Class is 170. Announcements

Matlab Grader homework,

1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.

167, 165,164 has done the homework. (If you have not done HW talk to me/TA!)
Homework 3 due 5 May

Homework 4 (SVM +DL) due ~24 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 41 Groups formed. Look at Piazza for help.
Guidelines is on Piazza

May 5 proposal due. TAs and Peter can approve.

Email or use dropbox
https://www.dropbox.com/request/XGqCV0gXm9LBYz7J1msS
Format “Proposal”+groupNumber

May 20 presentation

Today:

« Stanford CNN 11, SVM, (Bishop 7)

» Play with Tensorflow playground before class http://playground.tensorflow.org
Solve the spiral problem

Monday
« Stanford CNN 12, K-means, EM (Bishop 9), M < .
( rQ c«Gpco



Projects

3-4 person groups preferred

« Deliverables: Poster, Report & main code (plus proposal, midterm slide)

« Topics your own or chose form suggested topics. Some
physics inspired.
April 26 groups due to TA.

* 41 Groups formed. Look at Piazza for help.
* Guidelines is on Piazza

 May 5 proposal due. TAs and Peter can approve.
Email or use dropbox Format “Proposal’+groupNumber
https://www.dropbox.com/request/XGgqCV0gXm9LBYz7J1msS

« May 20 Midterm slide presentation. Presented to a subgroup of
class.

* June 5 final poster. Upload June ~3
* Report and code due Saturday 15 June.



Confusion matrix/Wikipedia

If a classification system has been trained to distinguish between cats, dogs and rabbits,
a confusion matrix will summarize the test results. Assuming a sample of 27 animals —
8 cats, 6 dogs, and 13 rabbits, the confusion matrix could look like the table below:

{Actual class
Cat | Dog Rabbit

ca (5) 2 |0
Dog_@ 3 2

Rabbit 0 1 11

[& (¢ |13

Predicted
class

[a‘l[' ¢

Actual class

g\; OQ\\J)

Cat Non-cat

Cat 5 True Positives 2 False Positives
—

Predicted
class

Non-cat | 3 False Negatives | 17 True Negatives

277 -5-1-7
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Let us define an experiment from P positive instances and N negative instances for
some condition. The four outcomes can be formulated in a 2x2 confusion matrix, as

follows:
True condition k{/
Total - - . .
. Condition positive Condition negative
population
Predicted . .
-—-—> . True positive, False positive, Z
condition
" Power 5 Type | error
Predicted | positive
condition | Predicted
" False negative, -
condition True negative [’ )
) . Type Il error
negative ,

2 Total population

Positive predictive value (PPV),

Precision =

> True positive
2 Predicted condition positive

False omission rate (FOR) =
2 False negative
2 Predicted condition negative

True positive rate (TPR), Recall,

Sensitivity, proBa'Fl |f3'/ of detection

_ _ 2 True positive
~ % Condition positive

False negative rate (FNR), Miss rate

— _2 False negative
2 Condition positive

=,
2

Recall

TI Q=

False positive rate (FPR), Fall-out, o .
Positive likelihood ratio (LR+)
_ TPR

probability of false alarm

— _ 2 False positive - FP
~ X Condition negative

Specificity (SPC), Selectivity, True
negative rate (TNR)

_ __ 2 True negative
~ X Condition negative

FPi=_<
17

Negative likelihood ratio (LR-)

— FNR
~ TNR

Prevalence = Z.condition positive

Accuracy (ACC) =

2 True positive + X True negative
2 Total population

False discovery rate (FDR) =

> False positive
2 Predicted condition positive

Negative predictive value (NPV) =

2 True negative
2 Predicted condition negative

Diagnostic

) F score =
odds ratio Precision - Recall
LR+ 2. Precision - Reca

R-

(DOR) = R- Precision + Recall



ROC curve (receiver operating charateristic)

ROC Space
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Other Computer Vision Tasks

| ~  Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

J DOG, DOG, CAT DOG, DOG, CAT
TREE,SKY ' N )
Y Y

No objects, just pixels Single Object Multiple Object This mage s GOD ublc doman




Semantic Segmentation Idea: Fully Convolutional

Upsampling:

