. Maybe pair with high-level wrapper
(Keras, Sonnet, etc)

| think PyTorch is best for research. However still new, there can be
rough patches.

Use TensorFlow for one graph over many machines
Consider Caffe, Caffe2, or TensorFlow for production deployment
Consider TensorFlow or Caffe2 for mobile

What NN is this?

Classification vs regression
Range 1 torange N

What is “linear” classification?
Classification is intrinsically non-linear

It puts non-identical things in the same class, so a difference in input vector
sometimes causes zero change in the answer

“Linear classification” means that the part that adapts is linear
The adaptive part is followed by a fixed non-linearity.
It may be preceded by a fixed non-linearity (e.g. nonlinear basis functions).

y(x) = wlx+ W, Decision = f(y(x))

adaptive linear function t
fixed non-linear function

Representing the target values for classification
For two classes, we use an output with target values 1 for the
“positive” class and 0 (or -1) for the other class

For probabilistic class labels the target value is P(t=1) and
the model output can also represent P(y=1).

For N classes we often use a vector of N target values
containing an 1 at the correct class and 0 elsewhere.

For probabilistic labels we can then use a vector of class
probabilities as the target vector.

Three approaches to classification

Use discriminant functions directly without probabilities:

Convert input vector into real values. A simple operation (like
thresholding) can get the class.

Choose real values to maximize the useable information about the
class label that is in the real value.

Infer conditional class probabilities: p(class = C;, | X)

Compute the conditional probability of each class.
Then make a decision that minimizes some loss function

Compare the probability of the input under separate, class-
specific, generative models.

E.g. fit a multivariate Gaussian to the input vectors of each
class and see which Gaussian makes a test data vector most

probable. (Is this the best bet?)

sl] Discriminant functions

y<0 R, The planar decision surface
In data-space for the simple

linear discriminant function:

W X—I—WOZO

X on plane => y=0 =>

Distance from plane

Discriminant functions for N>2 classes
One possibility is using N two-way discriminant functions.

Each function discriminates one class from the rest.
Another is using N(N-1)/2 two-way discriminant functions

Each function discriminates between two particular classes.
Both methods have problems

not Co

More than one good
answer

Two-way preferences
need not be transitive!

A simple solution (4.1.2)

Use N discriminant functions,
and pick the max. Y, V. Vi -

T
This is guaranteed to give consistent ¢ !
convex decision regions if y is linear. R
Ry
Ye(Xg)>y;(xy) and y(xp)>y;(Xg) o
e

implies (for positive) that R X

ilax+(1-a)xz)>y;(ax,+(1-a)x;)

Decision boundary?

pix,)

PCA don’t work we

Scatter plot of data-set

10
5
0
-5
-10 s *
-10 -5 0 5 10
X4
Marginal Distribution
005
004
003
002
001
0
-10 -5 0 5 10
X

Marginal Distribution
002 004 006
pix,)
-01 -008 -006 -004 -002

0

Marginal Distribution after transf.

007
008
005

< 004

p("x,)

003

002

0
-10

Scatter plot of transf. data-set

picture showing the advantage of Fisher’s linear
discriminant

6 -2 2 6

When projected onto the line Fisher chooses a direction that makes
joining the class means, the the projected classes much tighter,
classes are not well separated. even though their projected means are

less far apart.

Math of Fisher’s linear discriminants
What linear transformation is best for discrimination? T

The projection onto the vector separating the class y=w2X

means seems sensible: W oC m,—m,

S% — :E:(JG1__’nl)

But we also want small variance within each class: neC

S% = :E:()G1__’n2)

I’Z8C2

2
Fisher’s objective function is: m-~ —m between

2 2
C(my—m)® wISgw ST TS82 o within
JW) = —5——=—
Sl +S2 W SWW

Sp=(m; —m;) (m, _ml)T

Sy = Y (x, —my) (x, —m)" + > (x,—m,)(x,—m,)"

neC neC,

Optimal solution: W o S;V1 (m, —m,)

We have done probabilistic classification!

class conditional densities p(xjc)

04
02
0 = L =
-10 -8 -6 -4 -2 0 2 4 6 10
density p(x)
0.2 T T L] T T T T T
01} / \
0 L 1 1 1 1 1 L 1
-10 -8 -6 -4 -2 0 2 4 6 10
posterior class probabilities P(c|x)
1 T T T T_— T
05
0 1
-10 = -6 4 2 0 2 4 6 10

posterior class probabilities P(c|x) and decision boundaries

’\

10

Probabilistic Models for Discrimination (Bishop p 196)

Use a generative model of the input vectors for each class,
see which model makes a input vector most probable.

