
Projects3-4 person groups preferred
Deliverables: Poster & Report & main code (plus proposal, midterm slide)

Topics your own or chose form suggested topics. Some physics/engineering
inspired.

April 26 groups due to TA (if you don’t have a group, ask in piazza we can help). TAs
will construct groups after that.

May 5 proposal due. TAs and Peter can approve.
Proposal: One page: Title, a large paragraph, data, weblinks, references.

May 20 Midterm slide presentation. Presented to a subgroup of class.

June 5 final poster. Uploaded June 3
Report and code due Saturday 15 June.
Q: Can the final project be shared with another class?
If the other class allows it it should be fine. You cannot turn in an identical project for both classes, but you can
share common infrastructure/code base/datasets across the two classes.

No cut and paste from other sources without making clear that this part is a copy. This applies to other reports or
things from internet. Citations are important.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 20179

Last time: Data Preprocessing
Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

After normalization: less sensitive to small
changes in weights; easier to optimize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201716

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201718

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201719

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201720

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201721

SGD + Momentum
SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201737

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201740

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201758

How to improve single-model performance?

Regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017

Regularization: Add term to loss

59

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201760

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Homework

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201762

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201775

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201781

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

+simulated data
using physical
model.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201790

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Predicting Weather with
Machine Learning:

Intro to ARMA and Random Forest

Emma Ozanich
PhD Candidate,

Scripps Institution of Oceanography

Background
Shi et al NIPS 2015 –
• Predicting rain at different time

lags
• Shows convolutional lstm vs

nowcast models vs fully-
connected lstm

• Used radar echo (image) inputs
o Hong Kong, 2011-2013,
o 240 frames/day
o Selected top 97 rainy days
o Note: <10% of data used!

• Preprocessing: k-means clustering
to denoise

• ConvLSTM has better
performance and lower false
alarm (lower left)

CSI: hits/(hits+misses+false) FAR: false/(hits+false) POD: hits/(hits+misses)

false = false alarm

Background
McGovern et al 2017 BAM –
• Decision trees used in meteorology since mid-1960s

McGovern et al 2017, Bull. Amer. Meteor. Soc. 98:10, p. 2073-2090.

Predicting rain at different time lags

Background
McGovern et al 2017 BAM –
• Green contours = hail occurred (truth)
• Physics based method: Convection-allowing model (CAM)

o Doesn’t directly predict hail
• Random forest predicts hail size (Γ) distribution based on weather
• HAILCAST = diagnostic measure based on CAMs
• Updraft Helicity = surrogate variable from CAM

McGovern et al 2017, Bull. Amer. Meteor. Soc. 98:10, p. 2073-2090.

Decision Trees
• Algorithm made up of conditional control statements

Homework'Deadline'
tonight?'

Do'homework'

Yes'

Party'invitaNon?'

No'

No'

Do'I'have'friends'

Yes'

Go'to'the'party'

Read'a'book'

No'
Hang'out'with'

friends'

Yes'

Decision Trees
McGovern et al 2017 BAM –
• Decision trees used in meteorology since mid-1960s

McGovern et al 2017, Bull. Amer. Meteor. Soc. 98:10, p. 2073-2090.

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

• Divide data into distinct, non-overlapping regions R1,…, RJ

• Below yi = color = continuous target (<blue = 1 and >red = 0).
• xi , i = 1,..,5 samples
• !" = $%, $' , with P = 2 features.
• j = 1,..,5 (5 regions).

Regression Tree

Hastie et al 2017, Chap. 9 p 307.

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Tree-building
• Or, consecutively partition a region into non-overlapping

rectangles
• yi = color = continuous target (<blue = 1 and >red = 0).
• xi , i = 1,..,5 samples
• !" = $%, $' , with P = 2 features.
• j = 1,..,5 (5 regions).

Hastie et al 2017, Chap. 9 p 307.

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

R2

Regression Tree
• How to optimize a regression tree?
• Randomly select t1

• Assign region labels:

o Example-

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

t1

t1

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

, j = 1

t1

t1

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

1

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

2

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

1

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

2

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

R2

Regression Tree
• Compute the cost of the tree, Qm(T),
• Minimize Qm(T) by changing t1

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

2

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition intoM regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑

xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − c2)
2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting

regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might overfit

the data, while a small tree might not capture the important structure.

1

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

R2

Regression Tree
• Algorithm to build tree Tb

• In our simple case, m = 1 and p = 2
• Daughter nodes are equivalent to regions

1.
2.
3.

Bootstrap samples
• Select a subset of the total samples, (x*

i ,y*
i), i = 1,…,N

• Draw samples uniformly at random with replacement
• Example: If I = 5 originally, we could choose N = 2

• Samples are drawn assuming equal probability:

o If xi, yi is drawn more often, it is more likely

o (X,Y) are the expectations of the underlying distributions

The bootstrap

The bootstrap1 is a fundamental resampling tool in statistics. The
basic idea underlying the boostrap is that we can estimate the true
F by the so-called empirical distribution F̂

Given the training data (xi, yi), i = 1, . . . n, the empirical
distribution function F̂ is simply

PF̂
�
(X,Y) = (x, y)

=

(
1
n if (x, y) = (xi, yi) for some i

0 otherwise

This is just a discrete probability distribution, putting equal weight
(1/n) on each of the observed training points

1Efron (1979), “Bootstrap Methods: Another Look at the Jacknife”
7

Random Forest
• Example of binary classification tree from Hastie et al 2017
• Orange: trained on all data
• Green: trained from different bootstrap samples
• Then, average the (green) trees

Example: bagging
Example (from ESL 8.7.1): n = 30 training data points, p = 5
features, and K = 2 classes. No pruning used in growing trees:

10

Example: bagging
Example (from ESL 8.7.1): n = 30 training data points, p = 5
features, and K = 2 classes. No pruning used in growing trees:

10
Hastie et al 2017, Chap. 8 p. 284

Random Forest
• Bootstrap + bagging => more robust RF on future test data
• Train each tree Tb on bootstrap sampling

Hastie et al 2017, Chap. 15 p. 588

Timeseries (TS)
• Timeseries: one or more variables sampled in the same location at successive time steps

ARMA
• Autoregressive moving-average :

o (weakly) stationary stochastic process
o Polynomials model process and errors as polynomial of prior values

• Autogressive (order p)
o Linear model of past (lagged) and future values
o p lags

o φi are (weights) parameters
o c is constant
o εt is white noise (WGN)
o Note, for stationary processes, |φi|< 1.