O ampling amd upeamnling naido e netwerkt | Unpooling or strided
Pooling, strided piing pSampiing ' transpose convolution
convolution

Med-res: Med-res:

D2 x H/4 x W/4 D2 x H/4 x W/4

Low-

D,x H/4 x W/4
High-res: High-res: Predictions:

.3\XHXW D1xH/2xW/2 D1xH/2xW/2 Hx W




In-Network upsampling: “Unpooling”

Nearest Neighbor 11112
—
12 1112
3 4 33| 4
3 31| 4
Input: 2 x 2 Output: 4 x 4

“Bed of Nails”
h

1] 2
3 4
Input: 2 x 2

In-Network upsampling: “Max Unpooling”

Max Pooling
Remember which element was max!

1. 2|6 3
3( 5 >2 1 @ 6
‘:1
112121 78 Rest of the network
7 3|4 8
Input: 4 x 4 Output: 2 x 2
Corresponding pairs of

downsampling and
upsampling layers

Max Unpooling
Use positions from

pooling layer

0
12 0@00
0
4

Input: 2 x 2

0
0

Output: 4 x 4

0|2 O
0|0 O
0|4 O
0|0 O
Output: 4 x 4



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter

Filter moves 2 pixels in
the input for every one
pixel in the output

and input
Stride gives ratio between
movement in input and
output
Input: 4 x 4 Output: 2 x 2
. : Sum where
Other names: 3 x 3 transpose convolution, stride 2 pad 1 output overlaps
-Deconvolution (bad) —
-Upconvolution e
-Fractionally strided 2 ;f 7
convolution ; £ /
-Backward strided = S J > /0 é Filter moves 2 pixels in
convolution 2 Input gives 12] the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input
Input: 2 x 2 Output: 4 x 4



Transpose Convolution:

Input Filter

LY

7 X't
a.

b y
a

—
—

1D Example

i

A

ax

ay

a

bx

by'
bz|

ﬁ)

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly

2x input
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Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

X

rxa=Xa

Example: 1D conv, kernel
size=3, stride=1, padding=1

— -

ay + bz

B [ax—i-by-l—cz
- \‘bx%—cy%—dz

cx + dy

Convolution transpose multiplies by the
transpose of the same matrix:

v f@a’:x%

zy 0 0 O

yl £ 0 0f |a ay + bx

zl y = Of [b] _ |az+by+cx

0 z y z| |e| |bz4+cy+dx

0 0 z yl| |d cz+ dy

0 0 0 =z dz
— 5 <

When stride=1, convolution transpose is
just a regular convolution (with different
padding rules)

Convolution

f*g
A
I
_la
g*f



Convolution as Matrix Multiplication (1D Example)

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
Txd=Xad T+l d=X"a
] (z 0] [ ar |
a y 0 ay
t y z 0 0 O] |b] [ ay+bz z x| |a| _ |az+bx
0 0 z y 2z 0Of|c| |bx+cy+dz 0 vyl |b| by
d 0 =z bz
ki 0 0] 0|

Example: 1D conv, kernel

. . .
size=3, stride=2, padding=1 When stride>1, convolution transpose is

no longer a normal convolution!




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge
number of locations and scales, very
computationally expensive!

Region Proposals

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 1000 region
proposals in a few seconds on CPU




Kernels

We might want to consider something more complicated than a linear model:

Example 1: [z 2?)] — & ([x(l),x@)]) = [x(l)Q,x(Q)Q,xmx(Q)}

Information unchanged, but now we 0]
have a linear classifier on the T

transformed points.

With the kernel trick, we just need kernel Input Space Feature Space

k(a,b) = ®(a)” @(b)




Dual representation, Se,%G.Z
Primal problem: vr‘pin E(w) WX/ & ]Z

1 2 A
E=-Ya{wix, — .12+ Zlwll? = |IXw —¢ll3+ S llwll?

