Announcements

Matlab Grader homework, emailed Thursday,
1 and 2 (of less than 9) homeworks Due 21 April, Binary graded.

Jupyter homework?: translate matlab to Jupiter, TA Harshul hegupta@eng.ucsd.edu or me
| would like this to happen.

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, released 17
April.

Projects: Any computer language. Access to Jupyterhub with GPU
Podcast might work eventually.

Today:

e Stanford CNN

e Gaussian processes for concert hall
* Linear models for regression

Wednesday 10 April
Stanford CNN, Linear models for regression/classification (Bishop 3 and 4),



CNN

Fully Connected Layer

Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full
input volume
input W activation
1 10 x 3072 1 (O
3072 weights / 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



CNN

Convolution Layer consider a second, green filter

activation maps

__— 32x32x3 image

5x5x3 filter
e
@>@ ”

convolve (slide) over all
spatial locations

32 1 number: / 28

the result of taking a dot product between the 1
3 filter and a small 5x5x3 chunk of the image 1
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool
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- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm



=
=
—

i

Transfer function reconstruction for outdoor
sound field control

Diego Caviedes Nozal
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Related to the course

Linear models for regression (Lecture 4)

Non-linear models for regression

Gaussian Processes (Lecture 3)

Bayes rule (Lecture 1)
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The problem
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Our goal
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Sound zoning

signal ——»

control

weights
W

primary h - bright
sources | zone
60 v ’
&
‘2&
control | .7~ Hyw - » dark
sources Zone

Objectives

1) Cancellation of sound from the primary sources in a dark zone using a set of

secondary control sources.

2) Minimization of the sound radiated by the control sources into the bright zone.

minimize #|[Hpw||3 + (1 — #)|[Hpw + hpl[3

DTU Electrical Engineering, Technical University of Denmark
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dense measurement grid
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Real experiments: Anechoic conditions
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Real experiments: Outdoor conditions

T T ik .1y
lpnmary sources i

1 e M e -

-~ double layer array
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Measuring transfer functions: Too many issues

* Measuring hundreds of transfer functions to sample the control zones is not possible in
real open air concerts.

* The acoustic transfer functions must be representative of the conditions that the sound
field control is applied.

Different approach: Sound propagation models to estimate the transfer functions.

* Use sparse measurements to fit the model.

DTU Electrical Engineering, Technical University of Denmark
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Modeling: Anechoic conditions

» primary sources © dense measurement grid = model fitting set
» control sources

— [} ) =

primary sourc control

i

Source model: spherical harmonics

90°

135° 45°

M-1 |
Ak.x) = 3 amhiz) (kr)Pp (cos(@)) e = o4
m=0 X 1

270°
270°
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Modeling: Anechoic conditions

Considering no sensor mismatch neither between mics nor loudspeakers...

...the recorded transfer functions at a single frequency between Nz sources and Nu
positions

h:ﬁ+n

where

h = Sa
with h c CNeNv g ccM and S € CNeNM XM \yith elements

Smi = Ny (ki )P (cos(;))
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Modeling: Anechoic conditions

How do we find a?
Bayesian Inference

m(a|h) x w(h|a)r(a)
Where priors

nNCN(O,T_lI) ng(aaﬁ)a 5Ng(a75)
a~ CN(0,07 )

Likelihood
m(h|a, ) ~ CN(h,77I) x exp(—72||Sa — h|[?)

And posterior

m(a, 7,0 |h) xw(h|a,7)r(ald)n(T)m(J)

(a7 T, 5)MAP — arag,f_r,l(?x ﬂ-(av T, 0 ‘ h) h(k7 r*) — S*arl{‘/[AP
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Bayesian Languages (e.g. STAN)

er=0> N meas;
Lower=0> M?
or[N_meas] d;
r[N meas] pt real;
r[N meas] pt imag;

r[N meas] legendre[M];
r[N meas] bessel[M];
r[N meas] neumann[M];

a;

we —j> delta;

stormea "'f‘,f',{

tor[N_meas] mu_real;
vector[N_meas] mu_imag;
real<lower=0> inv_delta;
real<lower=0> inv_tau;
inv_tau = 1/tau;
inv_delta = 1/delta;

mu_ real 0 * d;

mu_imag Bixid:

for (m in 1:M)
mu_real d .* (Ar[m] * bessel[m] + Ai[m] * neumann[m]) .* legendre[m];
mu_imag d .* (Ai[m] * bessel[m] - Ar[m] * neumann[m]) .* legendre[m];