• Moving-average (order q)
o Linear model of past errors
o q lags
o Below, assume <Xt>=0 (expectation is 0)

Xt = c+ ϕi X t−i +εt
i=1

p

∑

Xt = c+ θiεt−i +εt
i=1

q

∑

ARMA
• Autoregressive moving-average :

o (weakly) stationary stochastic process
o Linear model of prior values = expected value term + error term + WGN

• ARMA: AR(p) + MA(q)

Xt = c+ ϕi X t−i +
i=1

p

∑ θiεt−i +εt
i=1

q

∑

Data retrieval
Just a few public data sources for physical sciences…

• NOAA:
o Reanalysis/model data, research cruises, station observations, gridded data products,

atmospheric & ocean indices timeseries, heat budgets, satellite imagery
• NASA:

o EOSDIS, gridded data products (atmospheric), satellite imagery, reanalysis/model
data, meteorological stations, DAAC’s in US

• IMOS:
o ocean observing hosted by Australian Ocean Data Network

• USGS Earthquake Archives
• CPC/NCEI:

o gridded and raw meteorological and oceanographic
• ECMWF

o global-scale weather forecasts and assimilated data
…

Possible data formats:
o CSV
o NetCDF
o HDF5/HDF-EOS
o Binary
o JPEG/PNG
o ASCII text

……

Basic data cleaning

• “[ML for physical sciences] is 80% cleaning and 20% models” ~ paraphrased, Dr. Gerstoft
• Basic cleaning for NOAA GSOD to HW – necessary

o Remove unwanted variables (big data is slow)
o Replaced “9999” filler values with NaN
o Converted strings to floats (i.e. for wind speed)
o Created a DateTime index

• Physical data needs cleaning, reorganizing
• Quality-controlled data still causes bugs
• Application-specific

Data for HW
• BigQuery:

o Open-source database hosted by Google
o Must have Google account
o 1 TB data free/ month NOAA GSOD dataset

Data for HW
• How to get BigQuery data?
• bigquery package in Jupyter Notebook (SQL server)

• More complex queries may include dataframe joins,
aggregations, or subsetting

Yearly
datasets Simple SQL query

Query client and convert to Pandas
DF

Pickle
the DF

Tutorial Notebook

• Open “In-Class Tutorial”
• We will do:

1. Load preprocessed data
2. Define timeseries index
3. Look at data
4. Visualize station
5. Detrend data
6. Smooth data
7. Try ARMA model

Tutorial Notebook
• Load packages, (pre-processed) data with Pandas

import
packages

load data

find where
data is after
2008

Timeseries processing
• We may be missing data, but that’s ok for now
• Replace with neighbor data, smooth, fill with mean

missing data

Tutorial Notebook

Basemap is handy but
some problems if
running on your laptop

Timeseries processing
• Remove mean (slope=0) or linear (slope ≠ 0)? (linear)
• What can we learn from trend?

Timeseries processing
• Smoothing: median filter

Tutorial Notebook
• Shortened timeseries – Y2018 (final 10%)
• ARMA most effective predicting one step at a time

Tutorial Notebook
• Is ARMA a machine learning technique? (I think so..)

o Filtering method (like Kalman filter)
o Data-driven
o Maximum likelihood
o Conclusion: statistics-based

Tutorial Notebook
• Autocorrelation:

o A statistical method to find temporal (or spatial) relations in data
o When can reject the null hypothesis that the data is statistically similar?
o E.g. How many time steps before the data is decorrelated

~40 lags

Tutorial Notebook
• Median filter increases decorrelation scale

o By averaging neighbor samples
• Raw series is more random
• Use raw timeseries

~3 lags

Tutorial Notebook
• ARMA algorithm:

1. Train on all previous data
2. Predict one time step
3. Add next value to training data
4. Repeat

Homework
• How to load and preview data with Pandas

import
packages

load data

find where
data is after
2008

Homework
• How to load and preview data with Pandas

column of all
temperature

entries

corresponding
recording

station

Homework
• Randomly select a station
• Check if the station has enough data

o May reduce “3650” to lower number, i.e. 1000, but be aware you may have nans in
data – just look at it!

select
random
station

find data
that matches
stationremove data

related to
temperature

Homework
• Manually time-delay data
• Pandas “shift()”

Pandas shift()

remove first 3 entries

Homework
• (Map is supposed to show red “X” for station)

I can barely see it!!

Homework
• Snapshots from “timeseries_prediction_Temp.ipynb”

training label =
temperature

split data into
train/test with the
help of Sklearnscaling features

improves learning

Homework
• Random forest model in a couple lines
• You may want to write a “plot.py” function

Define, train, and predict
with random forest

plotting true and
predicted temperature

look at feature
importances

Homework
• Congratulations!
• We showed that tomorrow’s temperature is usually similar to today’s (at this Canada

station)

unsurprising result:
validates intuition

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201797

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