—————

Solution  w=X*t=(X"X+Al) X"t
=XTXXT+A) 't =X"(K+Aly) 't=X"a

N
&
The kernel is K = XX7T “ 4

Dual representationis : min E(a)
a

1 A A
E =3 N(W x, — ta}+ 2wl = |[Ka —tl3+1a"Ka

Prediction

Y= wix = a’Xx =Y a,xix = Y ak(xy,, x)



Dual representation, Sec 6.2
Prediction

y=w'x=a'Xx =¥y apxpx = L ank(xy, %)

« Often ais sparse (... Support vector machines)
« We don’t need to know x or @(x).Just the Kernel

A
E(a) = ||Ka — t||§+§aTKa




Lecture 10
Support Vector Machines

M- Mg

Non Bayesian!

Features:

» Kernel

» Sparse representations
« Large margins



Regularize for plausibility
* Which one is best?

* We maximize the margin




Regularize for plausibility




Support Vector Machines

The line that maximizes the minimum
margin is a good bet.

— The model class of “hyper-planes with a margin m”
has a low VC dimension if m is big.

This maximum-margin separator is
determined by a subset of the datapoints.

— Datapoints in this subset are called
“support vectors’.

— It is useful computationally if only few
datapoints are support vectors, because
the support vectors decide which side of The support vectors are
the separator a test case is on. indicated by the circles around

them.




Lagrange multiplier (Bishop App E)

max(f (x)) subject to g(x) =0

1aylor expansion
glx+e) =gx) +e€Vglx)
=0 + 5 @CK) T e
D4+ )% [

L(x,A) = f(x) + Ag(x)
Vil =0

3/,
= =0 = g@)




Lagrange multiplier (Bishop App E)

max(f(x)) subjectto g(x) >0 -
L(x,A) = f(x) +1g(x) V()

XA

Either Vf(x) =0
Then g(x) is inactive, A=0

——————

Org(x) =0 butd >0

———

Thus optimizing L(x, A) with the
Karesh-Kuhn-Trucker (KKT)
equations

g(x)ZO '
A=>0
Ag(x) =0



Testing a linear SVM

* The separator is defined as the set of points for which:
WX +b

g = WX+ b=0

soif WX +b>0 sayits a positive case

e

and if wx°+b<0 say its a negative case

—

margin




>0 Discriminant functions
v

y<0 R, The planar decision surface
in data-space for the simple

linear discriminant function:

W X+wy =0
j‘WTX-HX/o \

X on plane => y=0 => Wiz wTw

Distance from plane /= X, * r '/,TVZ'//?

\ET_)( SWT){L T e\

—H w)f - ! ”i.
- o t¢y/ V7/)
N ¢ x: )C['f g - /' //L

(L 24/A



Large margin

y>0

y=wlx+b

w y=0
xn=xl+rnm y<0\ Ri

x on plane =>y=0=> p = —w'x

Iwli Iwll
thyn =1
max—hun thn

n -




LAV v 7

. Maximum margin (Bishop 7.1)
- 2
arg m1n§HWH Subject to

w,b  Le- tn (Whep(xpn) +0) > 1, n=1,...,N. (7.5)
Lagrange function
grang L(w,D, )=—Hw|\2 Zan {ta(w'o(xn) +0) —1} 17) &
. . . 9 — n= 1"—
lefegentlatlor% 5
w = ;antnq’)(xn) (7.8) 3 W ?Cl(ﬁ (ib (%) Q@
T 2
0 = anty. (7.9) QL-
| == §4,1—‘{ = 5
Dual representatlon é ~( A
L( Zan — fZZanamt tnk (X, xm) (71 92{4@)('24 'é ﬁ')
with respect to a subject to the constraints "T )” 7
an = 0, n=1,...,N, (711 n m) ﬁ A
Zann = 0. (7.12)

oned “SE ) Gt 1) Bt fens g

This can be solved
with quadratic
programming



Maximum margin (Bishop 7.1)
« KKT conditions

a, > 0 (7.14)
thy(xp) —1 = 0 (7.15)
an {thy(x,) —1} = 0. (7.16)
either a,, = 0 or t,y(x,) = 1.
« Solving for a,
N
W= ) antng(xn) (7.8)
n=1
* Prediction
N
y(x) = antnk(x,%x,) +b (7.13) _—



If there is no separating plane...
» Use a bigger set of features.

— Makes the computation slow? “Kernel” trick
makes the computation fast with many features.

