
Announcements
Matlab Grader homework, emailed Thursday,
1 and 2 (of less than 9) homeworks Due 21 April, Binary graded.

Jupyter homework?: translate matlab to Jupiter, TA Harshul h6gupta@eng.ucsd.edu or me 
I would like this to happen. 

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, released 17 
April.

Projects: Any computer language. Access to Jupyterhub with GPU

Podcast might work eventually.

Today: 
• Stanford CNN
• Gaussian processes for concert hall 
• Linear models for regression

Wednesday 10 April
Stanford CNN, Linear models for regression/classification (Bishop 3 and 4), 
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Related to the course

Linear models for regression (Lecture 4)

Non-linear models for regression

Gaussian Processes (Lecture 3)

Bayes rule (Lecture 1)
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The problem
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Our goal
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Sound zoning

Objectives

1) Cancellation of sound from the primary sources in a dark zone using a set of 
secondary control sources.

2) Minimization of the sound radiated by the control sources into the bright zone.
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Real experiments: Anechoic conditions
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Real experiments: Outdoor conditions
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Measuring transfer functions: Too many issues

● Measuring hundreds of transfer functions to sample the control zones is not possible in 
real open air concerts.

● The acoustic transfer functions must be representative of the conditions that the sound 
field control is applied.

Different approach: Sound propagation models to estimate the transfer functions.

● Use sparse measurements to fit the model.
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Modeling: Anechoic conditions

= +

Source model: spherical harmonics
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Modeling: Anechoic conditions

Considering no sensor mismatch neither between mics nor loudspeakers…

...the recorded transfer functions at a single frequency between       sources and       
positions

where

with                         ,                   and                                  with elements 
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Modeling: Anechoic conditions

How do we find    ? 
Bayesian Inference

Where priors

Likelihood

And posterior
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Bayesian Languages (e.g. STAN)
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Modeling: Anechoic conditions

Insertion loss
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Modeling: Outdoor conditions

● Complex scenario (geometry).

● Complex medium (refraction, 
turbulences...).



DTU Electrical Engineering, Technical University of Denmark15

Modeling: Outdoor conditions
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Semiparametric GP

Reformulate the model (a little bit)

Where

It introduces flexibility to the covariance matrix.

The main issue is to define a kernel that makes sense for the problem (probably spatially 
periodic?).

We started with something easy: radial basis function
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Semiparametric GP

Reformulate the model (a little bit)

Where
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Transfer function prediction

How do we predict elsewhere? A bit more complicated than before
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Transfer function prediction



Linear regression: Linear Basis Function Models (1)
Generally

• where fj(x) are known as basis functions.
• Typically, f0(x) = 1, so that w0 acts as a bias.
• Simplest case is linear basis functions: fd(x) = xd.

http://playground.tensorflow.org/

http://playground.tensorflow.org/


Some types of basis function in 1-D

Sigmoids Gaussians                Polynomials

Sigmoid and Gaussian basis functions can also be used in multilayer 
neural networks, but neural networks learn the parameters of the basis 
functions. This is more powerful but also harder and messier.



Two types of linear model that are equivalent with respect to 
learning

• The first and second model has the same number of adaptive 
coefficients as the number of basis functions +1.

• Once we have replaced the data by basis functions outputs, fitting 
the second model is exactly the same the first model.
– No need to clutter math with basis functions
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Maximum Likelihood and Least Squares (1)

• Assume observations from a deterministic function with added 
Gaussian noise:

• or,

• Given observed inputs,                            , and targets                       , 
we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)
Taking the logarithm, we get

Where the sum-of-squares error is



Maximum Likelihood and Least Squares (3)
Computing the gradient and setting it to zero yields

Solving for w,  

where
The Moore-Penrose 
pseudo-inverse,       .



Maximum Likelihood and Least Squares (4)
Maximizing with respect to the bias, w0, alone, 

We can also maximize with respect to b, giving



Geometry of Least Squares
Consider

S is spanned by                    

wML minimizes the distance between 
t and its orthogonal projection on S, 
i.e. y.

N-dimensional
M-dimensional



Least mean squares: An alternative approach for big datasets

This is “on-line“ learning. It is efficient if the dataset is redundant and simple to 
implement.
• It is called stochastic gradient descent if the training cases are picked 

randomly.
• Care must be taken with the learning rate to prevent divergent 

oscillations. Rate must decrease with tau to get a good fit.
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Regularized least squares
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The squared weights penalty is mathematically compatible with 
the squared error function, giving a closed form for the optimal 
weights:

identity matrix



A picture of the effect of the regularizer
• The overall cost function is the sum of 

two parabolic bowls. 
• The sum is also a parabolic bowl.
• The combined minimum lies on the line 

between the minimum of the squared 
error and the origin.

• The L2 regularizer just shrinks the 
weights.



Other regularizers

• We do not need to use the squared error, provided we are willing to do more 
computation.

• Other powers of the weights can be used.



Minimizing the absolute error

• This minimization involves solving a linear programming problem.
• It corresponds to maximum likelihood estimation if the output noise 

is modeled by a Laplacian instead of a Gaussian.
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“Bias” term is the squared error of the  average, 
over training datasets D, of the estimates.

Bias: average between prediction  and desired.

“Variance” term: variance over training datasets D, 
of the model estimate.

The bias-variance decomposition



Regularization parameter affects the bias and variance terms

low bias
high bias

low variancehigh variance
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True model
average

20 realizations



An example of the bias-variance trade-off



Beating the bias-variance trade-off
• Reduce the variance term by averaging lots of models trained on 

different datasets. 
– Seems silly. For lots of different datasets it is better to combine 

them into one big training set.
• More training data has much less variance.

• Weird idea: We can create different datasets by bootstrap sampling 
of our single training dataset. 
– This is called “bagging” and it works surprisingly well.

• If we have enough computation its better doing it Bayesian: 
– Combine the predictions of many models using the posterior 

probability of each parameter vector as the combination weight.


