Class is 170. Announcements

Matlab Grader homework, Binary graded.

168 (HW1), 166,165 (HW2) has done the homework. (If you have not done HW talk
to me/TA!)

Homework 3 due 5 May TODAY
Homework 4 (SVM +Dictionary Learning) due ~24 May, released soon

Jupiter “GPU” homework. Due 10 May

Today:

- Stanford CNN 12, K-means, EM (Bishop 9)&~ /1'7(4 it o

+ Play with Tensorflow playground before class http://playground.tensorflow.org
Solve the spiral problem

Monday
« Stanford CNN 13, Dictionary Learning,



3-4 person groups preferred Pr . e

Deliverables: Poster, Report & main code (plus prggj)saprgﬁerm slide)

Topics your own or chose form suggested topics. Some physics inspired.

April 26 groups due to TA. 5 students not signed up 44 Groups formed. Guidelines is on Piazza

 May 5 proposal due. use dropbox Format “Proposal”+groupNumber
https://www.dropbox.com/request/XGqCV0gXm9OLBYz7J1msS

 Wednesday May 22 Midterm slide presentation.

* Project discussion, 22 May: We split into 6 sub-classes. The purpose is to
make sure your project is on track, good progress and good goals.
Each group gives a ~10 min presentation by all members
— (each person talks for ~2 min, ~1 slide)
— Motivation & background, which data?
— small Example,
— final outcome, (focused on method and data)
— difficulties,
« There are 7 Groups in each sub-class, thus we have 15 min in total/group.
And will use the remaining time for discussion.

* June 5, 5-8pm poster. Atkinson Hall with Pizza. Upload June ~3
* Report and code due Saturday 15 June.



What's going on inside ConvNets?

s i i e
Input Image:
3 x224 x 224

What are the intermediate features looking for?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Class Scores:
1000 numbers



The general expression of a convolution is

a b
9(@,y) = wx f(z,y) = D) wis,t)f(z—s,y—t),

where g(:c, y) is the filtered image, f(:E, y)is the original image, w is the filter kernel. Every
element of the filter kernel is considered by —a < s < a and —b <t < b.

Depending on the element values, a kernel can cause a wide range of effects.
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Image Processing

Identity

Edge detection

Sharpen

Box blur

(normalized)

Image result g(x,y)



Reverse engineering
First Layer: Visualize Filters

«
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ResNet-18: ResNet-101: DenseNet-121:
64 x3x7Tx7 64 x3x7x7 64 x3x7x7
) ~ T——
AlexNet: 5 e
64 x3x 11x 11 ——

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Similar to human neuron: First observe oriented edges

w =25

Tx subject to =1
w' x subj wll X7



Last Layer: Nearest Neighbors i vector %;J
e I

Testimage L2 Nearest neighbors in feature space ﬁ?
Recall: Nearest neighbors
in pixel space
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Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector

- “looks natural” (image prior regularization)

» Given feature vector

x* = argmin £(®(x), D) + AR(x)

XERHXWXC —iT p—

U(®(x), Po) = || ®(x) — Po|?

Rys(x) = Z ((mi,j+1 - il?z'j)2 + (Tir1,5 — $ij)2)

i g \ Total Variation regularizer
’ (encourages spatial smoothness)

» Features of new image

N

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015



Feature Inversion

Reconstructing from different layers of VGG-16

relub_1 relub_3




Neural Texture Synthesis: Gram Matrix

J C
| I 2 y
i I
This image is in the public domain ; * \_{ | |

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors HW e

Efficient to compute; reshape featugesfrom—,
Outer product of two C-dimensional vectors -
gives C x C matrix measuring co-occurrence CxHxWto =CxHW = F' < [ J jc’

Average over all HW pairs of vectors, giving then compute G = FFT
Gram matrix of shape C x C -



Neural Texture Synthesis &= (e -¢)  cei-Yun

«>1.  Pretrain a CNN on ImageNet (VGG-19)
Run input texture forward through CNN,

—
2 -
record activations on every layer; layer i ' -I 4
— ool >~

gives feature map of shape Ci xH xW.
3. Ateach layer compute the Gram matrix stz W

giving outer product of features: rvEEs]

Gl =) FiFly (shape C, xC)
p

4. Initialize generated image from random

noise peY -—
9. Pass generated image through CNN, P o 1—' D D |
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 1»1‘;1_‘

distance between Gram matrices
7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO5

atys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

% Gradient
descent




Neural Texture Synthesis

Reconstructing texture from —
higher layers recovers

larger features from the

input texture

pool1

olék’p

pool3

relué4_3
)
Texture synthesis
(Gram
reconstruction)




Neural Style Transfer

Content Image

Style Transfer!