The posterior probability of class 1 is:

p(C))p(x| Cy) _ 1
p(C)p(x|C)+p(Co)p(x|Cy) 1+e7F

p(C|x) =

p(C)px|C) | PG [%)
p(Co)p(x|Cyh) 1-p(C|x)
1

z is called the logit and is
given by the log odds

where z = In

An example for continuous inputs

Assume input vectors for each class are Gaussian, all classes

have the same covariance matrix.

normalizing inverse covariance matrix
constant ‘

' 1 T -1
p(x|C) =a expp L (x—p) =7 (x—my)|
For two classes, C, and C,, the posterior is a logistic:
p(C1x)=c(w' x+w)

w=2""(n —po)
p(Cy)
p(Cop)

1 Ts-1 1 Ts-1
Wo=—5M Z M +oRpX py +In

See lecture 2

The role of the inverse covariance matrix

If the Gaussian is spherical no need to worry
about the covariance matrix.

So, start by transforming the data space to
make the Gaussian spherical

This is called “whitening” the data.

It pre-multiplies by the matrix square
root of the inverse covariance matrix.

In transformed space, the weight vector is
the difference between transformed means.

—1
w=2x (b —Ng)
gives the same value

for wlix as:

1 1
W =X 2 — X 2y
1

and X,z = T 2x

gives for Wgﬁxaﬁ

Posterior when covariance matrices are different for each class

-0.5

-1.5

-2.5

(Bishop Fig)
- 2.5

2
1.5
1
0.5
0

-1

-2

-2 -1 0 1 2

The decision surface is planar when
the covariance matrices are the same
and quadratic when not.

The logistic function

The output is a smooth function _wix s
of the inputs and the weights. =W XT W
1
y=o(z)=—
T 1+e
0 0
0.5+ ow; OX;
dy
0 | 0 Y (1-»)
0 ‘ 1

Its odd to express it
in terms of y.

The natural error function for the logistic

N
Fitting logistic model using E= _Z Inp(t,|y,)

maximum likelihood, requires n=I1

minimizing the negative log N

probability of the correct answer _ . _
summed over the training set. Zt”l In Vn F (1 t’”’)ln (1 y”)

"1 T

if t =1 if t=0
OE, _ 1, N 1-1,
error derivative on V, =1,

training case n

Logistic regression (Bishop 205)
p(Cilx) = o(w'x).

Observations Jx, 3 7o)
Likelihood 2,20 4. €10, 3|

y=ow'x)

p(ylx; W) = Kery\ (%}/‘) - /’H("/-C)l‘/‘)

N
T) — . ‘e” - Ipt“
p(T|x, w) 71.7 s _/1”)
Log-likelihood N
£y = ~In(p(T'x,w))= “,z(tn Lngg, + (12, Ll ~40))

Minimize -log like
Derivative v

L =1, -
VWEW = 'U"Zﬁn [+/_4 '(‘/)J ﬂ"(l qh) xh

) ;7290_&/& UOL«t}: W =~ 9d&,

Cross-entropy or “softmax” function for multi-class classification

Z.
e l
The output units use a non-local non-linearity: Vi = Z z;
e
J
y1 y2 y3 output units oy,
—=y; (1=y;)
0z;

21 |42 |43
target value

The natural cost function is the negative log prob E = sz In Y;
of the right answer

= Z OE 5)/] y, —t;
82 8)/] 0z;

Lecture 8: Backpropagation

Number of parameters

t = wl'x ,N measurement, M parameters
How large a w can we determine?

t=qp(w,x)

How large a w can we determine?

Consider a neural network, with one hidden layer, each layer
having N=M=100 nodes

How large is W?