}
el {

tau ~ gamma(a, b);

delta ~ gamma(a, b);

Ar ~ normal(e, inv_delta);

Ai ~ normal(®, inv_delta);

pt real ~ normal(mu_real, inv_tau);
pt imag ~ normal(mu_imag, inv_tau);

b
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Modeling: Anechoic conditions

Insertion loss

13
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Modeling: Outdoor conditions

U | TN | SV

!primary sources i

> primary sources > control sources dense measurement grid
> <>
> S <>
<> &
> L <> &
=10 » X <> ¥
=5 » I a}‘ 4 3’
Y 2
> G <> 5
> <>
> <>
01_» <>
0 10 20 30 40 50 60 70 80
[mn]

14 DTU Electrical Engineering, Technical University of Denmark

=
—
=

i

* Complex scenario (geometry).

* Complex medium (refraction,
turbulences...).
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Modeling: Outdoor conditions
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Semiparametric GP

Reformulate the model (a little bit)
h=h+d+n

Where

It introduces flexibility to the covariance matrix.

The main issue is to define a kernel that makes sense for the problem (probably spatially
periodic?).

We started with something easy: radial basis function

k(ry,ry) K(r1,Ty) 1
K =k(R,R) = : k(1 1;) : k(ri ;) = o exp <_ﬁ||ri - rj||2)

k(ry,r) K(Tn,Ty)
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Semiparametric GP

Reformulate the model (a little bit)

h=h+d+n
Where
17 DTU Electrical Engineering, Technical University of Denmark
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Transfer function prediction

How do we predict elsewhere? A bit more complicated than before
w(a, 7,0 |h) xw(h|a,7)r(ald)n(T)r(0)

(a,7,0)map = argmax m(a, 7,9 | h) hnaap (k,1.) = s.ayap

a,7,0
h. = BAP 4 (KMAP) T (KYAP) ™ (b~ Buiar)

cov(h,) = KMAP _ (KMAP) T (KMAP) T gMAP

Kf,l\l/[AP _ KMAP 4 %I
T

18 DTU Electrical Engineering, Technical University of Denmark
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Transfer function prediction
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Linear regression: Linear Basis Function Models (1)

Generally M1
T
y(X7 W) — Z W gbj (X> =W (X) I 0—0

j=0 ol
* where ¢;(x) are known as basis functions. 0_° o\ © o
* Typically, ¢o(x) = 1, so that wg acts as a bias. ° 4
* Simplest case is linear basis functions: ¢g4(x) = xg4. -} °

0 z 1

M
y(z, W) = wo + w4+ wex? + ... +wyr™ = E w;z?

http://playground.tensorflow.org/



http://playground.tensorflow.org/

Some types of basis function in 1-D

| ————> 1 i ‘
0.75 0.75 | 0.5
05! 0.5 0
0.25 0.25} Rl
SN’ N, N _1 ’
% 0—1 0 1 -1
Sigmoids Gaussians Polynomials
T — [
gbj(x)za( s J> ( — p;)?
_ ! ¢j(x) =expq — 5 ¢;(x) = 7.
O'((l) — . 28 J
1+ exp(—a)

Sigmoid and Gaussian basis functions can also be used in multilayer
neural networks, but neural networks learn the parameters of the basis
functions. This is more powerful but also harder and messier.



Two types of linear model that are equivalent with respect to
bias learning .
Y(X,W) =Wy + WXy + WrXy +... =W X

Y(X, W) =Wy + W@ (X) + Wrh (X) +... = WTCD(X)

 The first and second model has the same number of adaptive
coefficients as the number of basis functions +1.

 Once we have replaced the data by basis functions outputs, fitting
the second model is exactly the same the first model.

— No need to clutter math with basis functions



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added
Gaussian noise:

t = y(X, W) —+ € Where p(€|/6) — N(‘E'Ov /6_1)
or,

p(tx,w, B) = N(tly(x, w), 57).