RN e
NN

Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
permission

This image is licensed under CE-BY 3.0
rd

Style transfer=Feature reconstruction loss+ Gram matrix



Style
image

Output
image
(Start with
noise)

Content
image

Style Target £¢,re1u1_2 €¢,relu2_2 €¢,re1u3_3 €¢,re1u4_3

style style style style
e ys—____A_A____A_A_____“A_A ______ 3
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Y : Loss Network X
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Content Target feat

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016




K-means and Expectation
Maximization

Mike Bianco and Peter Gerstoft
ECE228
5/6/2019



K-means and expectation maximization (EM) can be
considered unsupervised learning

In supervised learning, we have desired machine learning (ML)
model output or ‘action’ y based on inputs x (features), and
model parameters 6

— Probabilities of the form: p(y|x,80)

— Linear regression and classification, support vector machines, etc.

In unsupervised learning, we are interested in discovering
useful patterns in the features. This can be for discovering
latent data ‘causes’ or significant ‘groups’

— Probabilities of the form: p(x|0)

— Principal components analysis (PCA), K-means, dictionary learning, etc.

—




Unsupervised learning

Unsupervised machine learning is inferring a function to
describe hidden structure from "unlabeled" data (a classification
or categorization is not included in the observations). Since the
examples given to the learner are unlabeled, there is no
evaluation of the accuracy of the structure that is output by the
relevant algorithm—which is one way of distinguishing
unsupervised learning from supervised learning.

We are not interested in prediction

Supervised learning: all classification and regression.
Y =wlX
Prediction is important. /



Supervised learning: least square classifier (binary)
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y=Xw

Training set {(x*, y*), (x%,y%), (x°,y°)}
We are given the two classes
(green=0,red = 1)



Unsupervised learning: how are features best divided?

old faithful data

1.5
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Just have features {(x1, x1), (x2, x2), (x3, x3)}



K-means
* Input: Points x4,...,xy € Rﬁ;integer K
—_ " _
« Output: “Centers”, or representatives, {y,..., Mk € RP
« Output also z,,...,zy € RK
Goal: Minimize average squared distance between points and
their nearest representatives:

o cost(uy, ..., Hx) = 2p=1 mjin”xn - “J’”

The centers carve RP up into k
convex regions: [i;'s region consists
of points for which it is the closest
center.




K-means

@ a§f(2h [)‘]‘/
N K
J = ernkuxn _NkHQ (91) Cg'\‘f"ﬂ'd.f.
| n=1 k=1 | | | @ (,\Fﬂt.o\‘k—

Solving for r o ords
. . d o~ plT-

T'nk = {%‘fk — arg mlnj Hxn T I:iyy \9&)&(92) (7

- otherwise. —

Differentiating for u,

N
21 i /

which we can easily solve for p;, to give

o Zn TnkXn
Hi = Zn Tk : ‘
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Old Faithful, Kmeans from Murphy

File Edit View Insert Tools Desktop Window Help : " 1 5 . ; : . I % . I
~ File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help
Ndde W AKAUPDENL- 3 0E O = —— ;
NEadse b AAUDENL- S 0E a@ DEde h RO LEA- 3 0E O
old faithful data
2 T T T - " 2 iteration 1, error 5.4062 z iteration 2, error 1.8911
15 r . | . | L .
| 1.5} . 1.5} se e lelg
1t - 1 | S P ]
1t 1F . 1 E
0.5F . 1 |
0.5F 0.5F . 1
0 - 3 .
. ] 0F 0 . N 4
05 et s T 1 : Xx
: 05 051 Xy XX 1
Af - g
At At 1 |
AsF " 1 Is
151 -151 1 B
2 \ @
2t 2} W‘L .
25 | ] | ) -
-2 -1.5 -1 -0.5 0 0.5 1 1.5 -25 . > - + . " -2.5 . * . . + N
A -2 -1.5 -1 -0.5 0 0.5 1 1.5J -2 -1.5 -1 0.5 0 0.5 1 {15
dile Edit  View Insert‘ Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help + File Edit View Insert Tools Desktop Window Help ~
16de k ALOUBEL- G 0B =0 DEde h AR 0UDEA-3 0E D DEde h AR0UDELA-3 0E aD
2 : ftoration 3, error 0.7929 . , iteration 4, error 0.2035 , iteration 5, error 0.2018
1.5¢
1 -
0.5F
ot
-051
-1F
-15¢1
2F
-25 . + . - + . L L L L s L L L L L s L
-25 -25
2 dd 4 AW © oS t I 2 45 4 05 0 05 1 15 2 45 4 05 0 05 1 15




Application of K-means to data compression:
Vector Quantization

S
O’LS

Each pixel x; is represented

By codebook of K entries p;,

Encode(x;)=argmin||x; — ug||
k

Consider N=64k observations, of
D=1 (b/w) dimension, C=8 bit

NC=513k

Nlog, K+KC bits is needed
K=4 gives 128k a factor 4.
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Mixtures of Gaussians (1)

Old Faithful geyser:

The time between eruptions has a bimodal distribution, with the mean interval being either 65 or 91
minutes, and is dependent on the length of the prior eruption. Within a margin of error of £10

minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less than 2 %, minutes, or
91 minutes after an eruption lasting more than 2 %, minutes.