How many observations is needed to estimate W?

OO

Why we need backpropagation

Networks without hidden units are very limited in the input-output
mappings they can model.

More layers of linear units do not help. Its still linear.
Fixed output non-linearities are not enough

We need multiple layers of adaptive non-linear hidden units,
giving a universal approximator. But how to train such nets?

We need an efficient way of adapting all the weights, not just
the last layer. Learning the weights going into hidden units is
equivalent to learning features.

Nobody is telling us directly what hidden units should do.
O

—>

O
O

The idea behind backpropagation

Don’t know what the hidden units should be, but we can compute
how fast the error changes as we change a hidden activity.

Instead of using desired activities to train the hidden units, use
error derivatives w.r.t. hidden activities.

Each hidden activity affect many output units and have many
separate effects on the error.

Error derivatives for all the hidden units is computed efficiently.

Once we have the error derivatives for the hidden activities, its

easy to get the error derivatives for the weights going into a
hidden unit.

O

—

OO

Non-linear neurons with smooth derivatives

For backpropagation, we need

neurons that have well-behaved S Zy Ly
derivatives. ’

Typically they use the logistic y .= !

function J —X;

The output is a smooth function I+e

of inputs and weights. Ox ; OX ;

ow, 20 oy, U
I Wij Vi

Y] Vi oy

0.5+ P Y Y

J
0

Computational graphs

f=Wzx

Li = ., max(0,s; — sy, + 1)

\ @ s (scores) ; ; L
‘R ?

R(W)

CNN lecture 4 explain Backpropagation simple

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

f

12

g=z+y HF=15=1
of of
f=gqz 9 o 4
of of O
Want: L o O

oz ? y” 0z

Backpropagation: a simple example

f(z,y,2) = (¢ +y)z
eg.x=-2,y=5,z=-4

_ O . 99 _
q=+Yy %—1,@—1
_ of _ _ of Chain rule: O
=R a=na™ of _ of o
of of of dxr ~ Oq Ox

Want: o Ty Bz

Patterns in backward flow

add gate: gradient distributor

Q: What is a max gate?

_10.00 %5\ -20.00
2.00 1.00

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-10.00 %0 -20.00
2.00 1.00

Bernoulli distribution

Random variable x € {0,1}
Coin flipping: heads=1, tails=0

p(z =1lp) =
Bernoulli Distribution Bern(z|p) = p%(1 —p)t=*
Elz] = p
varfz] = p(l—p)

ML for Bernoulli
Given: D = {scl, ..., N}, m heads (1), N —m tails (0)

N
p(Dlp) = H p(an|p) = [] (1 —p)' =
n=1

N
Inp(D|pu) = Zlnp T |pt) = Z{xnlnu+(1—xn)ln(1—u)}

n=1

1 N m
MML:N;xn:N

Maximum Likelihood and Least Squares (from lecture 3)

Computing the gradient and setting it to zero yields

Vw 1np(t|W, /6) =0 Z {tn — WT¢(XR)} ¢(Xn)T = 0.

Solving for w,

! The Moore-PenroseT
' —1 ‘ pseudo-inverse, P,
Wir = (<I>T<I>) &t

where

¢0(X1) ¢1(X1) ¢M—1(X1)
(¢0(X2) P1(x2) - ¢M—1(X2)\

\ do(xn) di(xn) - dui(xy) /

LSQ for classification

Each class Cj. is described by its own linear model so that

Yi(X) = Wi X + wo (4.13)
where £k = 1,..., K. We can conveniently group these together using vector nota-
tion so that .

y(x) = W'x (4.14)

Consider a training set {x,,, t,},n =1...N
Define Xand T

LSQ solution:
W= (X"X)"'X"T = XIT (4.16)
And prediction

y(x) = WIx = TT (XT)T X, 4.17)

Using “least squares” for classification

It does not work as well as better methods, but it is easy:
It reduces classification to least squares regression.

logistic regression

|least squares
|regression

LSQ solution:
W= (X"X)"'X"T = XIT (4.16)
And prediction

y(x) = WIx = TT (5@)T X, 4.17)