Given observed inputs, X = {x;,...,xn},and targets t =[t,,... . tx]"
we obtain the likelihood function

N
p(t|X, w, () = H N(tn‘WTqb(Xn)aﬂ_l)-

n=1



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get N
Inp(tiw, 8) = > WmN(t.|w d(xn),5")
n=1

N N
= 5 Infg — D) In(27) — BED(W)

Where the sum-of-squares error is

Ep(w) = % D Atn —wo(x)}?

n=1



Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

Solving for w,

Vwlnp(tiw,3) =3 Z {t, — W d(xn)} P(x,)" = 0.

|

The Moore-Penrose

where

((bo(Xl) $1(x1)
Po(x2)  ¢1(x2)

\ do(xn) é1(xn)

| _1 1
- (<I>T<I>> Tt

pseudo-inverse, o

dr—1(x1)
dnr—1(x2) \

rr_1(xn) |



Maximum Likelihood and Least Squares (4)

Maximizing with respect to the bias, wg, alone,

M—1
wWo S L— Sé
J:
R Mo T
= N2t Dl w2 9%,
anl 7=1 anl

We can also maximize with respect to 3, giving

1 N
BML - N Z WE/Iqu(XTL)}Q



Geometry of Least Squares

Consider
y =®wnmL = [@1,-- -, Pr] WML.
yeSCT te T

T\ ﬁ ﬁ—dimensional

-dimensional

Sis spanned b
P Y Plseer P

Wy, minimizes the distance between
t and its orthogonal projection on S,
l.e.y.



Least mean squares: An alternative approach for big datasets

WT-I—I _ WT . 77 VEn(z-)
t

learning squared error derivatives
rate w.r.t. the weights on the
training case at time tau.

weights after
seeing training
case tau+1

This is “on-line” learning. It is efficient if the dataset is redundant and simple to

implement.

* |tis called stochastic gradient descent if the training cases are picked
randomly.

* (Care must be taken with the learning rate to prevent divergent
oscillations. Rate must decrease with tau to get a good fit.

)
n—

o
0 = Sz (4w

o/



Regularized least squares
~ 1 X 2 A
Ew) =3 X {005, . W) =1,3 + Sl wif

The squared weights penalty is mathematically compatible with
the squared error function, giving a closed form for the optimal
weights:

%k

w = A1+ X' X xXT ¢

identin matrix



A picture of the effect of the regularizer

AR
\

The overall cost function is the sum of
two parabolic bowls.

The sum is also a parabolic bowl.

The combined minimum lies on the line
between the minimum of the squared
error and the origin.

The L2 regularizer just shrinks the
weights.



Other regularizers

* We do not need to use the squared error, provided we are willing to do more
computation.

 Other powers of the weights can be used.




Minimizing the absolute error
: T
mMIN ;0 w Z‘ tn —W X, ‘
n

* This minimization involves solving a linear programming problem.

* |t corresponds to maximum likelihood estimation if the output noise
is modeled by a Laplacian instead of a Gaussian.

—d |tn_yn|

p(tn ‘yn) = ae
_lng(tn ‘yn) — _a|tn_yn |+COnSZL



The bias-variance decomposition

average target «gis» term is the squared error of the average,
value for test

model estimate for case n over training datasets D, of the estimates.
testcase n trained 7

on dataset D

<ly\(xn1;D)—tn}2 >D — [1(3(x,: D)) 5=l P

< > means ; < ((x,:D) — < ¥(x,; D) >, }2>D

expectation over D

Bias: average between prediction and desired.

“Variance” term: variance over training datasets D,
of the model estimate.



Regularization parameter affects the bias and variance terms

high variance low variance

20 realizations

True model t
average of 1 | o

o~
o~

high bias
low bias



An example of the bias-variance trade-off

0.15
(bias)’
0.12¢ variance
(bias)2 + variance
0.09 test error
0.06
0.03F
0
—3 -2 —1 0 1



Beating the bias-variance trade-off

Reduce the variance term by averaging lots of models trained on
different datasets.

— Seems silly. For lots of different datasets it is better to combine
them into one big training set.

* More training data has much less variance.

Weird idea: We can create different datasets by bootstrap sampling
of our single training dataset.

— This is called “bagging” and it works surprisingly well.
If we have enough computation its better doing it Bayesian:

— Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.