100 - ; - ; 100
80 80
60 60
0 1 0 1 2 3 4 5 6

Single Gaussian Mixture of two Gaussians



Mixtures of Gaussians (2)

Combine simple models p(z)a
into a complex model:

Zﬂ-k-j\/ X‘“’k?

k=1 %
Component

Mixing coefficient

ey



Mixtures of Gaussians (3)
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Mixture of Gaussians
 Mixtures of Gaussians

(x) = TN (x|, Xk).
p kz::lk Iy k://

« Expressed with latent variable z

”Mar9 el 1’m'-:~K&

p(x) = Y pl@p(xlz) = Y mA (x|, )

k=1
1— J
p({dzk =1) = N(x; ug, Xi) -/' J s

p(z = 1); Tﬁk// -?;,)_ 2’,,
| e ‘E’ N (Kime, 5, )
=/
p@= 2, =90,%f
K

7’

p(x, z)= F(%’@ — TE‘;//



Want to estimate the latent variables for data X
* Probability of data given latent representation

p(X[ . 5) = 7/ Qw\’(x//ukz )

é

4:___

* Log likelihood

InpX|m, pu,X) = _7/]( I n Z([QL\}<7Q}/A&_/2L>

Inp(X|m, u, X) Zln{Zm/\/’ Xn |, Ek)}



Can’t we just solve for the latent variables by
maximimizing log likelihood?

+ Log likelihood  p(X/r. 5 Zln{ZmN ealtie Zk)}
1 )
+ Take derivative w.r.t. p: - N (%, ;/,\,_/ZJ = 7rch/,?zb))/,
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Can’t we just solve for the latent variables by
maximimizing log likelihood?

* Log likelihood Inp(X|mw, p, ZID{ZWkN Xn.u“kazk)}

 Take derivative w.r.t. p;.:

Z WkNanuk>2k) ) (x
Z 71'3 Xn|u’]7

i)
’Y(an) <

— Ky,)

“responsibility”, from Bayes’s rule:

p(zk = Dp(x|zr = 1)

Y(zk) = plzx = 1|x2 =

ZP )p(x|z; = 1) /
E a/ (%AL ) _ ﬂ-kN(X’Nk k)

jer ioikie) izshom Z”J (clpag. 2

ouim? eala‘“‘" y/a



Solving for ., Z;

Take derivative w.r.t.pu,. :



Solving for

K
Use Lagrange multipliers with constraint =~ > m =1
k=1



. 1. Initialize the means g1, covariances ¥y and mixing coefficients 7y, and
E M G a u SS M |X evaluate the initial value of the log likelihood. -
2. E step. Evaluate the responsibilities using the current parameter values

\ c
e (o) = Ol ) 757 923

\c — =
s > mN Gl 35)
C =1
3. M step. Re-estimate the parameters using the current responsibilities
. N new 1 >
}Z’\M ~ o) A Z Y(Znk)Xn (9.24)
‘é((‘.}} \o& n;l
C“}. new  __ 1 new new\T 9.25
AT LS B = i 2 ) e ) b =™ 029
W"a, qnew 2k 9.26)
74 where
M N
. 3(\'(- é Ny = Z’Y(an)- (9.27)

/ W
4. Evaluate the log likelihood
(6>

U? N K
,(// 9' Inp(X|p, =, 7) = Zln{Zﬂk/\/(xnmk,Ek)} 9.28)
k=1

fx V4 n=1

9 QQ ( $ “ and check for convergence of either the parameters or the log kflé)od. It
o~ oY the convergence criterion is not satisfied return to step 2.

Qo uge L D



Important not to have singularities
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G ene ral E M Given a joint distribution p(X, Z|@) over observed variables X and latent vari-
ables Z, governed by parameters @, the goal is to maximize the likelihood func-
tion p(X|@) with respect to 6.

1. Choose an initial setting for the parameters 0°'4.
2. E step Evaluate p(Z|X, 8°'9).

3. M step Evaluate 8"“" given by

6"°" = arg max Q(6,0°') (9.32)
(7]
where
Q(6,0°") =) p(Z|X,6°) Inp(X, Z[6). (9.33)
Z

4. Check for convergence of either the log likelihood or the parameter values.
If the convergence criterion is not satisfied, then let

901(1 - Bnew (9.34)

and return to step 2.
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Kmeans and EM (9.3.2) « w"‘ ~/

Zk EI 0\”\
rql& /

1 1
p(x|py, X) = WGXP{—Q—GHX—MH\Q}- (9.41) ém\a>
e *f 7,‘5 :

Whereby the responsibilities

l
/ “ e { M%}

\)CD

n = 9.42

7(2 k Z 7 eXp{ ||Xn W 3_ ( )
Becomes delta functions. £ i ([ Xy T Me (/r)hi
And the EM means approach the Kmeajﬁs clse <

1 Y /
e = 3 ;fy(znk)xn 9.17) //