» Extend definition of maximum margin to
allow non-separating planes.

— Use “slack” variables = |tn — y(xn)|

thy(x,) =1 =&, n=1,...,N (7.20)

Objective function

N
1
CY &t 5lwl? (7.21)
n=1




SVM classification summarized--- Only kernels
Minimize with respect to w, w
CENC,+ = llwl? (Bishop 7.21)

Solution found in dual domain with Lagrange multipliers
- a,,n=1--Nand
This gives the support vectors S
W=, csa,t,(xn) (Bishop 7.8)
Used for predictions

9 = wo+ WTP() = wo + ) 0, 6,0(5,)9(x)

nes

= wo + Z a tk(x,x) (Bishop 7.13)

nes



How to make a plane curved

 Fitting hyperplanes as separators is
mathematically easy.

— The mathematics is linear.

» Replacing the raw input variables
with a much larger set of features we
get a nice property:

— A planar separator in high-D
feature space is a curved
separator in the low-D input

Space. A planar separator in a 20-D
feature space projected back
to the original 2-D space




SVMs are Perceptrons!

SVM'’s use each training case, X, to define a feature K(x, .)
where K is user chosen.

— So the user designs the features.

SVM do “feature selection” by picking support vectors, and
learn feature weighting from a big optimization problem.

=>SVM is a clever way to train a standard perceptron.
— What a perceptron cannot do, SVM cannot do.

SVM DOES:

— Margin maximization
— Kernel trick

— Sparse



SVM Code for classification (libsvm)
Part of ocean acoustic data set http:/noiselab.ucsd.edu/ECE285/SI0209Final.zip
case 'Classify’
% train
model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict
[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,’-q");

Radial Basis Function Kernel

>> modelmodel =  struct with fields:
Parameters: [5x%1 double]
nr_class: 2

A totalSV: 36 <—

P, rho: 8.3220

RIS O T Do Label: [2x1 double]
sv_indices: [36%1 double]

T AP ProbA: [] ProbB: ]

Soedeyil v S nSV: [2x1 double]
" sv_coef: [36x] doublele— &

SVs: [36><_% double]<e——



Finding the Decision Function libsvm

@ w: maybe infinite variables
@ The dual problem
min 1ozTQoa —e'a
> Corresponds to

(07

subjectto 0< ;< C,i=1,...,/ :
N (Bllshop 7.32)
With y=t
where Q; = yiy;0(x;) ¢(x;) and e =[1,...,1]"
@ At optimum
W = 25:1 a;yip(x;)

@ A finite problem: #variables = #;craiging_da’ga .. O
Using these results to eliminate w, b, and {£,,} from the Lagrangian, we obtain the

dual Lagrangian in the form

_ N 1 N
L(a):Zan—§Z
n=1 n=1

N
A Otk (Xn, Xm) (7.32)
1

m=



X2

X2

Linear Kernel

Sigmoid Function Kernel
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Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp <—§ (x —x)T2 1 (x — x’))

Diagonal X: (this gives ARD)
N 2
1 X; — X
k(x,x") = exp ——Z( l > )
2 : oF

Isotropic ¢/ gives an RBF

207

x — x'||3
k(x,x") = exp (— | llz)



Can be inner product in infinite dimensional space
Assume x € R! and ~ > 0.

e—7||x,-—xj||2 _ e—’y(x,-—xj)2 _ e—’yX,-2+2’YXin—7Xj2

2’YXIXJ (27X/XJ)2 (2”}/X,XJ)3

_e”Y 7X <]__|_

2
—e T (1- 1+\/ | Xj \/ |J+ 7
27y
R R R0k
where

() [\fﬁ 3,

)

P(x7),

I
il

‘@



Tensorflow Playground

1. Fitting the spiral with default settings fail due to the small training set. The
NN will fit to the training data which is not representative of the true pattern
and the network will generalize poorly. Increasing the ratio of training to test
data to 90% the NN finds the correct shape (15t image).




Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows
the small training set to generalize better as it reduce overfitting of the training
data (2nd image).




Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly.
Overfitting once again becomes a problem even after you've added noise. This
can be fixed by adding appropriate L2 regularization (third image).
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